waidhoferj's picture
added AST model
e6fd727
raw
history blame
5.3 kB
import pandas as pd
import numpy as np
import re
import json
from pathlib import Path
import os
import torchaudio
import torch
from tqdm import tqdm
def url_to_filename(url:str) -> str:
return f"{url.split('/')[-1]}.wav"
def has_valid_audio(audio_urls:pd.Series, audio_dir:str) -> pd.Series:
audio_urls = audio_urls.replace(".", np.nan)
audio_files = set(os.path.basename(f) for f in Path(audio_dir).iterdir())
valid_audio_mask = audio_urls.apply(lambda url : url is not np.nan and url_to_filename(url) in audio_files)
return valid_audio_mask
def validate_audio(audio_urls:pd.Series, audio_dir:str) -> pd.Series:
"""
Tests audio urls to ensure that their file exists and the contents is valid.
"""
audio_files = set(os.path.basename(f) for f in Path(audio_dir).iterdir())
def is_valid(url):
valid_url = type(url) == str and "http" in url
if not valid_url:
return False
filename = url_to_filename(url)
if filename not in audio_files:
return False
try:
w, _ = torchaudio.load(os.path.join(audio_dir, filename))
except:
return False
contents_invalid = torch.any(torch.isnan(w)) or torch.any(torch.isinf(w)) or len(torch.unique(w)) <= 2
return not contents_invalid
idxs = []
validations = []
for index, url in tqdm(audio_urls.items(), total=len(audio_urls), desc="Audio URLs Validated"):
idxs.append(index)
validations.append(is_valid(url))
return pd.Series(validations, index=idxs)
def fix_dance_rating_counts(dance_ratings:pd.Series) -> pd.Series:
tag_pattern = re.compile("([A-Za-z]+)(\+|-)(\d+)")
dance_ratings = dance_ratings.apply(lambda v : json.loads(v.replace("'", "\"")))
def fix_labels(labels:dict) -> dict | float:
new_labels = {}
for k, v in labels.items():
match = tag_pattern.search(k)
if match is None:
new_labels[k] = new_labels.get(k, 0) + v
else:
k = match[1]
sign = 1 if match[2] == '+' else -1
scale = int(match[3])
new_labels[k] = new_labels.get(k, 0) + v * scale * sign
valid = any(v > 0 for v in new_labels.values())
return new_labels if valid else np.nan
return dance_ratings.apply(fix_labels)
def get_unique_labels(dance_labels:pd.Series) -> list:
labels = set()
for dances in dance_labels:
labels |= set(dances)
return sorted(labels)
def vectorize_label_probs(labels: dict[str,int], unique_labels:np.ndarray) -> np.ndarray:
"""
Turns label dict into probability distribution vector based on each label count.
"""
label_vec = np.zeros((len(unique_labels),), dtype="float32")
for k, v in labels.items():
item_vec = (unique_labels == k) * v
label_vec += item_vec
lv_cache = label_vec.copy()
label_vec[label_vec<0] = 0
label_vec /= label_vec.sum()
assert not any(np.isnan(label_vec)), f"Provided labels are invalid: {labels}"
return label_vec
def vectorize_multi_label(labels: dict[str,int], unique_labels:np.ndarray) -> np.ndarray:
"""
Turns label dict into binary label vectors for multi-label classification.
"""
probs = vectorize_label_probs(labels,unique_labels)
probs[probs > 0.0] = 1.0
return probs
def get_examples(df:pd.DataFrame, audio_dir:str, class_list=None, multi_label=True, min_votes=1) -> tuple[np.ndarray, np.ndarray]:
sampled_songs = df[has_valid_audio(df["Sample"], audio_dir)]
sampled_songs["DanceRating"] = fix_dance_rating_counts(sampled_songs["DanceRating"])
if class_list is not None:
class_list = set(class_list)
sampled_songs["DanceRating"] = sampled_songs["DanceRating"].apply(
lambda labels : {k: v for k,v in labels.items() if k in class_list}
if not pd.isna(labels) and any(label in class_list and amt > 0 for label, amt in labels.items())
else np.nan)
sampled_songs = sampled_songs.dropna(subset=["DanceRating"])
vote_mask = sampled_songs["DanceRating"].apply(lambda dances: any(votes >= min_votes for votes in dances.values()))
sampled_songs = sampled_songs[vote_mask]
labels = sampled_songs["DanceRating"].apply(lambda dances : {dance: votes for dance, votes in dances.items() if votes >= min_votes})
unique_labels = np.array(get_unique_labels(labels))
vectorizer = vectorize_multi_label if multi_label else vectorize_label_probs
labels = labels.apply(lambda i : vectorizer(i, unique_labels))
audio_paths = [os.path.join(audio_dir, url_to_filename(url)) for url in sampled_songs["Sample"]]
return np.array(audio_paths), np.stack(labels)
if __name__ == "__main__":
links = pd.read_csv("data/backup_2.csv", index_col="index")
df = pd.read_csv("data/songs.csv")
l = links["link"].str.strip()
l = l.apply(lambda url : url if "http" in url else np.nan)
l = l.dropna()
df["Sample"].update(l)
addna = lambda url : url if type(url) == str and "http" in url else np.nan
df["Sample"] = df["Sample"].apply(addna)
is_valid = validate_audio(df["Sample"],"data/samples")
df["valid"] = is_valid
df.to_csv("data/songs_validated.csv")