File size: 231,121 Bytes
dd5fe55
 
 
 
 
 
c694655
 
 
 
1e07c35
 
 
dd5fe55
 
c694655
 
 
1e07c35
 
 
c694655
dd5fe55
 
1e07c35
dd5fe55
1e07c35
dd5fe55
69e37b7
dd5fe55
 
69e37b7
 
 
e1ed8d0
69e37b7
 
e1ed8d0
1e07c35
f4644e9
 
 
 
 
1e07c35
 
 
 
 
 
f4644e9
75ccb54
dd5fe55
c694655
1e07c35
f4644e9
 
c694655
dd5fe55
f4644e9
 
 
 
 
 
 
 
75ccb54
 
 
1e07c35
dd5fe55
 
1e07c35
dd5fe55
 
 
 
1e07c35
dd5fe55
 
 
 
69e37b7
 
1e07c35
69e37b7
 
1e07c35
69e37b7
 
1e07c35
69e37b7
 
 
1e07c35
69e37b7
 
1e07c35
 
 
 
69e37b7
 
 
 
1e07c35
 
 
 
69e37b7
 
1e07c35
 
 
 
69e37b7
 
1e07c35
 
 
 
69e37b7
 
 
 
dd5fe55
1e07c35
dd5fe55
 
 
69e37b7
1e07c35
 
 
 
 
 
 
 
 
 
dd5fe55
 
 
1e07c35
 
 
 
 
 
 
 
 
 
 
dd5fe55
 
 
 
1e07c35
dd5fe55
 
 
 
 
 
1e07c35
dd5fe55
 
1e07c35
dd5fe55
 
1e07c35
dd5fe55
 
 
1e07c35
dd5fe55
 
1e07c35
 
 
 
dd5fe55
 
 
 
1e07c35
 
 
 
dd5fe55
 
1e07c35
 
 
 
dd5fe55
 
1e07c35
 
 
 
dd5fe55
 
1e07c35
 
 
 
dd5fe55
 
1e07c35
 
 
 
dd5fe55
 
 
 
 
1e07c35
dd5fe55
 
 
 
1e07c35
 
 
 
 
 
 
 
 
 
dd5fe55
 
 
 
69e37b7
1e07c35
 
 
75ccb54
 
 
1e07c35
c694655
 
1e07c35
c694655
1e07c35
 
 
c694655
 
 
 
1e07c35
75ccb54
 
 
 
 
 
1e07c35
75ccb54
 
1e07c35
75ccb54
 
1e07c35
75ccb54
 
 
1e07c35
75ccb54
 
1e07c35
 
 
 
 
75ccb54
 
 
 
1e07c35
 
 
 
 
75ccb54
 
1e07c35
 
 
 
 
75ccb54
 
1e07c35
 
 
 
 
75ccb54
 
 
 
 
1e07c35
75ccb54
 
 
 
c694655
 
 
 
 
 
 
1e07c35
c694655
 
75ccb54
 
 
1e07c35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c694655
dd5fe55
 
1e07c35
 
 
 
 
 
 
 
 
dd5fe55
 
1e07c35
dd5fe55
e1ed8d0
 
 
 
 
 
 
 
1e07c35
e1ed8d0
1e07c35
e1ed8d0
 
 
 
 
 
 
 
 
1e07c35
e1ed8d0
 
 
 
 
 
1e07c35
e1ed8d0
 
 
 
1e07c35
e1ed8d0
 
 
 
1e07c35
e1ed8d0
1e07c35
e1ed8d0
 
 
 
 
1e07c35
e1ed8d0
 
1e07c35
e1ed8d0
 
 
 
 
 
c694655
e1ed8d0
 
 
 
 
 
 
1e07c35
69e37b7
1e07c35
 
 
69e37b7
1e07c35
69e37b7
1e07c35
 
 
dd5fe55
 
 
 
1e07c35
dd5fe55
e1ed8d0
dd5fe55
c694655
 
 
 
 
 
 
 
 
69e37b7
 
 
 
 
 
e1ed8d0
 
69e37b7
 
 
dd5fe55
e1ed8d0
 
dd5fe55
1e07c35
 
 
c694655
 
 
 
1e07c35
 
 
e1ed8d0
 
 
 
 
dd5fe55
e1ed8d0
dd5fe55
e1ed8d0
1e07c35
 
dd5fe55
 
f4644e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5fe55
 
 
 
1e07c35
 
 
 
 
 
dd5fe55
 
 
 
1e07c35
dd5fe55
e1ed8d0
 
 
 
1e07c35
e1ed8d0
 
 
 
 
 
 
 
 
 
 
 
 
1e07c35
e1ed8d0
 
 
 
c694655
e1ed8d0
 
 
 
 
 
 
 
1e07c35
e1ed8d0
 
 
 
c694655
e1ed8d0
 
 
 
 
 
 
 
1e07c35
e1ed8d0
 
 
 
c694655
e1ed8d0
 
 
 
 
 
dd5fe55
1e07c35
69e37b7
f4644e9
1e07c35
 
69e37b7
dd5fe55
1e07c35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5fe55
 
 
 
f4644e9
dd5fe55
 
c694655
 
f4644e9
c694655
f4644e9
c694655
 
 
 
1e07c35
 
 
 
 
 
 
 
 
 
 
 
 
 
f4644e9
1e07c35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c694655
 
1e07c35
c694655
1e07c35
c694655
 
 
 
1e07c35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4644e9
1e07c35
 
c694655
 
f4644e9
c694655
f4644e9
c694655
 
 
 
1e07c35
 
 
 
f4644e9
 
1e07c35
f4644e9
 
 
 
 
 
 
1e07c35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c694655
 
 
1e07c35
c694655
 
 
 
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1ed8d0
 
1e07c35
e1ed8d0
 
 
 
 
 
 
 
1e07c35
c694655
 
 
 
 
 
 
 
 
 
1e07c35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c694655
 
1e07c35
c694655
 
 
 
 
 
 
 
1e07c35
c694655
 
 
 
 
 
 
 
 
 
1e07c35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c694655
 
1e07c35
c694655
 
 
 
 
 
 
1e07c35
c694655
1e07c35
 
 
 
 
 
 
 
c694655
 
 
1e07c35
c694655
 
1e07c35
 
 
 
 
 
 
c694655
 
 
 
1e07c35
c694655
 
 
 
 
1e07c35
e1ed8d0
 
 
 
 
 
 
 
dd5fe55
 
 
 
1e07c35
dd5fe55
 
1e07c35
dd5fe55
 
1e07c35
dd5fe55
 
 
1e07c35
dd5fe55
 
1e07c35
 
 
 
 
dd5fe55
 
 
 
1e07c35
 
 
 
 
dd5fe55
 
1e07c35
 
 
 
 
dd5fe55
 
1e07c35
 
 
 
 
dd5fe55
 
1e07c35
 
 
 
 
dd5fe55
 
1e07c35
 
 
 
 
dd5fe55
 
1e07c35
 
 
 
 
dd5fe55
 
1e07c35
 
 
 
 
dd5fe55
 
1e07c35
 
 
 
 
dd5fe55
 
1e07c35
 
 
 
 
dd5fe55
 
1e07c35
 
 
 
 
dd5fe55
 
 
 
 
1e07c35
e1ed8d0
 
 
 
 
 
 
 
1e07c35
e1ed8d0
 
 
 
 
 
 
 
 
 
 
 
1e07c35
e1ed8d0
 
1e07c35
e1ed8d0
 
1e07c35
e1ed8d0
 
 
1e07c35
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
 
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
 
 
 
1e07c35
e1ed8d0
 
 
 
 
 
 
 
1e07c35
e1ed8d0
 
 
 
 
 
 
 
 
 
 
 
1e07c35
e1ed8d0
 
1e07c35
e1ed8d0
 
1e07c35
e1ed8d0
 
 
1e07c35
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
 
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
1e07c35
 
 
 
 
e1ed8d0
 
 
 
 
1e07c35
dd5fe55
 
 
 
