File size: 6,460 Bytes
dd5fe55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from transformers import AutoTokenizer, AutoModel
from accelerate import Accelerator
from accelerate.utils import gather_object
from tqdm import tqdm
import torch, gc
import torch.nn as nn

class EmbeddingModelWrapper():
    DEFAULT_MODEL="sentence-transformers/all-mpnet-base-v2"

    def __init__(self, model_path=None, bs=8):
        if model_path is None: model_path = self.DEFAULT_MODEL
        self.model, self.tokenizer = self.load_model(model_path)
        self.bs = bs
        self.cos = nn.CosineSimilarity(dim=1, eps=1e-6)

    def load_model(self, model_path):
        model = AutoModel.from_pretrained(
            model_path,
        ).to("mps")
        model.eval()
        tokenizer = AutoTokenizer.from_pretrained(
             model_path,
        )
        return model, tokenizer

    def emb_mean_pooling(self, model_output, attention_mask):
        token_embeddings = model_output[0] 
        input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

    def get_embeddings(self, sentences):
        embeddings=torch.tensor([],device="mps")
        
        if self.bs is None:
            batches=[sentences]
        else:
            batches = [sentences[i:i + self.bs] for i in range(0, len(sentences), self.bs)]  
            
        for sentences in batches:
            encoded_input = self.tokenizer(sentences, padding=True, truncation=True, return_tensors='pt').to("mps")
            with torch.no_grad():
                model_output = self.model(**encoded_input)        
            batch_embeddings=self.emb_mean_pooling(model_output, encoded_input['attention_mask'])
            
            embeddings=torch.cat( (embeddings, batch_embeddings), dim=0 )

        return embeddings

    def get_similarities(self, x, y=None):
        if y is None:
            num_samples=x.shape[0]
            similarities = [[0 for i in range(num_samples)] for f in range(num_samples)]
            for row in tqdm(range(num_samples)):
                similarities[row][0:row+1]=self.cos(x[row].repeat(row+1,1), x[0:row+1]).tolist()
            return similarities
        else:            
            return self.cos(x,y).tolist()

class ModelPredictionGenerator:
    def __init__(self, model, tokenizer, eval_dataset, use_accelerate=False, bs=8, generation_config=None):
        self.model=model
        self.tokenizer=tokenizer
        self.bs=bs
        self.eval_prompts=self.messages_to_prompts( eval_dataset )
        self.use_accelerate=use_accelerate
        self.accelerator = Accelerator()

        assert tokenizer.eos_token_id is not None
        assert tokenizer.chat_template is not None
        if tokenizer.pad_token_id is None:
            tokenizer.pad_token_id = tokenizer.eos_token_id

        # llama-precise
        if generation_config is None:            
            self.generation_config = {
                "temperature": 0.7,
                "top_p": 0.1,
                "repetition_penalty": 1.18,
                "top_k": 40,
                "do_sample": True,
                "max_new_tokens": 100,
                "pad_token_id": tokenizer.pad_token_id
            }
        else:
            self.generation_config = generation_config

    def clear_cache(self):
        torch.mps.empty_cache()
        gc.collect()

    def messages_to_prompts(self, ds):
        prompts=[]
        for conversation in ds["messages"]:
            for i,msg in enumerate(conversation):
                if msg["role"]=="user":
                    prompts.append(
                        dict (
                            # prompt: format current messages up to the current user message and add a generation prompt
                            prompt=self.tokenizer.apply_chat_template(conversation[:i+1], add_generation_prompt=True, tokenize=False),
                            answer_ref=conversation[i+1]["content"]
                        )
                    )
        return prompts

    def get_batches(self, dataset, batch_size):
        return [dataset[i:i + batch_size] for i in range(0, len(dataset), batch_size)]  

    def tokenize_batch(self, batch):
        pad_side=self.tokenizer.padding_side
        self.tokenizer.padding_side="left"     # left pad for inference
        
        prompts=[ item["prompt"] for item in batch ]   
        prompts_tok=self.tokenizer(
            prompts, 
            return_tensors="pt", 
            padding='longest', 
            truncation=True,
            max_length=self.tokenizer.model_max_length,
            return_length=True,
            pad_to_multiple_of=8,
            add_special_tokens=False
        ).to(self.model.device)
        self.tokenizer.padding_side=pad_side   # restore orig. padding side
        
        return prompts_tok

    def generate_batch(self, batch_tok):
        with torch.no_grad():
            outputs_tok=self.model.generate(
                input_ids=batch_tok["input_ids"],
                attention_mask=batch_tok["attention_mask"],
                **self.generation_config
            ).to("cpu")
        outputs=[
            # cut prompt from output
            self.tokenizer.decode(
                outputs_tok[i][outputs_tok[i] != self.tokenizer.pad_token_id][batch_tok["length"][i]:], 
                spaces_between_special_tokens=False,
                skip_special_tokens=True
                ).strip()
            for i,t in enumerate(outputs_tok) ]

        return outputs

    def run(self):
        self.model.eval()
        self.clear_cache()
    
        if self.use_accelerate:
            with self.accelerator.split_between_processes(list(range(len(self.eval_prompts)))) as eval_prompts_local_idcs:
                eval_prompts_local = [self.eval_prompts[i] for i in eval_prompts_local_idcs]
        else:
            eval_prompts_local = self.eval_prompts

        for batch in tqdm( self.get_batches(eval_prompts_local, self.bs) ):
            batch_tok = self.tokenize_batch( batch )
            answers = self.generate_batch( batch_tok )   
    
            for i in range(len(batch)):
                batch[i]["answer_pred"]=answers[i]
                batch[i]["GPU"]=self.accelerator.process_index
            
        if self.use_accelerate:
            return gather_object(eval_prompts_local)
        else:
            return eval_prompts_local