Upload folder using huggingface_hub
Browse files- README.md +5 -2
- benchmarking.ipynb +404 -0
- semscore.py +167 -0
README.md
CHANGED
@@ -63,6 +63,9 @@ TBD
|
|
63 |
|
64 |
## Acknowledgments
|
65 |
|
66 |
-
* [
|
|
|
|
|
67 |
* [Stanford SQuAD](https://rajpurkar.github.io/SQuAD-explorer/)
|
68 |
-
* [
|
|
|
|
63 |
|
64 |
## Acknowledgments
|
65 |
|
66 |
+
* [Agents 2.0](https://github.com/huggingface/transformers/tree/main/src/transformers/agents)
|
67 |
+
* [SemScore: Automated Evaluation of Instruction-Tuned LLMs based on Semantic Textual Similarity](https://arxiv.org/abs/2401.17072)
|
68 |
+
* [SemScore](https://huggingface.co/blog/g-ronimo/semscore)
|
69 |
* [Stanford SQuAD](https://rajpurkar.github.io/SQuAD-explorer/)
|
70 |
+
* [llama 3.1](https://github.com/meta-llama/Meta-Llama)
|
71 |
+
* [Gradio](https://www.gradio.app/)
|
benchmarking.ipynb
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"## Load SQuAD data"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 34,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"import numpy as np\n",
|
17 |
+
"import json\n",
|
18 |
+
"import pandas as pd\n",
|
19 |
+
"\n",
|
20 |
+
"def display_text_df(df):\n",
|
21 |
+
" display(df.style.set_properties(**{'white-space': 'pre-wrap'}).set_table_styles(\n",
|
22 |
+
" [{'selector': 'th', 'props': [('text-align', 'left')]},\n",
|
23 |
+
" {'selector': 'td', 'props': [('text-align', 'left')]}\n",
|
24 |
+
" ]\n",
|
25 |
+
" ).hide())\n"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 5,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"from data import get_data\n",
|
35 |
+
"data = get_data(download=False)\n"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": 6,
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [
|
43 |
+
{
|
44 |
+
"data": {
|
45 |
+
"text/plain": [
|
46 |
+
"('To whom did the Virgin Mary allegedly appear in 1858 in Lourdes France?',\n",
|
47 |
+
" 'Saint Bernadette Soubirous')"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
"execution_count": 6,
|
51 |
+
"metadata": {},
|
52 |
+
"output_type": "execute_result"
|
53 |
+
}
|
54 |
+
],
|
55 |
+
"source": [
|
56 |
+
"data.question_answer_pairs[0]"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": 35,
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [
|
64 |
+
{
|
65 |
+
"data": {
|
66 |
+
"text/html": [
|
67 |
+
"<style type=\"text/css\">\n",
|
68 |
+
"#T_fc111 th {\n",
|
69 |
+
" text-align: left;\n",
|
70 |
+
"}\n",
|
71 |
+
"#T_fc111 td {\n",
|
72 |
+
" text-align: left;\n",
|
73 |
+
"}\n",
|
74 |
+
"#T_fc111_row0_col0, #T_fc111_row0_col1, #T_fc111_row1_col0, #T_fc111_row1_col1, #T_fc111_row2_col0, #T_fc111_row2_col1, #T_fc111_row3_col0, #T_fc111_row3_col1, #T_fc111_row4_col0, #T_fc111_row4_col1, #T_fc111_row5_col0, #T_fc111_row5_col1, #T_fc111_row6_col0, #T_fc111_row6_col1, #T_fc111_row7_col0, #T_fc111_row7_col1, #T_fc111_row8_col0, #T_fc111_row8_col1, #T_fc111_row9_col0, #T_fc111_row9_col1 {\n",
|
75 |
+
" white-space: pre-wrap;\n",
|
76 |
+
"}\n",
|
77 |
+
"</style>\n",
|
78 |
+
"<table id=\"T_fc111\">\n",
|
79 |
+
" <thead>\n",
|
80 |
+
" <tr>\n",
|
81 |
+
" <th id=\"T_fc111_level0_col0\" class=\"col_heading level0 col0\" >Question</th>\n",
|
82 |
+