 
 
 
1e07c35
69e37b7
1e07c35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4644e9
1e07c35
 
 
f4644e9
1e07c35
f4644e9
1e07c35
dd5fe55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Benchmarking Tool-using Agentic Approach\n",
    "\n",
    "* After exploring a variety of possible benchmarks, I decided to focus on SemScore, which is a semantic similarity metric. \n",
    "* The idea is to evaluate how well the agent can answer questions that are syntactically and semantically similar to the reference answers.\n",
    "* It uses cosine similarity of embedding vectors to measure the semantic similarity between the predicted answer and the reference answer.\n",
    "* It is a good metric for evaluating the quality of the agent's answers, but it does not take into account the existence of multiple acceptable answers.\n",
    "* It also does not take into account the quality of the question, which is as important as the quality of the answer."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Setup"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 211,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "from transformers.agents import agent_types\n",
    "from tqdm.notebook import tqdm\n",
    "import logging\n",
    "from IPython.display import Markdown\n",
    "from semscore import EmbeddingModelWrapper\n",
    "from statistics import mean\n",
    "from agent import get_agent\n",
    "from openai import OpenAI\n",
    "from prompts import (\n",
    "    SUCCINCT_SQUAD_REACT_CODE_SYSTEM_PROMPT,\n",
    "    FOCUSED_SQUAD_REACT_CODE_SYSTEM_PROMPT,\n",
    "    DEFAULT_SQUAD_REACT_CODE_SYSTEM_PROMPT,\n",
    ")\n",
    "import re\n",
    "from string import punctuation\n",
    "from nltk.corpus import stopwords\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
    "from dotenv import load_dotenv\n",
    "\n",
    "load_dotenv()  # Load OPENAI_API_KEY from .env (not included in repo)\n",
    "\n",
    "SAMPLES_DIR = \"samples\"\n",
    "BENCHMARKS_DIR = \"benchmarks\"\n",
    "STOP_WORDS = set(stopwords.words(\"english\"))\n",
    "\n",
    "\n",
    "def display_text_df(df):\n",
    "    display(\n",
    "        df.style.set_properties(**{\"white-space\": \"pre-wrap\"}).set_table_styles(\n",
    "            [\n",
    "                {\"selector\": \"th\", \"props\": [(\"text-align\", \"left\")]},\n",
    "                {\"selector\": \"td\", \"props\": [(\"text-align\", \"left\")]},\n",
    "            ]\n",
    "        )\n",
    "    )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Load the data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 199,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style type=\"text/css\">\n",
       "#T_debc1 th {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_debc1 td {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_debc1_row0_col0, #T_debc1_row0_col1, #T_debc1_row0_col2, #T_debc1_row0_col3, #T_debc1_row1_col0, #T_debc1_row1_col1, #T_debc1_row1_col2, #T_debc1_row1_col3, #T_debc1_row2_col0, #T_debc1_row2_col1, #T_debc1_row2_col2, #T_debc1_row2_col3 {\n",
       "  white-space: pre-wrap;\n",
       "}\n",
       "</style>\n",
       "<table id=\"T_debc1\">\n",
       "  <thead>\n",
       "    <tr>\n",
       "      <th id=\"T_debc1_level0_col0\" class=\"col_heading level0 col0\" >Title</th>\n",
       "      <th id=\"T_debc1_level0_col1\" class=\"col_heading level0 col1\" >Context</th>\n",
       "      <th id=\"T_debc1_level0_col2\" class=\"col_heading level0 col2\" >Question</th>\n",
       "      <th id=\"T_debc1_level0_col3\" class=\"col_heading level0 col3\" >Answer</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <td id=\"T_debc1_row0_col0\" class=\"data row0 col0\" >University_of_Notre_Dame</td>\n",
       "      <td id=\"T_debc1_row0_col1\" class=\"data row0 col1\" >Architecturally, the school has a Catholic character. Atop the Main Building's gold dome is a golden statue of the Virgin Mary. Immediately in front of the Main Building and facing it, is a copper statue of Christ with arms upraised with the legend \"Venite Ad Me Omnes\". Next to the Main Building is the Basilica of the Sacred Heart. Immediately behind the basilica is the Grotto, a Marian place of prayer and reflection. It is a replica of the grotto at Lourdes, France where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858. At the end of the main drive (and in a direct line that connects through 3 statues and the Gold Dome), is a simple, modern stone statue of Mary.</td>\n",
       "      <td id=\"T_debc1_row0_col2\" class=\"data row0 col2\" >To whom did the Virgin Mary allegedly appear in 1858 in Lourdes France?</td>\n",
       "      <td id=\"T_debc1_row0_col3\" class=\"data row0 col3\" >Saint Bernadette Soubirous</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_debc1_row1_col0\" class=\"data row1 col0\" >University_of_Notre_Dame</td>\n",
       "      <td id=\"T_debc1_row1_col1\" class=\"data row1 col1\" >Architecturally, the school has a Catholic character. Atop the Main Building's gold dome is a golden statue of the Virgin Mary. Immediately in front of the Main Building and facing it, is a copper statue of Christ with arms upraised with the legend \"Venite Ad Me Omnes\". Next to the Main Building is the Basilica of the Sacred Heart. Immediately behind the basilica is the Grotto, a Marian place of prayer and reflection. It is a replica of the grotto at Lourdes, France where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858. At the end of the main drive (and in a direct line that connects through 3 statues and the Gold Dome), is a simple, modern stone statue of Mary.</td>\n",
       "      <td id=\"T_debc1_row1_col2\" class=\"data row1 col2\" >What is in front of the Notre Dame Main Building?</td>\n",
       "      <td id=\"T_debc1_row1_col3\" class=\"data row1 col3\" >a copper statue of Christ</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_debc1_row2_col0\" class=\"data row2 col0\" >University_of_Notre_Dame</td>\n",
       "      <td id=\"T_debc1_row2_col1\" class=\"data row2 col1\" >Architecturally, the school has a Catholic character. Atop the Main Building's gold dome is a golden statue of the Virgin Mary. Immediately in front of the Main Building and facing it, is a copper statue of Christ with arms upraised with the legend \"Venite Ad Me Omnes\". Next to the Main Building is the Basilica of the Sacred Heart. Immediately behind the basilica is the Grotto, a Marian place of prayer and reflection. It is a replica of the grotto at Lourdes, France where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858. At the end of the main drive (and in a direct line that connects through 3 statues and the Gold Dome), is a simple, modern stone statue of Mary.</td>\n",
