File size: 5,298 Bytes
c914273
 
 
 
 
 
0030bc6
c914273
0030bc6
c914273
 
 
 
e6fd727
 
c914273
e6fd727
 
c914273
0030bc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c914273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0030bc6
e6fd727
 
c914273
 
e6fd727
c914273
 
 
 
0030bc6
 
 
c914273
0030bc6
 
c914273
 
 
0030bc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c914273
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import pandas as pd
import numpy as np
import re
import json
from pathlib import Path
import os
import torchaudio
import torch
from tqdm import tqdm

def url_to_filename(url:str) -> str:
    return f"{url.split('/')[-1]}.wav"

def has_valid_audio(audio_urls:pd.Series, audio_dir:str) -> pd.Series:
    audio_urls = audio_urls.replace(".", np.nan)
    audio_files = set(os.path.basename(f) for f in Path(audio_dir).iterdir())
    valid_audio_mask = audio_urls.apply(lambda url : url is not np.nan and url_to_filename(url) in audio_files)
    return valid_audio_mask

def validate_audio(audio_urls:pd.Series, audio_dir:str) -> pd.Series:
    """
    Tests audio urls to ensure that their file exists and the contents is valid. 
    """
    audio_files = set(os.path.basename(f) for f in Path(audio_dir).iterdir())
    def is_valid(url):
        valid_url = type(url) == str and "http" in url 
        if not valid_url:
            return False
        filename = url_to_filename(url)
        if filename not in audio_files:
            return False
        try:
            w, _ = torchaudio.load(os.path.join(audio_dir, filename))
        except:
            return False
        contents_invalid = torch.any(torch.isnan(w)) or torch.any(torch.isinf(w)) or len(torch.unique(w)) <= 2
        return not contents_invalid
    
    idxs = []
    validations = []
    for index, url in tqdm(audio_urls.items(), total=len(audio_urls), desc="Audio URLs Validated"):
        idxs.append(index)
        validations.append(is_valid(url))

    return pd.Series(validations, index=idxs)
    
    

def fix_dance_rating_counts(dance_ratings:pd.Series) -> pd.Series:
    tag_pattern = re.compile("([A-Za-z]+)(\+|-)(\d+)")
    dance_ratings = dance_ratings.apply(lambda v : json.loads(v.replace("'", "\"")))
    def fix_labels(labels:dict) -> dict | float:
        new_labels = {}
        for k, v in labels.items():
            match = tag_pattern.search(k)
            if match is None:
                new_labels[k] = new_labels.get(k, 0) + v
            else:
                k = match[1]
                sign = 1 if match[2] == '+' else -1
                scale = int(match[3])
                new_labels[k] = new_labels.get(k, 0) + v * scale * sign
        valid = any(v > 0 for v in new_labels.values())
        return new_labels if valid else np.nan
    return dance_ratings.apply(fix_labels)


def get_unique_labels(dance_labels:pd.Series) -> list:
    labels = set()
    for dances in dance_labels:
        labels |= set(dances)
    return sorted(labels)

def vectorize_label_probs(labels: dict[str,int], unique_labels:np.ndarray) -> np.ndarray:
    """
    Turns label dict into probability distribution vector based on each label count.
    """
    label_vec = np.zeros((len(unique_labels),), dtype="float32")
    for k, v in labels.items():
        item_vec = (unique_labels == k) * v
        label_vec += item_vec
    lv_cache = label_vec.copy()
    label_vec[label_vec<0] = 0
    label_vec /= label_vec.sum()
    assert not any(np.isnan(label_vec)), f"Provided labels are invalid: {labels}"
    return label_vec

def vectorize_multi_label(labels: dict[str,int], unique_labels:np.ndarray) -> np.ndarray:
    """
    Turns label dict into binary label vectors for multi-label classification.
    """
    probs = vectorize_label_probs(labels,unique_labels)
    probs[probs > 0.0] = 1.0
    return probs

def get_examples(df:pd.DataFrame, audio_dir:str, class_list=None, multi_label=True, min_votes=1) -> tuple[np.ndarray, np.ndarray]:
    sampled_songs = df[has_valid_audio(df["Sample"], audio_dir)]
    sampled_songs["DanceRating"] = fix_dance_rating_counts(sampled_songs["DanceRating"])
    if class_list is not None:
        class_list = set(class_list)
        sampled_songs["DanceRating"] = sampled_songs["DanceRating"].apply(
            lambda labels : {k: v for k,v in labels.items() if k in class_list} 
            if not pd.isna(labels) and any(label in class_list and amt > 0 for label, amt in labels.items()) 
            else np.nan)
    sampled_songs = sampled_songs.dropna(subset=["DanceRating"])
    vote_mask = sampled_songs["DanceRating"].apply(lambda dances: any(votes >= min_votes for votes in dances.values()))
    sampled_songs = sampled_songs[vote_mask]
    labels = sampled_songs["DanceRating"].apply(lambda dances : {dance: votes for dance, votes in dances.items() if votes >= min_votes})
    unique_labels = np.array(get_unique_labels(labels))
    vectorizer = vectorize_multi_label if multi_label else vectorize_label_probs
    labels = labels.apply(lambda i : vectorizer(i, unique_labels))

    audio_paths = [os.path.join(audio_dir, url_to_filename(url)) for url in sampled_songs["Sample"]]

    return np.array(audio_paths), np.stack(labels)


if __name__ == "__main__":
    links = pd.read_csv("data/backup_2.csv", index_col="index")
    df = pd.read_csv("data/songs.csv")
    l = links["link"].str.strip()
    l = l.apply(lambda url : url if "http" in url else np.nan)
    l = l.dropna()
    df["Sample"].update(l)
    addna = lambda url :  url if type(url) == str and "http" in url else np.nan
    df["Sample"] = df["Sample"].apply(addna)
    is_valid = validate_audio(df["Sample"],"data/samples")
    df["valid"] = is_valid
    df.to_csv("data/songs_validated.csv")