" <th id=\"T_fc111_level0_col1\" class=\"col_heading level0 col1\" >Answer</th>\n",
|
83 |
+
" </tr>\n",
|
84 |
+
" </thead>\n",
|
85 |
+
" <tbody>\n",
|
86 |
+
" <tr>\n",
|
87 |
+
" <td id=\"T_fc111_row0_col0\" class=\"data row0 col0\" >What year was the Banská Akadémia founded?</td>\n",
|
88 |
+
" <td id=\"T_fc111_row0_col1\" class=\"data row0 col1\" >1735</td>\n",
|
89 |
+
" </tr>\n",
|
90 |
+
" <tr>\n",
|
91 |
+
" <td id=\"T_fc111_row1_col0\" class=\"data row1 col0\" >What is another speed that can also be reported by the camera?</td>\n",
|
92 |
+
" <td id=\"T_fc111_row1_col1\" class=\"data row1 col1\" >SOS-based speed</td>\n",
|
93 |
+
" </tr>\n",
|
94 |
+
" <tr>\n",
|
95 |
+
" <td id=\"T_fc111_row2_col0\" class=\"data row2 col0\" >Where were the use of advanced materials and techniques on display in Sumer?</td>\n",
|
96 |
+
" <td id=\"T_fc111_row2_col1\" class=\"data row2 col1\" >Sumerian temples and palaces</td>\n",
|
97 |
+
" </tr>\n",
|
98 |
+
" <tr>\n",
|
99 |
+
" <td id=\"T_fc111_row3_col0\" class=\"data row3 col0\" >Who is elected every even numbered year?</td>\n",
|
100 |
+
" <td id=\"T_fc111_row3_col1\" class=\"data row3 col1\" >mayor</td>\n",
|
101 |
+
" </tr>\n",
|
102 |
+
" <tr>\n",
|
103 |
+
" <td id=\"T_fc111_row4_col0\" class=\"data row4 col0\" >What was the purpose of top secret ICBM committee?</td>\n",
|
104 |
+
" <td id=\"T_fc111_row4_col1\" class=\"data row4 col1\" >decide on the feasibility of building an ICBM large enough to carry a thermonuclear weapon</td>\n",
|
105 |
+
" </tr>\n",
|
106 |
+
" <tr>\n",
|
107 |
+
" <td id=\"T_fc111_row5_col0\" class=\"data row5 col0\" >What conferences became a requirement after Vatican II?</td>\n",
|
108 |
+
" <td id=\"T_fc111_row5_col1\" class=\"data row5 col1\" >National Bishop Conferences</td>\n",
|
109 |
+
" </tr>\n",
|
110 |
+
" <tr>\n",
|
111 |
+
" <td id=\"T_fc111_row6_col0\" class=\"data row6 col0\" >Who does M fight with?</td>\n",
|
112 |
+
" <td id=\"T_fc111_row6_col1\" class=\"data row6 col1\" >C</td>\n",
|
113 |
+
" </tr>\n",
|
114 |
+
" <tr>\n",
|
115 |
+
" <td id=\"T_fc111_row7_col0\" class=\"data row7 col0\" >How many species of fungi have been found on Antarctica?</td>\n",
|
116 |
+
" <td id=\"T_fc111_row7_col1\" class=\"data row7 col1\" >1150</td>\n",
|
117 |
+
" </tr>\n",
|
118 |
+
" <tr>\n",
|
119 |
+
" <td id=\"T_fc111_row8_col0\" class=\"data row8 col0\" >After losing the battle of Guilford Courthouse, Cornawallis moved his troops where?</td>\n",
|
120 |
+
" <td id=\"T_fc111_row8_col1\" class=\"data row8 col1\" >Virginia coastline</td>\n",
|
121 |
+
" </tr>\n",
|
122 |
+
" <tr>\n",
|
123 |
+
" <td id=\"T_fc111_row9_col0\" class=\"data row9 col0\" >What is the Olympic Torch made from?</td>\n",
|
124 |
+
" <td id=\"T_fc111_row9_col1\" class=\"data row9 col1\" >aluminum.</td>\n",
|
125 |
+
" </tr>\n",
|
126 |
+
" </tbody>\n",
|
127 |
+
"</table>\n"
|
128 |
+
],
|
129 |
+
"text/plain": [
|
130 |
+
"<pandas.io.formats.style.Styler at 0x3afc43c80>"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
"metadata": {},
|
134 |
+
"output_type": "display_data"
|
135 |
+
}
|
136 |
+
],
|
137 |
+
"source": [
|
138 |
+
"np.random.seed(42)\n",
|
139 |
+
"arr =np.array(data.question_answer_pairs)\n",
|
140 |
+
"n_samples = 10\n",
|
141 |
+