       "      <td id=\"T_debc1_row2_col2\" class=\"data row2 col2\" >The Basilica of the Sacred heart at Notre Dame is beside to which structure?</td>\n",
       "      <td id=\"T_debc1_row2_col3\" class=\"data row2 col3\" >the Main Building</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x438e3dc40>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "(87599, 4)"
      ]
     },
     "execution_count": 199,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from data import get_data\n",
    "data = get_data(download=False)\n",
    "display_text_df(data.df.head(3))\n",
    "data.df.shape"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Sample 100 random rows from the data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 200,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style type=\"text/css\">\n",
       "#T_e89a8 th {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_e89a8 td {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_e89a8_row0_col0, #T_e89a8_row0_col1, #T_e89a8_row0_col2, #T_e89a8_row0_col3, #T_e89a8_row1_col0, #T_e89a8_row1_col1, #T_e89a8_row1_col2, #T_e89a8_row1_col3, #T_e89a8_row2_col0, #T_e89a8_row2_col1, #T_e89a8_row2_col2, #T_e89a8_row2_col3, #T_e89a8_row3_col0, #T_e89a8_row3_col1, #T_e89a8_row3_col2, #T_e89a8_row3_col3, #T_e89a8_row4_col0, #T_e89a8_row4_col1, #T_e89a8_row4_col2, #T_e89a8_row4_col3 {\n",
       "  white-space: pre-wrap;\n",
       "}\n",
       "</style>\n",
       "<table id=\"T_e89a8\">\n",
       "  <thead>\n",
       "    <tr>\n",
       "      <th id=\"T_e89a8_level0_col0\" class=\"col_heading level0 col0\" >Title</th>\n",
       "      <th id=\"T_e89a8_level0_col1\" class=\"col_heading level0 col1\" >Context</th>\n",
       "      <th id=\"T_e89a8_level0_col2\" class=\"col_heading level0 col2\" >Question</th>\n",
       "      <th id=\"T_e89a8_level0_col3\" class=\"col_heading level0 col3\" >Answer</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <td id=\"T_e89a8_row0_col0\" class=\"data row0 col0\" >Institute_of_technology</td>\n",
       "      <td id=\"T_e89a8_row0_col1\" class=\"data row0 col1\" >The world's first institution of technology or technical university with tertiary technical education is the Banská Akadémia in Banská Štiavnica, Slovakia, founded in 1735, Academy since December 13, 1762 established by queen Maria Theresa in order to train specialists of silver and gold mining and metallurgy in neighbourhood. Teaching started in 1764. Later the department of Mathematics, Mechanics and Hydraulics and department of Forestry were settled. University buildings are still at their place today and are used for teaching. University has launched the first book of electrotechnics in the world.</td>\n",
       "      <td id=\"T_e89a8_row0_col2\" class=\"data row0 col2\" >What year was the Banská Akadémia founded?</td>\n",
       "      <td id=\"T_e89a8_row0_col3\" class=\"data row0 col3\" >1735</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_e89a8_row1_col0\" class=\"data row1 col0\" >Film_speed</td>\n",
       "      <td id=\"T_e89a8_row1_col1\" class=\"data row1 col1\" >The standard specifies how speed ratings should be reported by the camera. If the noise-based speed (40:1) is higher than the saturation-based speed, the noise-based speed should be reported, rounded downwards to a standard value (e.g. 200, 250, 320, or 400). The rationale is that exposure according to the lower saturation-based speed would not result in a visibly better image. In addition, an exposure latitude can be specified, ranging from the saturation-based speed to the 10:1 noise-based speed. If the noise-based speed (40:1) is lower than the saturation-based speed, or undefined because of high noise, the saturation-based speed is specified, rounded upwards to a standard value, because using the noise-based speed would lead to overexposed images. The camera may also report the SOS-based speed (explicitly as being an SOS speed), rounded to the nearest standard speed rating.</td>\n",
       "      <td id=\"T_e89a8_row1_col2\" class=\"data row1 col2\" >What is another speed that can also be reported by the camera?</td>\n",
       "      <td id=\"T_e89a8_row1_col3\" class=\"data row1 col3\" >SOS-based speed</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_e89a8_row2_col0\" class=\"data row2 col0\" >Sumer</td>\n",
       "      <td id=\"T_e89a8_row2_col1\" class=\"data row2 col1\" >The most impressive and famous of Sumerian buildings are the ziggurats, large layered platforms which supported temples. Sumerian cylinder seals also depict houses built from reeds not unlike those built by the Marsh Arabs of Southern Iraq until as recently as 400 CE. The Sumerians also developed the arch, which enabled them to develop a strong type of dome. They built this by constructing and linking several arches. Sumerian temples and palaces made use of more advanced materials and techniques,[citation needed] such as buttresses, recesses, half columns, and clay nails.</td>\n",
       "      <td id=\"T_e89a8_row2_col2\" class=\"data row2 col2\" >Where were the use of advanced materials and techniques on display in Sumer?</td>\n",
       "      <td id=\"T_e89a8_row2_col3\" class=\"data row2 col3\" >Sumerian temples and palaces</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_e89a8_row3_col0\" class=\"data row3 col0\" >Ann_Arbor,_Michigan</td>\n",
       "      <td id=\"T_e89a8_row3_col1\" class=\"data row3 col1\" >Ann Arbor has a council-manager form of government. The City Council has 11 voting members: the mayor and 10 city council members. The mayor and city council members serve two-year terms: the mayor is elected every even-numbered year, while half of the city council members are up for election annually (five in even-numbered and five in odd-numbered years). Two council members are elected from each of the city's five wards. The mayor is elected citywide. The mayor is the presiding officer of the City Council and has the power to appoint all Council committee members as well as board and commission members, with the approval of the City Council. The current mayor of Ann Arbor is Christopher Taylor, a Democrat who was elected as mayor in 2014. Day-to-day city operations are managed by a city administrator chosen by the city council.</td>\n",
       "      <td id=\"T_e89a8_row3_col2\" class=\"data row3 col2\" >Who is elected every even numbered year?</td>\n",
       "      <td id=\"T_e89a8_row3_col3\" class=\"data row3 col3\" >mayor</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_e89a8_row4_col0\" class=\"data row4 col0\" >John_von_Neumann</td>\n",