"indices = np.random.choice(len(arr), n_samples, replace=False)\n",
|
142 |
+
"random_sample = arr[indices]\n",
|
143 |
+
"# Display the questions and answers in the random sample as a dataframe\n",
|
144 |
+
"dfSample = pd.DataFrame(random_sample, columns=[\"Question\", \"Answer\"])\n",
|
145 |
+
"display_text_df(dfSample)"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "markdown",
|
150 |
+
"metadata": {},
|
151 |
+
"source": [
|
152 |
+
"### Create the agent to be evaluated"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "code",
|
157 |
+
"execution_count": 8,
|
158 |
+
"metadata": {},
|
159 |
+
"outputs": [],
|
160 |
+
"source": [
|
161 |
+
"from agent import get_agent\n",
|
162 |
+
"agent = get_agent()"
|
163 |
+
]
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "markdown",
|
167 |
+
"metadata": {},
|
168 |
+
"source": [
|
169 |
+
"### Run the agent on the random sample of questions"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"cell_type": "code",
|
174 |
+
"execution_count": 36,
|
175 |
+
"metadata": {},
|
176 |
+
"outputs": [
|
177 |
+
{
|
178 |
+
"data": {
|
179 |
+
"application/vnd.jupyter.widget-view+json": {
|
180 |
+
"model_id": "4bce5a5c2449435dbd058ed938db2a91",
|
181 |
+
"version_major": 2,
|
182 |
+
"version_minor": 0
|
183 |
+
},
|
184 |
+
"text/plain": [
|
185 |
+
" 0%| | 0/10 [00:00<?, ?it/s]"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
"metadata": {},
|
189 |
+
"output_type": "display_data"
|
190 |
+
}
|
191 |
+
],
|
192 |
+
"source": [
|
193 |
+
"from gradio import ChatMessage\n",
|
194 |
+
"from transformers.agents import agent_types\n",
|
195 |
+
"from tqdm.notebook import tqdm\n",
|
196 |
+
"import logging\n",
|
197 |
+
"\n",
|
198 |
+
"answers_ref, answers_pred = [], [] \n",
|
199 |
+
"\n",
|
200 |
+
"# Suppress logging from the agent, which can be quite verbose\n",
|
201 |
+
"agent.logger.setLevel(logging.CRITICAL)\n",
|
202 |
+
"\n",
|
203 |
+
"for question, answer in tqdm(random_sample):\n",
|
204 |
+
" class Output:\n",
|
205 |
+
" output: agent_types.AgentType | str = None\n",
|
206 |
+
"\n",
|
207 |
+
" prompt = question\n",
|
208 |
+
" answers_ref.append(answer)\n",
|
209 |
+
" final_answer = agent.run(prompt, stream=False, reset=True)\n",
|
210 |
+
" answers_pred.append(final_answer)"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "markdown",
|
215 |
+
"metadata": {},
|
216 |
+
"source": [
|
217 |
+
"### Use semantic similarity to evaluate the agent's answers against the reference answers\n",
|
218 |
+
"\n",
|
219 |
+
"* One flaw of this approach is that it does not take into account the existence of multiple acceptable answers.\n",
|
220 |
+
"* It also does not benefit from having the context of the question. "
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"cell_type": "code",
|
225 |
+
"execution_count": 37,
|
226 |
+
"metadata": {},
|
227 |
+
"outputs": [],
|
228 |
+
"source": [
|
229 |
+
"from semscore import EmbeddingModelWrapper\n",
|
230 |
+
"from statistics import mean\n",
|
231 |
+
"\n",
|
232 |
+
"answers_ref = [str(answer) for answer in answers_ref]\n",
|
233 |
+
"answers_pred = [str(answer) for answer in answers_pred]\n",
|
234 |
+
"\n",
|
235 |
+
"em = EmbeddingModelWrapper()\n",
|
236 |
+
"similarities = em.get_similarities(\n",
|
237 |
+
" em.get_embeddings( answers_pred ),\n",
|
238 |
+
" em.get_embeddings( answers_ref ),\n",
|
239 |
+
")"
|
240 |
+
]
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"cell_type": "code",
|
244 |
+
"execution_count": 39,
|
245 |
+
"metadata": {},
|
246 |
+
"outputs": [
|
247 |
+
{
|
248 |
+
"data": {
|
249 |
+
"text/html": [
|
250 |
+
"<style type=\"text/css\">\n",
|
251 |
+
"#T_67704 th {\n",
|
252 |
+
" text-align: left;\n",
|
253 |
+
"}\n",
|
254 |
+
"#T_67704 td {\n",
|
255 |
+
" text-align: left;\n",
|
256 |
+
"}\n",
|
257 |
+
"#T_67704_row0_col0, #T_67704_row0_col1, #T_67704_row0_col2, #T_67704_row0_col3, #T_67704_row1_col0, #T_67704_row1_col1, #T_67704_row1_col2, #T_67704_row1_col3, #T_67704_row2_col0, #T_67704_row2_col1, #T_67704_row2_col2, #T_67704_row2_col3, #T_67704_row3_col0, #T_67704_row3_col1, #T_67704_row3_col2, #T_67704_row3_col3, #T_67704_row4_col0, #T_67704_row4_col1, #T_67704_row4_col2, #T_67704_row4_col3, #T_67704_row5_col0, #T_67704_row5_col1, #T_67704_row5_col2, #T_67704_row5_col3, #T_67704_row6_col0, #T_67704_row6_col1, #T_67704_row6_col2, #T_67704_row6_col3, #T_67704_row7_col0, #T_67704_row7_col1, #T_67704_row7_col2, #T_67704_row7_col3, #T_67704_row8_col0, #T_67704_row8_col1, #T_67704_row8_col2, #T_67704_row8_col3, #T_67704_row9_col0, #T_67704_row9_col1, #T_67704_row9_col2, #T_67704_row9_col3 {\n",
|
258 |
+
" white-space: pre-wrap;\n",
|
259 |
+
"}\n",
|
260 |
+
"</style>\n",
|
261 |
+
"<table id=\"T_67704\">\n",
|
262 |
+
" <thead>\n",
|
263 |
+
" <tr>\n",
|
264 |
+
" <th id=\"T_67704_level0_col0\" class=\"col_heading level0 col0\" >Question</th>\n",
|
265 |
+
" <th id=\"T_67704_level0_col1\" class=\"col_heading level0 col1\" >Reference Answer</th>\n",
|
266 |
+
" <th id=\"T_67704_level0_col2\" class=\"col_heading level0 col2\" >Predicted Answer</th>\n",
|
267 |
+
" <th id=\"T_67704_level0_col3\" class=\"col_heading level0 col3\" >Similarity</th>\n",
|
268 |
+
" </tr>\n",
|
269 |
+
" </thead>\n",
|
270 |
+
" <tbody>\n",
|
271 |
+
" <tr>\n",
|
272 |
+
" <td id=\"T_67704_row0_col0\" class=\"data row0 col0\" >What year was the Banská Akadémia founded?</td>\n",
|
273 |
+
" <td id=\"T_67704_row0_col1\" class=\"data row0 col1\" >1735</td>\n",
|
274 |
+
" <td id=\"T_67704_row0_col2\" class=\"data row0 col2\" >1735</td>\n",
|
275 |
+
" <td id=\"T_67704_row0_col3\" class=\"data row0 col3\" >1.000000</td>\n",
|
276 |
+
" </tr>\n",
|
277 |
+
" <tr>\n",
|
278 |
+
" <td id=\"T_67704_row1_col0\" class=\"data row1 col0\" >What is another speed that can also be reported by the camera?</td>\n",
|
279 |
+
" <td id=\"T_67704_row1_col1\" class=\"data row1 col1\" >SOS-based speed</td>\n",
|
280 |
+
" <td id=\"T_67704_row1_col2\" class=\"data row1 col2\" >Average speed</td>\n",
|
281 |
+
" <td id=\"T_67704_row1_col3\" class=\"data row1 col3\" >0.433297</td>\n",
|
282 |
+
" </tr>\n",
|
283 |
+
" <tr>\n",
|
284 |
+
" <td id=\"T_67704_row2_col0\" class=\"data row2 col0\" >Where were the use of advanced materials and techniques on display in Sumer?</td>\n",
|
285 |
+
" <td id=\"T_67704_row2_col1\" class=\"data row2 col1\" >Sumerian temples and palaces</td>\n",
|
286 |
+