       "      <td id=\"T_e89a8_row4_col1\" class=\"data row4 col1\" >Shortly before his death, when he was already quite ill, von Neumann headed the United States government's top secret ICBM committee, and it would sometimes meet in his home. Its purpose was to decide on the feasibility of building an ICBM large enough to carry a thermonuclear weapon. Von Neumann had long argued that while the technical obstacles were sizable, they could be overcome in time. The SM-65 Atlas passed its first fully functional test in 1959, two years after his death. The feasibility of an ICBM owed as much to improved, smaller warheads as it did to developments in rocketry, and his understanding of the former made his advice invaluable.</td>\n",
       "      <td id=\"T_e89a8_row4_col2\" class=\"data row4 col2\" >What was the purpose of top secret ICBM committee?</td>\n",
       "      <td id=\"T_e89a8_row4_col3\" class=\"data row4 col3\" >decide on the feasibility of building an ICBM large enough to carry a thermonuclear weapon</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x3b526aed0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "(100, 4)"
      ]
     },
     "execution_count": 200,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.random.seed(42)\n",
    "# Select 10 random rows from data.df\n",
    "dfSample = data.df.sample(n=100)\n",
    "display_text_df(dfSample.head())\n",
    "dfSample.shape"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Synthesize Unambiguous Questions\n",
    "\n",
    "* Because the solution is Closed Generative QA, the raw questions in the dataset may result in unreasonable standards in the benchmark due to their ambiguity.\n",
    "* Therefore, we need to synthesize unambiguous questions.\n",
    "* For this, we will use GPT-4o-mini and a simple prompt, one-shot prompt to synthesize the questions."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 201,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style type=\"text/css\">\n",
       "#T_2245b th {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_2245b td {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_2245b_row0_col0, #T_2245b_row0_col1, #T_2245b_row0_col2, #T_2245b_row0_col3, #T_2245b_row0_col4, #T_2245b_row1_col0, #T_2245b_row1_col1, #T_2245b_row1_col2, #T_2245b_row1_col3, #T_2245b_row1_col4, #T_2245b_row2_col0, #T_2245b_row2_col1, #T_2245b_row2_col2, #T_2245b_row2_col3, #T_2245b_row2_col4 {\n",
       "  white-space: pre-wrap;\n",
       "}\n",
       "</style>\n",
       "<table id=\"T_2245b\">\n",
       "  <thead>\n",
       "    <tr>\n",
       "      <th id=\"T_2245b_level0_col0\" class=\"col_heading level0 col0\" >Title</th>\n",
       "      <th id=\"T_2245b_level0_col1\" class=\"col_heading level0 col1\" >Context</th>\n",
       "      <th id=\"T_2245b_level0_col2\" class=\"col_heading level0 col2\" >Question</th>\n",
       "      <th id=\"T_2245b_level0_col3\" class=\"col_heading level0 col3\" >Answer</th>\n",
       "      <th id=\"T_2245b_level0_col4\" class=\"col_heading level0 col4\" >Synthesized Question</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <td id=\"T_2245b_row0_col0\" class=\"data row0 col0\" >Institute_of_technology</td>\n",
       "      <td id=\"T_2245b_row0_col1\" class=\"data row0 col1\" >The world's first institution of technology or technical university with tertiary technical education is the Banská Akadémia in Banská Štiavnica, Slovakia, founded in 1735, Academy since December 13, 1762 established by queen Maria Theresa in order to train specialists of silver and gold mining and metallurgy in neighbourhood. Teaching started in 1764. Later the department of Mathematics, Mechanics and Hydraulics and department of Forestry were settled. University buildings are still at their place today and are used for teaching. University has launched the first book of electrotechnics in the world.</td>\n",
       "      <td id=\"T_2245b_row0_col2\" class=\"data row0 col2\" >What year was the Banská Akadémia founded?</td>\n",
       "      <td id=\"T_2245b_row0_col3\" class=\"data row0 col3\" >1735</td>\n",
       "      <td id=\"T_2245b_row0_col4\" class=\"data row0 col4\" >What year was the Banská Akadémia, the world's first institution of technology, founded in Banská Štiavnica, Slovakia?</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_2245b_row1_col0\" class=\"data row1 col0\" >Film_speed</td>\n",
       "      <td id=\"T_2245b_row1_col1\" class=\"data row1 col1\" >The standard specifies how speed ratings should be reported by the camera. If the noise-based speed (40:1) is higher than the saturation-based speed, the noise-based speed should be reported, rounded downwards to a standard value (e.g. 200, 250, 320, or 400). The rationale is that exposure according to the lower saturation-based speed would not result in a visibly better image. In addition, an exposure latitude can be specified, ranging from the saturation-based speed to the 10:1 noise-based speed. If the noise-based speed (40:1) is lower than the saturation-based speed, or undefined because of high noise, the saturation-based speed is specified, rounded upwards to a standard value, because using the noise-based speed would lead to overexposed images. The camera may also report the SOS-based speed (explicitly as being an SOS speed), rounded to the nearest standard speed rating.</td>\n",
       "      <td id=\"T_2245b_row1_col2\" class=\"data row1 col2\" >What is another speed that can also be reported by the camera?</td>\n",
       "      <td id=\"T_2245b_row1_col3\" class=\"data row1 col3\" >SOS-based speed</td>\n",
       "      <td id=\"T_2245b_row1_col4\" class=\"data row1 col4\" >What is another speed rating that can also be reported by the camera in addition to the noise-based and saturation-based speeds?</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_2245b_row2_col0\" class=\"data row2 col0\" >Sumer</td>\n",
       "      <td id=\"T_2245b_row2_col1\" class=\"data row2 col1\" >The most impressive and famous of Sumerian buildings are the ziggurats, large layered platforms which supported temples. Sumerian cylinder seals also depict houses built from reeds not unlike those built by the Marsh Arabs of Southern Iraq until as recently as 400 CE. The Sumerians also developed the arch, which enabled them to develop a strong type of dome. They built this by constructing and linking several arches. Sumerian temples and palaces made use of more advanced materials and techniques,[citation needed] such as buttresses, recesses, half columns, and clay nails.</td>\n",