" <td id=\"T_67704_row2_col2\" class=\"data row2 col2\" >Based on the information provided, it appears that the Sumerians developed and displayed advanced materials and techniques such as metrology, writing, and astronomy throughout their city-states. The specific locations where these advanced materials and techniques were on display are not explicitly mentioned.\n",
|
287 |
+
"\n",
|
288 |
+
"However, considering the context of the question, I would argue that the city-states of Sumer itself is the most relevant answer. The city-states of Sumer were the hub of Sumerian civilization, culture, and innovation, and it was likely there that these advanced materials and techniques were developed, displayed, and showcased.\n",
|
289 |
+
"\n",
|
290 |
+
"Therefore, my final answer to the user request is:\n",
|
291 |
+
"\n",
|
292 |
+
"The city-states of Sumer</td>\n",
|
293 |
+
" <td id=\"T_67704_row2_col3\" class=\"data row2 col3\" >0.545807</td>\n",
|
294 |
+
" </tr>\n",
|
295 |
+
" <tr>\n",
|
296 |
+
" <td id=\"T_67704_row3_col0\" class=\"data row3 col0\" >Who is elected every even numbered year?</td>\n",
|
297 |
+
" <td id=\"T_67704_row3_col1\" class=\"data row3 col1\" >mayor</td>\n",
|
298 |
+
" <td id=\"T_67704_row3_col2\" class=\"data row3 col2\" >mayor</td>\n",
|
299 |
+
" <td id=\"T_67704_row3_col3\" class=\"data row3 col3\" >1.000000</td>\n",
|
300 |
+
" </tr>\n",
|
301 |
+
" <tr>\n",
|
302 |
+
" <td id=\"T_67704_row4_col0\" class=\"data row4 col0\" >What was the purpose of top secret ICBM committee?</td>\n",
|
303 |
+
" <td id=\"T_67704_row4_col1\" class=\"data row4 col1\" >decide on the feasibility of building an ICBM large enough to carry a thermonuclear weapon</td>\n",
|
304 |
+
" <td id=\"T_67704_row4_col2\" class=\"data row4 col2\" >decide on the feasibility of building an ICBM large enough to carry a thermonuclear weapon</td>\n",
|
305 |
+
" <td id=\"T_67704_row4_col3\" class=\"data row4 col3\" >1.000000</td>\n",
|
306 |
+
" </tr>\n",
|
307 |
+
" <tr>\n",
|
308 |
+
" <td id=\"T_67704_row5_col0\" class=\"data row5 col0\" >What conferences became a requirement after Vatican II?</td>\n",
|
309 |
+
" <td id=\"T_67704_row5_col1\" class=\"data row5 col1\" >National Bishop Conferences</td>\n",
|
310 |
+
" <td id=\"T_67704_row5_col2\" class=\"data row5 col2\" >['National Bishop Conferences']</td>\n",
|
311 |
+
" <td id=\"T_67704_row5_col3\" class=\"data row5 col3\" >0.937632</td>\n",
|
312 |
+
" </tr>\n",
|
313 |
+
" <tr>\n",
|
314 |
+
" <td id=\"T_67704_row6_col0\" class=\"data row6 col0\" >Who does M fight with?</td>\n",
|
315 |
+
" <td id=\"T_67704_row6_col1\" class=\"data row6 col1\" >C</td>\n",
|
316 |
+
" <td id=\"T_67704_row6_col2\" class=\"data row6 col2\" >C</td>\n",
|
317 |
+
" <td id=\"T_67704_row6_col3\" class=\"data row6 col3\" >1.000000</td>\n",
|
318 |
+
" </tr>\n",
|
319 |
+
" <tr>\n",
|
320 |
+
" <td id=\"T_67704_row7_col0\" class=\"data row7 col0\" >How many species of fungi have been found on Antarctica?</td>\n",
|
321 |
+
" <td id=\"T_67704_row7_col1\" class=\"data row7 col1\" >1150</td>\n",
|
322 |
+
" <td id=\"T_67704_row7_col2\" class=\"data row7 col2\" >Based on the output from the `squad_retriever` tool, I can see that there are two documents in the SQuAD dataset that answer the question \"How many species of fungi have been found on Antarctica?\".\n",
|
323 |
+
"\n",
|
324 |
+
"The first document states that about 1150 species of fungi have been recorded from Antarctica. The second document does not provide a different answer to this question.\n",
|
325 |
+
"\n",
|
326 |
+
"Therefore, my final answer is:\n",
|
327 |
+
"\n",
|
328 |
+
"There are approximately 1150 species of fungi that have been found on Antarctica.</td>\n",
|
329 |
+
" <td id=\"T_67704_row7_col3\" class=\"data row7 col3\" >-0.020657</td>\n",
|
330 |
+
" </tr>\n",
|
331 |
+
" <tr>\n",
|
332 |
+
" <td id=\"T_67704_row8_col0\" class=\"data row8 col0\" >After losing the battle of Guilford Courthouse, Cornawallis moved his troops where?</td>\n",
|
333 |
+
" <td id=\"T_67704_row8_col1\" class=\"data row8 col1\" >Virginia coastline</td>\n",
|
334 |
+
" <td id=\"T_67704_row8_col2\" class=\"data row8 col2\" >The Virginia coastline</td>\n",
|
335 |
+
" <td id=\"T_67704_row8_col3\" class=\"data row8 col3\" >0.948570</td>\n",
|
336 |
+
" </tr>\n",
|
337 |
+
" <tr>\n",
|
338 |
+
" <td id=\"T_67704_row9_col0\" class=\"data row9 col0\" >What is the Olympic Torch made from?</td>\n",
|
339 |
+
" <td id=\"T_67704_row9_col1\" class=\"data row9 col1\" >aluminum.</td>\n",
|
340 |
+
" <td id=\"T_67704_row9_col2\" class=\"data row9 col2\" >aluminum</td>\n",
|
341 |
+
" <td id=\"T_67704_row9_col3\" class=\"data row9 col3\" >0.973508</td>\n",
|
342 |
+
" </tr>\n",
|
343 |
+
" </tbody>\n",
|
344 |
+
"</table>\n"
|
345 |
+
],
|
346 |
+
"text/plain": [
|
347 |
+
"<pandas.io.formats.style.Styler at 0x3b0db7320>"
|
348 |
+
]
|
349 |
+
},
|
350 |
+
"metadata": {},
|
351 |
+
"output_type": "display_data"
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"name": "stdout",
|
355 |
+
"output_type": "stream",
|
356 |
+
"text": [
|
357 |
+
"Mean similarity: 0.78\n"
|
358 |
+
]
|
359 |
+
}
|
360 |
+
],
|
361 |
+
"source": [
|
362 |
+
"import pandas as pd\n",
|
363 |
+
"questions = [question for question, _ in random_sample]\n",
|
364 |
+
"dfAnswers = pd.DataFrame(list(zip(questions, answers_ref, answers_pred)), columns=[\"Question\", \"Reference Answer\", \"Predicted Answer\"])\n",
|
365 |
+
"dfAnswers[\"Similarity\"] = similarities\n",
|
366 |
+
"display(dfAnswers.style.set_properties(**{'white-space': 'pre-wrap'}).set_table_styles(\n",
|
367 |
+
" [{'selector': 'th', 'props': [('text-align', 'left')]},\n",
|
368 |
+
" {'selector': 'td', 'props': [('text-align', 'left')]}\n",
|
369 |
+
" ]\n",
|
370 |
+
").hide())\n",
|
371 |
+
"print(f\"Mean similarity: {round(mean(similarities), 2)}\")\n",
|
372 |
+
"\n"
|
373 |
+
]
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"cell_type": "code",
|
377 |
+
"execution_count": null,
|
378 |
+
"metadata": {},
|
379 |
+
"outputs": [],
|
380 |
+
"source": []
|
381 |
+
}
|
382 |
+
],
|
383 |
+
"metadata": {
|
384 |
+
"kernelspec": {
|
385 |
+
"display_name": "aai520",
|
386 |
+
"language": "python",
|
387 |
+
"name": "python3"
|
388 |
+
},
|
389 |
+
"language_info": {
|
390 |
+
"codemirror_mode": {
|
391 |
+
"name": "ipython",
|
392 |
+
"version": 3
|
393 |
+
},
|
394 |
+
"file_extension": ".py",
|
395 |
+
"mimetype": "text/x-python",
|
396 |
+
"name": "python",
|
397 |
+
"nbconvert_exporter": "python",
|
398 |
+
"pygments_lexer": "ipython3",