       "      <td id=\"T_2245b_row2_col2\" class=\"data row2 col2\" >Where were the use of advanced materials and techniques on display in Sumer?</td>\n",
       "      <td id=\"T_2245b_row2_col3\" class=\"data row2 col3\" >Sumerian temples and palaces</td>\n",
       "      <td id=\"T_2245b_row2_col4\" class=\"data row2 col4\" >Where were the advanced materials and techniques, such as buttresses and arches, used in Sumerian temples and palaces on display?</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x4389ae6f0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "(100, 5)"
      ]
     },
     "execution_count": 201,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# use local gpt to synthesize questions with context\n",
    "\n",
    "synth_system_prompt = \"\"\"\n",
    "You are an expert at clarifying what questions are really asking for.\n",
    "\n",
    "You will be given a question, a title and context.\n",
    "Your task is come up with a new version of the question that resolves ambiguities \n",
    "by adding only and exactly the necessary details from the title and context \n",
    "in a way that clarifies the question without changing the meaning or intent of the question.\n",
    "\n",
    "For example: \n",
    "Question: Who does M fight with?\n",
    "Title: Spectre_(2015_film)\n",
    "Context: Bond and Swann return to London where they meet M, Bill Tanner, Q, and Moneypenny; they intend to arrest C and stop Nine Eyes from going online. Swann leaves Bond, telling him she cannot be part of a life involving espionage, and is subsequently kidnapped. On the way, the group is ambushed and Bond is kidnapped, but the rest still proceed with the plan. After Q succeeds in preventing the Nine Eyes from going online, a brief struggle between M and C ends with the latter falling to his death. Meanwhile, Bond is taken to the old MI6 building, which is scheduled for demolition, and frees himself. Moving throughout the ruined labyrinth, he encounters a disfigured Blofeld, who tells him that he has three minutes to escape the building before explosives are detonated or die trying to save Swann. Bond finds Swann and the two escape by boat as the building collapses. Bond shoots down Blofeld's helicopter, which crashes onto Westminster Bridge. As Blofeld crawls away from the wreckage, Bond confronts him but ultimately leaves him to be arrested by M. Bond leaves the bridge with Swann.\n",
    "Response: Who does M struggle with during the events of Spectre (2015)?\n",
    "\"\"\"\n",
    "\n",
    "synth_user_prompt = \"\"\"\n",
    "Question: {question}\n",
    "Title: {title}\n",
    "Context: {context}\n",
    "\"\"\"\n",
    "\n",
    "client = OpenAI()\n",
    "\n",
    "# if the samples file does not exist, synthesize the questions and save them\n",
    "if not os.path.exists(os.path.join(SAMPLES_DIR, f\"samples.pkl\")):\n",
    "    synth_answers = []\n",
    "    for title, context, question, answer in tqdm(dfSample.values):\n",
    "        completion = client.chat.completions.create(\n",
    "        model=\"gpt-4o-mini-2024-07-18\",\n",
    "        messages=[\n",
    "            {\"role\": \"system\", \"content\": synth_system_prompt},\n",
    "            {\"role\": \"user\", \"content\": synth_user_prompt.format(question=question, title=title, context=context)}\n",
    "        ],\n",
    "        temperature=0.7,\n",
    "        )\n",
    "        synth_answers.append(completion.choices[0].message.content)\n",
    "\n",
    "    dfSample[\"Synthesized Question\"] = synth_answers\n",
    "\n",
    "    os.makedirs(SAMPLES_DIR, exist_ok=True)\n",
    "    dfSample.to_pickle(os.path.join(SAMPLES_DIR, f\"samples.pkl\"))    \n",
    "else:\n",
    "    # if the samples file exists, load it\n",
    "    dfSample = pd.read_pickle(os.path.join(SAMPLES_DIR, f\"samples.pkl\"))\n",
    "\n",
    "display_text_df(dfSample.head(3))\n",
    "dfSample.shape"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Benchmark the agent\n",
    "\n",
    "* First, let's test the agent on a single question to see how it performs, show its logs, and the final answer."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 202,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\u001b[32;20;1m======== New task ========\u001b[0m\n",
      "\u001b[37;1mWhat year was the Banská Akadémia, the world's first institution of technology, founded in Banská Štiavnica, Slovakia?\u001b[0m\n",
      "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
      "\u001b[0mThought: I will use the squad_retriever tool to find information about the Banská Akadémia, specifically its founding year. I will phrase my query to include details about its significance as the world's first institution of technology located in Banská Štiavnica, Slovakia.\u001b[0m\n",
      "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
      "\u001b[0m\u001b[38;5;7manswer\u001b[39m\u001b[38;5;7m \u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;7m \u001b[39m\u001b[38;5;7msquad_retriever\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7mquery\u001b[39m\u001b[38;5;109;01m=\u001b[39;00m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mWhat year was the Banská Akadémia founded in Banská Štiavnica, Slovakia, known as the world\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144ms first institution of technology?\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\n",
      "\u001b[38;5;109mprint\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;7manswer\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
      "\u001b[33;1m====\u001b[0m\n",
      "\u001b[33;1mPrint outputs:\u001b[0m\n",
      "\u001b[32;20m===Document===\n",
      "Title: Institute_of_technology\n",
      "Context: The world's first institution of technology or technical university with tertiary technical education is the Banská Akadémia in Banská Štiavnica, Slovakia, founded in 1735, Academy since December 13, 1762 established by queen Maria Theresa in order to train specialists of silver and gold mining and metallurgy in neighbourhood. Teaching started in 1764. Later the department of Mathematics, Mechanics and Hydraulics and department of Forestry were settled. University buildings are still at their place today and are used for teaching. University has launched the first book of electrotechnics in the world.\n",
      "Question: What year was the Banská Akadémia founded?\n",
      "Acceptable Answers:\n",
      "['1. 1735']\n",
      "Score: 0.8805255214632872\n",
      "===Document===\n",
      "Title: Institute_of_technology\n",