|
399 |
+
"version": "3.12.5"
|
400 |
+
}
|
401 |
+
},
|
402 |
+
"nbformat": 4,
|
403 |
+
"nbformat_minor": 2
|
404 |
+
}
|
semscore.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModel
|
2 |
+
from accelerate import Accelerator
|
3 |
+
from accelerate.utils import gather_object
|
4 |
+
from tqdm import tqdm
|
5 |
+
import torch, gc
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
class EmbeddingModelWrapper():
|
9 |
+
DEFAULT_MODEL="sentence-transformers/all-mpnet-base-v2"
|
10 |
+
|
11 |
+
def __init__(self, model_path=None, bs=8):
|
12 |
+
if model_path is None: model_path = self.DEFAULT_MODEL
|
13 |
+
self.model, self.tokenizer = self.load_model(model_path)
|
14 |
+
self.bs = bs
|
15 |
+
self.cos = nn.CosineSimilarity(dim=1, eps=1e-6)
|
16 |
+
|
17 |
+
def load_model(self, model_path):
|
18 |
+
model = AutoModel.from_pretrained(
|
19 |
+
model_path,
|
20 |
+
).to("mps")
|
21 |
+
model.eval()
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
23 |
+
model_path,
|
24 |
+
)
|
25 |
+
return model, tokenizer
|
26 |
+
|
27 |
+
def emb_mean_pooling(self, model_output, attention_mask):
|
28 |
+
token_embeddings = model_output[0]
|
29 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
30 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
31 |
+
|
32 |
+
def get_embeddings(self, sentences):
|
33 |
+
embeddings=torch.tensor([],device="mps")
|
34 |
+
|
35 |
+
if self.bs is None:
|
36 |
+
batches=[sentences]
|
37 |
+
else:
|
38 |
+
batches = [sentences[i:i + self.bs] for i in range(0, len(sentences), self.bs)]
|
39 |
+
|
40 |
+
for sentences in batches:
|
41 |
+
encoded_input = self.tokenizer(sentences, padding=True, truncation=True, return_tensors='pt').to("mps")
|
42 |
+
with torch.no_grad():
|
43 |
+
model_output = self.model(**encoded_input)
|
44 |
+
batch_embeddings=self.emb_mean_pooling(model_output, encoded_input['attention_mask'])
|
45 |
+
|
46 |
+
embeddings=torch.cat( (embeddings, batch_embeddings), dim=0 )
|
47 |
+
|
48 |
+
return embeddings
|
49 |
+
|
50 |
+
def get_similarities(self, x, y=None):
|
51 |
+
if y is None:
|
52 |
+
num_samples=x.shape[0]
|
53 |
+
similarities = [[0 for i in range(num_samples)] for f in range(num_samples)]
|
54 |
+
for row in tqdm(range(num_samples)):
|
55 |
+
similarities[row][0:row+1]=self.cos(x[row].repeat(row+1,1), x[0:row+1]).tolist()
|
56 |
+
return similarities
|
57 |
+
else:
|
58 |
+
return self.cos(x,y).tolist()
|
59 |
+
|
60 |
+
class ModelPredictionGenerator:
|
61 |
+
def __init__(self, model, tokenizer, eval_dataset, use_accelerate=False, bs=8, generation_config=None):
|
62 |
+
self.model=model
|
63 |
+
self.tokenizer=tokenizer
|
64 |
+
self.bs=bs
|
65 |
+
self.eval_prompts=self.messages_to_prompts( eval_dataset )
|
66 |
+
self.use_accelerate=use_accelerate
|
67 |
+
self.accelerator = Accelerator()
|
68 |
+
|
69 |
+
assert tokenizer.eos_token_id is not None
|
70 |
+
assert tokenizer.chat_template is not None
|
71 |
+
if tokenizer.pad_token_id is None:
|
72 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
73 |
+
|
74 |
+
# llama-precise
|
75 |
+
if generation_config is None:
|
76 |
+
self.generation_config = {
|
77 |
+
"temperature": 0.7,
|
78 |
+
"top_p": 0.1,
|
79 |
+
"repetition_penalty": 1.18,
|
80 |