      "Context: The world's first institution of technology or technical university with tertiary technical education is the Banská Akadémia in Banská Štiavnica, Slovakia, founded in 1735, Academy since December 13, 1762 established by queen Maria Theresa in order to train specialists of silver and gold mining and metallurgy in neighbourhood. Teaching started in 1764. Later the department of Mathematics, Mechanics and Hydraulics and department of Forestry were settled. University buildings are still at their place today and are used for teaching. University has launched the first book of electrotechnics in the world.\n",
      "Question: What year did teaching start at the Banská Akadémia?\n",
      "Acceptable Answers:\n",
      "['1. 1764']\n",
      "Score: 0.8732076610524725\n",
      "\u001b[0m\n",
      "\u001b[33;1m=== Agent thoughts:\u001b[0m\n",
      "\u001b[0mThought: From the information retrieved, I learned that the Banská Akadémia was founded in the year 1735. I will now use this information to provide the final answer.\u001b[0m\n",
      "\u001b[33;1m>>> Agent is executing the code below:\u001b[0m\n",
      "\u001b[0m\u001b[38;5;7mfinal_answer\u001b[39m\u001b[38;5;7m(\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;144mThe Banská Akadémia, the world\u001b[39m\u001b[38;5;144m'\u001b[39m\u001b[38;5;144ms first institution of technology, was founded in the year 1735.\u001b[39m\u001b[38;5;144m\"\u001b[39m\u001b[38;5;7m)\u001b[39m\u001b[0m\n",
      "\u001b[33;1m====\u001b[0m\n",
      "\u001b[33;1mPrint outputs:\u001b[0m\n",
      "\u001b[32;20m\u001b[0m\n",
      "\u001b[33;1mLast output from code snippet:\u001b[0m\n",
      "\u001b[32;20mThe Banská Akadémia, the world's first institution of technology, was founded in the year 1735.\u001b[0m\n",
      "\u001b[32;20;1mFinal answer:\u001b[0m\n",
      "\u001b[32;20mThe Banská Akadémia, the world's first institution of technology, was founded in the year 1735.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "\"The Banská Akadémia, the world's first institution of technology, was founded in the year 1735.\""
      ]
     },
     "execution_count": 202,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "prompt = \"What year was the Banská Akadémia, the world's first institution of technology, founded in Banská Štiavnica, Slovakia?\"\n",
    "agent = get_agent()\n",
    "agent.run(prompt, stream=False, reset=True)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Define the benchmark\n",
    "\n",
    "* We are using semantic similarity to evaluate the agent's answers against the reference answers.\n",
    "* During test runs, it became clear that the agent was being penalized for punctuation, stop words, and minor differences in case.\n",
    "* Therefore, we will clean the text of the expected and predicted answers before calculating the semantic similarity.\n",
    "\n",
    "### BenchmarkDesign Notes\n",
    "* One flaw of this approach is that it does not take into account the existence of multiple acceptable answers.\n",
    "* Another flaw is that the agent me be unfairly penalized for elaborating on the answer, while this benchmark focuses on only and exactly the one canonical answer given.\n",
    "* That said, semantic similarity strongly correlates with human judgement of answer quality, so it's a good proxy for evaluating the agent's answers.\n",
    "  * Source: https://arxiv.org/pdf/2401.17072"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 203,
   "metadata": {},
   "outputs": [],
   "source": [
    "def clean_text(text):\n",
    "    # Lowercase\n",
    "    text = text.lower()\n",
    "    # Remove punctuation\n",
    "    text = text.translate(str.maketrans(\"\", \"\", punctuation))\n",
    "    # Remove stop words\n",
    "    text = \" \".join([word for word in text.split() if word not in STOP_WORDS])\n",
    "    return text\n",
    "\n",
    "def benchmark_agent(agent, dfSample, name):\n",
    "    answers_ref, answers_pred = [], []        \n",
    "\n",
    "    # Suppress logging from the agent, which can be quite verbose\n",
    "    agent.logger.setLevel(logging.CRITICAL)\n",
    "\n",
    "    for title, context, question, answer, synthesized_question in tqdm(dfSample.values):\n",
    "        prompt = synthesized_question\n",
    "        answers_ref.append(answer)\n",
    "        final_answer = agent.run(prompt, stream=False, reset=True)\n",
    "        answers_pred.append(final_answer)\n",
    "\n",
    "    answers_ref = [str(answer) for answer in answers_ref]\n",
    "    answers_pred = [str(answer) for answer in answers_pred]\n",
    "\n",
    "    dfAnswers = dfSample.copy()\n",
    "    dfAnswers[\"Predicted Answer\"] = answers_pred\n",
    "\n",
    "    # Remove stop words and punctuation from answers\n",
    "    answers_ref = [clean_text(answer) for answer in answers_ref]\n",
    "    answers_pred = [clean_text(answer) for answer in answers_pred]\n",
    "\n",
    "    dfAnswers[\"Cleaned Answer\"] = answers_ref\n",
    "    dfAnswers[\"Cleaned Predicted Answer\"] = answers_pred\n",
    "\n",
    "    em = EmbeddingModelWrapper()\n",
    "    similarities = em.get_similarities(\n",
    "        em.get_embeddings( answers_pred ),\n",
    "        em.get_embeddings( answers_ref ),\n",
    "    )\n",
    "\n",
    "    dfAnswers[\"Similarity\"] = similarities\n",
    "\n",
    "    os.makedirs(BENCHMARKS_DIR, exist_ok=True)\n",
    "    dfAnswers.to_pickle(os.path.join(BENCHMARKS_DIR, f\"{name}.pkl\"))\n",
    "    return dfAnswers\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Retro-active Diversion - Llama Index's Chat Engine\n",
    "\n",
    "* After completing this notebook, including the benchmark comparison towards the end, I realized that Llama Index's chat engine is a good example of how to use a vector database to power a QA chatbot with minimal code.\n",
    "* So I decided to quickly benchmark it to see if I should include it in the final version of the project.\n",
    "* The default chat engine uses a retriever, just like my agent, then uses an LLM to answer questions using that retriever as a tool. \n",
    "* I'll use the same approach to benchmark this alternative agent:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 228,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "43661bb4be16494388350e1a0cea1082",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/100 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "chat_engine = data.index.as_chat_engine()\n",
    "answers_ref, answers_pred = [], []\n",
    "\n",
    "for title, context, question, answer, synthesized_question in tqdm(dfSample.values):\n",
    "    prompt = synthesized_question\n",
    "    final_answer = chat_engine.chat(prompt)\n",
    "    answers_ref.append(answer)\n",
    "    answers_pred.append(final_answer)\n",