+
"top_k": 40,
|
81 |
+
"do_sample": True,
|
82 |
+
"max_new_tokens": 100,
|
83 |
+
"pad_token_id": tokenizer.pad_token_id
|
84 |
+
}
|
85 |
+
else:
|
86 |
+
self.generation_config = generation_config
|
87 |
+
|
88 |
+
def clear_cache(self):
|
89 |
+
torch.mps.empty_cache()
|
90 |
+
gc.collect()
|
91 |
+
|
92 |
+
def messages_to_prompts(self, ds):
|
93 |
+
prompts=[]
|
94 |
+
for conversation in ds["messages"]:
|
95 |
+
for i,msg in enumerate(conversation):
|
96 |
+
if msg["role"]=="user":
|
97 |
+
prompts.append(
|
98 |
+
dict (
|
99 |
+
# prompt: format current messages up to the current user message and add a generation prompt
|
100 |
+
prompt=self.tokenizer.apply_chat_template(conversation[:i+1], add_generation_prompt=True, tokenize=False),
|
101 |
+
answer_ref=conversation[i+1]["content"]
|
102 |
+
)
|
103 |
+
)
|
104 |
+
return prompts
|
105 |
+
|
106 |
+
def get_batches(self, dataset, batch_size):
|
107 |
+
return [dataset[i:i + batch_size] for i in range(0, len(dataset), batch_size)]
|
108 |
+
|
109 |
+
def tokenize_batch(self, batch):
|
110 |
+
pad_side=self.tokenizer.padding_side
|
111 |
+
self.tokenizer.padding_side="left" # left pad for inference
|
112 |
+
|
113 |
+
prompts=[ item["prompt"] for item in batch ]
|
114 |
+
prompts_tok=self.tokenizer(
|
115 |
+
prompts,
|
116 |
+
return_tensors="pt",
|
117 |
+
padding='longest',
|
118 |
+
truncation=True,
|
119 |
+
max_length=self.tokenizer.model_max_length,
|
120 |
+
return_length=True,
|
121 |
+
pad_to_multiple_of=8,
|
122 |
+
add_special_tokens=False
|
123 |
+
).to(self.model.device)
|
124 |
+
self.tokenizer.padding_side=pad_side # restore orig. padding side
|
125 |
+
|
126 |
+
return prompts_tok
|
127 |
+
|
128 |
+
def generate_batch(self, batch_tok):
|
129 |
+
with torch.no_grad():
|
130 |
+
outputs_tok=self.model.generate(
|
131 |
+
input_ids=batch_tok["input_ids"],
|
132 |
+
attention_mask=batch_tok["attention_mask"],
|
133 |
+
**self.generation_config
|
134 |
+
).to("cpu")
|
135 |
+
outputs=[
|
136 |
+
# cut prompt from output
|
137 |
+
self.tokenizer.decode(
|
138 |
+
outputs_tok[i][outputs_tok[i] != self.tokenizer.pad_token_id][batch_tok["length"][i]:],
|
139 |
+
spaces_between_special_tokens=False,
|
140 |
+
skip_special_tokens=True
|
141 |
+
).strip()
|
142 |
+
for i,t in enumerate(outputs_tok) ]
|
143 |
+
|
144 |
+
return outputs
|
145 |
+
|
146 |
+
def run(self):
|
147 |
+
self.model.eval()
|
148 |
+
self.clear_cache()
|
149 |
+
|
150 |
+
if self.use_accelerate:
|
151 |
+
with self.accelerator.split_between_processes(list(range(len(self.eval_prompts)))) as eval_prompts_local_idcs:
|
152 |
+
eval_prompts_local = [self.eval_prompts[i] for i in eval_prompts_local_idcs]
|
153 |
+
else:
|
154 |
+
eval_prompts_local = self.eval_prompts
|
155 |
+
|
156 |
+
for batch in tqdm( self.get_batches(eval_prompts_local, self.bs) ):
|
157 |
+
batch_tok = self.tokenize_batch( batch )
|
158 |
+
answers = self.generate_batch( batch_tok )
|
159 |
+
|
160 |
+
for i in range(len(batch)):
|
161 |
+
batch[i]["answer_pred"]=answers[i]
|
162 |
+
batch[i]["GPU"]=self.accelerator.process_index
|
163 |
+
|
164 |
+
if self.use_accelerate:
|
165 |
+
return gather_object(eval_prompts_local)
|
166 |
+
else:
|
167 |
+
return eval_prompts_local
|