    "\n",
    "answers_ref = [str(answer) for answer in answers_ref]\n",
    "answers_pred = [str(answer) for answer in answers_pred]\n",
    "\n",
    "dfAnswersCE = dfSample.copy()\n",
    "dfAnswersCE[\"Predicted Answer\"] = answers_pred\n",
    "\n",
    "dfAnswersCE = dfSample.copy()\n",
    "dfAnswersCE[\"Predicted Answer\"] = answers_pred\n",
    "\n",
    "# Remove stop words and punctuation from answers\n",
    "answers_ref = [clean_text(answer) for answer in answers_ref]\n",
    "answers_pred = [clean_text(answer) for answer in answers_pred]\n",
    "\n",
    "dfAnswersCE[\"Cleaned Answer\"] = answers_ref\n",
    "dfAnswersCE[\"Cleaned Predicted Answer\"] = answers_pred\n",
    "\n",
    "em = EmbeddingModelWrapper()\n",
    "similarities = em.get_similarities(\n",
    "    em.get_embeddings( answers_pred ),\n",
    "    em.get_embeddings( answers_ref ),\n",
    ")\n",
    "\n",
    "dfAnswersCE[\"Similarity\"] = similarities"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 231,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/markdown": [
       "#### Llama Index Chat Engine Mean Similarity: 0.45"
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "display(\n",
    "    Markdown(\n",
    "        f\"#### Llama Index Chat Engine Mean Similarity: {round(dfAnswersCE['Similarity'].mean(), 2)}\"\n",
    "    )\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Observations\n",
    "\n",
    "* The Llama Index Chat Engine has roughly the same mean semantic similarity as the `baseline` agent.\n",
    "* It doesn't seem like including it would add much value, so I'll stick with the agent variations I built using Transformers Agents 2.0.\n",
    "* Getting back to the original benchmarks:\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Set up and run the benchmarks\n",
    "\n",
    "* We will run the agent with three different prompts:\n",
    "  * Baseline: The default transformers agent prompt modified only to use the squad_retriever tool.\n",
    "  * Succinct: The default prompt modified to encourage the agent to be more concise.\n",
    "  * Focused: The default prompt modified to encourage the agent to focus mostly on SQuAD."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 206,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "1d96aeac5e244b28a1ec92d3e1ccc115",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/3 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "98ef07cf016444b59dfc6d9c498d2eed",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/100 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "6d2ad4058ee14f858a155338c66c1d91",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/100 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "d38df0a45c2a4514b058f7ce35112757",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/100 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Create the agents to be benchmarked\n",
    "benchmarks = [\n",
    "    {\"agent\": get_agent(system_prompt=DEFAULT_SQUAD_REACT_CODE_SYSTEM_PROMPT), \"name\": \"baseline\"}, # Baseline agent with default settings\n",
    "    {\"agent\": get_agent(system_prompt=SUCCINCT_SQUAD_REACT_CODE_SYSTEM_PROMPT), \"name\": \"succinct\"}, # Succinct agent\n",
    "    {\"agent\": get_agent(system_prompt=FOCUSED_SQUAD_REACT_CODE_SYSTEM_PROMPT), \"name\": \"focused\"}, # Focused agent\n",
    "]\n",
    "\n",
    "# Determine if all benchmark files already exist\n",
    "benchmark_names = [benchmark[\"name\"] for benchmark in benchmarks]\n",
    "all_benchmark_files_exist = all(os.path.exists(os.path.join(BENCHMARKS_DIR, f\"{name}.pkl\")) for name in benchmark_names)\n",
    "\n",
    "#if benchmark files do not exist, run the benchmarks\n",
    "if not all_benchmark_files_exist:\n",
    "    for benchmark in tqdm(benchmarks):\n",
    "        benchmark['data'] = benchmark_agent(benchmark[\"agent\"], dfSample, benchmark[\"name\"])\n",
    "else:\n",
    "    # if benchmark files exist, load them\n",
    "    for benchmark in tqdm(benchmarks):\n",
    "        benchmark['data'] = pd.read_pickle(os.path.join(BENCHMARKS_DIR, f\"{benchmark['name']}.pkl\"))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Review the benchmarks for each agent\n",
    "\n",
    "* We will review the benchmarks for each agent and plot the mean similarity and the distribution of semantic similarity scores across quartiles.\n",
    "* We will also plot the number of answers with a semantic similarity score >= a given threshold for each benchmark."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 227,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3kAAAG4CAYAAAD42y7tAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfMUlEQVR4nOzdd1gUV9sG8HtpS5GOFKUKqAjYsIG9YcUWe+wYQWyIFY0KasCSIDY0JkbsYo8tKomKEqzYewdEEEUFlSrM94cf+2YFlEVgBe/fde0lc86ZmWcG2dln58w5IkEQBBAREREREVGFoCDvAIiIiIiIiKjkMMkjIiIiIiKqQJjkERERERERVSBM8oiIiIiIiCoQJnlEREREREQVCJM8IiIiIiKiCoRJHhERERERUQXCJI+IiIiIiKgCYZJHRERERERUgTDJowotNDQUIpEIIpEIJ06cyFcvCAJsbGwgEonQqlWrMo9PFtnZ2fj111/RsGFD6OnpQV1dHRYWFujevTv27Nkjaff48WOIRCKEhoaW2L4L2mbeuX38+HGJ7QcA/Pz8IBKJpMpCQkJK9HiI6PP++/4pEomgqqoKY2NjtG7dGoGBgUhKSsq3TkF/v5+TlpYGPz+/At+jP6WgfVlaWqJr164ybedztmzZguDg4ALrRCIR/Pz8SnR/Je2ff/5BgwYNoKGhAZFIhL179xbaNi4uDl5eXqhevTrU1NSgp6cHR0dH/PDDD4iLiyu7oEvRzZs34efnV+C1a9iwYbC0tCyxfR05cgSurq6oUqUKxGIxqlSpglatWmHBggVS7SwtLTFs2LAS229B2yyNzwYAcOLEiXyfsQ4dOlQqfxdF/RxEHyjJOwCisqCpqYm1a9fmS+QiIiLw4MEDaGpqyicwGQwePBi7d++Gt7c3/P39IRaL8fDhQxw+fBhHjhxBz549AQAmJiY4ffo0rK2tS2zfpbHNwowcORIdO3aUKgsJCYGBgUGJXwSJ6PPWrVuHmjVrIjs7G0lJSYiMjMTChQvx888/IywsDO3atZO0Lejv93PS0tLg7+8PADJ92VacfRXHli1bcP36dXh7e+erO336NExNTUs9huISBAF9+/ZF9erVsW/fPmhoaKBGjRoFtn3y5Anq168PHR0dTJo0CTVq1EBKSgpu3ryJ7du34+HDhzAzMyvjIyh5N2/ehL+/P1q1apUvoZs1axYmTJhQIvtZvXo1Ro8eje+++w4rVqyAnp4e4uLiEBUVhZ07d2L69OmStnv27IGWllaJ7Lc0t1mQ+vXr4/Tp06hVq5ak7NChQ1i5cmWJJ3pF/RxE/08gqsDWrVsnABBGjhwpqKmpCSkpKVL1gwYNEpydnQV7e3uhZcuW8gmyCB4+fCgAEGbPnl1gfU5OThlH9L9z++jRoxLZ3rt37wqt+9p/P0QVUd7f+Pnz5/PVxcTECGZmZoKmpqaQmJj4Rft5/vy5AECYM2dOkdp/6r3CwsJC6NKlyxfF87EuXboIFhYWJbrNsvLkyRMBgLBw4cLPtp09e7YAQHj48GGB9fK4zpSGHTt2CACE48ePl+p+zM3NhRYtWhRYJ49z+ejRIwGAsG7duhLZXlZWlpCdnV1g3ZgxY4SSTjG+ps9Bubm5QlpaWpntr7jYXZO+CQMGDAAAbN26VVKWkpKCXbt2YcSIEQWuk5WVhfnz56NmzZoQi8WoXLkyhg8fjufPn0u1CwsLg6urK0xMTKCmpgY7OztMnz4d7969k2o3bNgwVKpUCffv30fnzp1RqVIlmJmZYdKkScjMzPxk/MnJyQA+3FEriILC//6UC+qSkdet6erVq+jTpw+0tbWhp6cHHx8fvH//Hnfu3EHHjh2hqakJS0tLLFq0SGr7Re3mER4eju7du8PU1BSqqqqwsbGBh4cHXrx4IdUuL56LFy+id+/e0NXVldwl/LgLlqWlJW7cuIGIiAhJtzFLS0u8ffsWOjo68PDwyBfH48ePoaioiMWLF38yXiIqHnNzc/zyyy948+YNfv31V0l5QV0ojx07hlatWkFfXx9qamowNzfHd999h7S0NDx+/BiVK1cGAPj7+0v+xvPu2svyXvFfe/bsQe3ataGqqopq1aph2bJlUvWFdTf/uOtZq1atcPDgQcTExEh1Xc1TUHfN69evo3v37tDV1YWqqirq1q2L9evXF7ifrVu3YubMmahSpQq0tLTQrl073Llzp/AT/x+RkZFo27YtNDU1oa6uDhcXFxw8eFBS7+fnJ7nLOG3aNMl7Z2GSk5OhoKAAQ0PDAuv/e50BgAsXLqBbt27Q09ODqqoq6tWrh+3bt0u1yTvPx44dww8//AB9fX1oaWlhyJAhePfuHRITE9G3b1/o6OjAxMQEkydPRnZ2ttQ2/P390bhxY+jp6UFLSwv169fH2rVrIQiCVLu8rrqHDx9G/fr1oaamhpo1a+KPP/6QiqdPnz4AgNatW0t+n3nXtoK6a+bm5mL58uWoW7cu1NTUoKOjgyZNmmDfvn2Fnsu881mUa3Ze7P/tqZL3/2PLli2YNm0aTExMUKlSJbi5ueHZs2d48+YNRo0aBQMDAxgYGGD48OF4+/btJ7dZkPv372P48OGwtbWFuro6qlatCjc3N1y7dk2qXV48GzduxKRJk1C1alWIxWLcv38/39/MsGHDsHLlSgCQ+pt5/Pgx2rZti5o1a+b73Qn//+hMly5dCo1Vls9BAPD69WtMmjQJ1apVg1gshqGhITp37ozbt29L2rx8+RJeXl6oWrUqVFRUUK1aNcycOTPfZzKRSISxY8di9erVsLOzg1gslvxN37t3DwMHDoShoSHEYjHs7Owkx58nNzcX8+fPR40aNST/h2rXro2lS5cWerwlgd016ZugpaWF3r17448//pAkBVu3boWCggL69euX73mL3NxcdO/eHadOncLUqVPh4uKCmJgYzJkzB61atcKFCxegpqYG4MMfeOfOneHt7Q0NDQ3cvn0bCxcuxLlz53Ds2DGp7WZnZ6Nbt25wd3fHpEmTcPLkScybNw/a2tqYPXt2ofHb2dlBR0cH/v7+UFBQgKura7GeG+jbty8GDRoEDw8PhIeHY9GiRcjOzsbff/8NLy8vTJ48WXJRsbGxQa9evWTa/oMHD+Ds7IyRI0dCW1sbjx8/RlBQEJo1a4Zr165BWVlZqn2vXr3Qv39/eHp65kuK8+zZswe9e/eGtrY2QkJCAABisRiVKlXCiBEjsGbNGixatAja2tqSdUJCQqCiolJoAk9EX65z585QVFTEyZMnC23z+PFjdOnSBc2bN8cff/wBHR0dxMfH4/Dhw8jKyoKJiQkOHz6Mjh07wt3dHSNHjgQASeKXpyjvFXkuX74Mb29v+Pn5wdjYGJs3b8aECROQlZWFyZMny3SMISEhGDVqFB48eFCkZ37u3LkDFxcXGBoaYtmyZdDX18emTZswbNgwPHv2DFOnTpVqP2PGDDRt2hS///47UlNTMW3aNLi5ueHWrVtQVFQsdD8RERFo3749ateujbVr10IsFiMkJARubm7YunUr+vXrh5EjR6JOnTro1asXxo0bh4EDB0IsFhe6TWdnZ6xcuRK9evWCj48PnJ2dC+3ud/z4cXTs2BGNGzfG6tWroa2tjW3btqFfv35IS0vLl1yMHDkSvXr1wrZt23Dp0iXMmDFD8gVjr169MGrUKPz9999YuHAhqlSpAh8fH8m6jx8/hoeHB8zNzQEAZ86cwbhx4xAfH5/vunnlyhVMmjQJ06dPh5GREX7//Xe4u7vDxsYGLVq0QJcuXRAQEIAZM2Zg5cqVqF+/PgB88lGEYcOGYdOmTXB3d8fcuXOhoqKCixcvfvZ5dGdnZ+zatQt+fn7o2bMnHBwcPvk7LciMGTPQunVrhIaG4vHjx5g8eTIGDBgAJSUl1KlTB1u3bpWcT01NzXxfZnzO06dPoa+vjwULFqBy5cp4+fIl1q9fj8aNG+PSpUv5uvb6+vrC2dkZq1evlnwhkJiYKNVm1qxZePfuHXbu3InTp09Lyk1MTDBhwgR0794d//zzj1Q377/++gsPHjz4ZPyyfA568+YNmjVrhsePH2PatGlo3Lgx3r59i5MnTyIhIQE1a9ZERkYGWrdujQcPHsDf3x+1a9fGqVOnEBgYiMuXL0t9YQIAe/fuxalTpzB79mwYGxvD0NAQN2/ehIuLi+RLL2NjYxw5cgTjx4/HixcvMGfOHADAokWL4Ofnhx9//BEtWrRAdnY2bt++jdevXxfl11R8cr6TSFSq/tvd6Pjx4wIA4fr164IgCELDhg2FYcOGCYKQvzvg1q1bBQDCrl27pLZ3/vx5AYAQEhJS4P5yc3OF7OxsISIiQgAgXLlyRVI3dOhQAYCwfft2qXU6d+4s1KhR47PHcvDgQcHAwEAAIAAQ9PX1hT59+gj79u2TaldQl4w5c+YIAIRffvlFqm3dunUFAMLu3bslZdnZ2ULlypWFXr16fXKbn+uumXcuYmJiBADCn3/+mS+egrpd5NX9V2HdNR88eCAoKCgIS5YskZSlp6cL+vr6wvDhwwuMi4iK5lPdNfMYGRkJdnZ2kuWP/3537twpABAuX75c6DY+1V1T1vcKCwsLQSQS5dtf+/btBS0tLUlXz8Lev/KuE//tyvep7pofx92/f39BLBYLsbGxUu06deokqKurC69fv5baT+fOnaXabd++XQAgnD59usD95WnSpIlgaGgovHnzRlL2/v17wcHBQTA1NRVyc3MFQfjfe/fixYs/uT1B+PCe7eHhISgoKAgABJFIJNjZ2QkTJ07Md55q1qwp1KtXL193va5duwomJiaSrnN553ncuHFS7Xr06CEAEIKCgqTK69atK9SvX7/QGHNycoTs7Gxh7ty5gr6+vuQ4BeHD715VVVWIiYmRlKWnpwt6enqCh4eHpOxT3TWHDh0q9bs+efKkAECYOXNmoTEV5v79+4KDg4Pkmq2mpia0bdtWWLFihZCVlSXV1sLCQhg6dKhkOe//h5ubm1Q7b29vAYAwfvx4qfIePXoIenp6n9xmUbprvn//XsjKyhJsbW2FiRMn5ounoO6nBf3NFNZdMycnR6hWrZrQvXt3qfJOnToJ1tbWUr/PghT1c9DcuXMFAEJ4eHih21q9enWBn8kWLlwoABCOHj0qKQMgaGtrCy9fvpRq26FDB8HU1DTfo0Bjx44VVFVVJe27du0q1K1b95PHVhrYXZO+GS1btoS1tTX++OMPXLt2DefPny/0Ts+BAwego6MDNzc3vH//XvKqW7cujI2NpUaRevjwIQYOHAhjY2MoKipCWVkZLVu2BADcunVLarsikQhubm5SZbVr10ZMTMxn4+/cuTNiY2OxZ88eTJ48Gfb29ti7dy+6deuGsWPHFukcfDzqnJ2dHUQiETp16iQpU1JSgo2NTZFi+lhSUhI8PT1hZmYGJSUlKCsrw8LCAkD+cwEA3333ncz7+K9q1aqha9euCAkJkXT/2LJlC5KTk4t8Toio+ISPul19rG7dulBRUcGoUaOwfv16PHz4sFj7keW9wt7eHnXq1JEqGzhwIFJTU3Hx4sVi7b+ojh07hrZt2+YboGTYsGFIS0uTurMBAN26dZNarl27NgB88v333bt3OHv2LHr37o1KlSpJyhUVFTF48GA8efKkyF0+/0skEmH16tV4+PAhQkJCMHz4cGRnZ2PJkiWwt7dHREQEgA9d/G7fvo3vv/8eAKSukZ07d0ZCQkK+/Rd07QGQr3uenZ1dvmM/duwY2rVrB21tbck1dvbs2UhOTs43wmvdunUld/wAQFVVFdWrVy/W9Qz4cIcJAMaMGSPzutbW1rhy5QoiIiLg7++Pdu3a4fz58xg7diycnZ2RkZHx2W3Ict5evnyZr8vm57x//x4BAQGoVasWVFRUoKSkBBUVFdy7d69UrtkKCgoYO3YsDhw4gNjYWAAfegAdPnwYXl5enx2Zt6ifg/766y9Ur15d6m7hx44dOwYNDQ307t1bqjzvLvQ///wjVd6mTRvo6upKljMyMvDPP/+gZ8+eUFdXz/d3kJGRgTNnzgAAGjVqhCtXrsDLywtHjhxBamrq509WCWCSR98MkUiE4cOHY9OmTVi9ejWqV6+O5s2bF9j22bNneP36NVRUVKCsrCz1SkxMlDxj9vbtWzRv3hxnz57F/PnzceLECZw/fx67d+8GAKSnp0ttV11dHaqqqlJlYrG4SG/2AKCmpoYePXpg8eLFiIiIwP3791GrVi2sXLkSN27c+Oz6enp6UssqKioFxqSiolLkmPLk5ubC1dUVu3fvxtSpU/HPP//g3Llzkje5j88FUHjfellMmDAB9+7dQ3h4OABg5cqVcHZ2lnTDIaLS8e7dOyQnJ6NKlSqFtrG2tsbff/8NQ0NDjBkzBtbW1rC2tpb5WRRZ3iuMjY0LLct7rqe0FPYcVt45+nj/+vr6Ust53SkLer/M8+rVKwiCINN+ZGFhYYHRo0dj7dq1uHfvHsLCwpCRkYEpU6YA+HB9BIDJkyfnuz56eXkBQL7nsAu69hRW/t9rz7lz5+Dq6goA+O233/Dvv//i/PnzmDlzJoD85+nj8wl8OKefOp+f8vz5cygqKhb4f6ooFBQU0KJFC8yePRv79u3D06dP0a9fP0RHR0s9K1gYWc4bAJmv2z4+Ppg1axZ69OiB/fv34+zZszh//jzq1KlTatfsESNGQE1NDatXrwbw4ZqtpqZW5McrivI56Pnz558d9TY5ORnGxsb5EktDQ0MoKSnl+xv6+NiTk5Px/v17LF++PN/fQefOnQH87+/A19cXP//8M86cOYNOnTpBX18fbdu2xYULF4p0zMXFZ/LomzJs2DDMnj0bq1evxk8//VRoOwMDA+jr6+Pw4cMF1udNuXDs2DE8ffoUJ06ckNy9A1D6/az/n7m5OUaNGgVvb2/cuHED9vb2ZbLfgly/fh1XrlxBaGgohg4dKim/f/9+oevIOp9WQdq0aQMHBwesWLEClSpVwsWLF7Fp06Yv3i4RfdrBgweRk5Pz2WkPmjdvjubNmyMnJwcXLlzA8uXL4e3tDSMjI/Tv379I+5LlveLjZ4T+W5aXBOR9sfXxAAsfJyey0tfXR0JCQr7yp0+fAvhwbflSurq6UFBQKPX95Onbty8CAwNx/fp1qW37+voW+tx2YdM0yGrbtm1QVlbGgQMHpL6M/NRcfyWpcuXKyMnJQWJiYokkOBoaGvD19UVYWJjkfMrTpk2bMGTIEAQEBEiVv3jxAjo6Ovnal8Q1W1tbG0OHDsXvv/+OyZMnY926dRg4cGCB+yuKgj4HVa5cGU+ePPnkevr6+jh79iwEQZA6rqSkJLx//z7f39DHx66rqyu5e17YnV4rKysAH3pI+fj4wMfHB69fv8bff/+NGTNmoEOHDoiLi4O6unpxDv2zeCePvilVq1bFlClT4ObmJpWIfKxr165ITk5GTk4OGjRokO+VdwHL+6P/+GH2/442VxLevHlTaDeMvC4Vn/o2vSyU5rn43Dex48ePx8GDB+Hr6wsjIyPJ6GlEVDpiY2MxefJkaGtrFzjCbUEUFRXRuHFjychzeV0ni3L3ShY3btzAlStXpMq2bNkCTU1NyR3+vAEbrl69KtWuoBETZbkT1LZtW8mXf/+1YcMGqKuro0mTJkU9jEJpaGigcePG2L17t1Rcubm52LRpE0xNTVG9enWZt1tQ0gh86LESFxcnucbUqFEDtra2uHLlSoHXxwYNGpTY3LMikQhKSkpSA5akp6dj48aNxd6mLP/f8h5lWLVqlcz7Kex8fi3XbODD+f34mn3w4EHEx8d/0XY/d47zBibp3bs3Xr9+XaTHK2T5HNSpUyfcvXs33+B3/9W2bVu8ffs23xcGGzZskNR/irq6Olq3bo1Lly6hdu3aBf4dFHRnWUdHB71798aYMWPw8uXLzw7g8yV4J4++OQsWLPhsm/79+2Pz5s3o3LkzJkyYgEaNGkFZWRlPnjzB8ePH0b17d/Ts2RMuLi7Q1dWFp6cn5syZA2VlZWzevDnfB4wvdefOHXTo0AH9+/dHy5YtYWJiglevXuHgwYNYs2YNWrVqBRcXlxLdp6xq1qwJa2trTJ8+HYIgQE9PD/v375d0o/wSjo6O2LZtG8LCwlCtWjWoqqrC0dFRUj9o0CD4+vri5MmT+PHHHyVdV4joy12/fl3yrElSUhJOnTqFdevWQVFREXv27Mk3EuZ/rV69GseOHUOXLl1gbm6OjIwMSTe1vOdlNDU1YWFhgT///BNt27aFnp4eDAwMijWCMPDhg163bt3g5+cHExMTbNq0CeHh4Vi4cKHkG/OGDRuiRo0amDx5Mt6/fw9dXV3s2bMHkZGR+bbn6OiI3bt3Y9WqVXBycoKCggIaNGhQ4L7nzJmDAwcOoHXr1pg9ezb09PSwefNmHDx4MN8owF8iMDAQ7du3R+vWrTF58mSoqKggJCQE169fx9atW4t1x+Wnn37Cv//+i379+kmmC3j06BFWrFiB5ORkqSlpfv31V3Tq1AkdOnTAsGHDULVqVbx8+RK3bt3CxYsXsWPHjhI5zi5duiAoKAgDBw7EqFGjkJycjJ9//vmTo4R+joODAwBgzZo10NTUhKqqKqysrAr8QN68eXMMHjwY8+fPx7Nnz9C1a1eIxWJcunQJ6urqGDduXKH7sbe3R9u2bdGpUydYW1sjIyMDZ8+exS+//AIjIyO4u7sX+xhKSteuXREaGoqaNWuidu3aiI6OxuLFiz/b1fFz8q7PCxcuRKdOnaCoqIjatWtLrs3Vq1dHx44d8ddff6FZs2b5nqEtiCyfg7y9vREWFobu3btj+vTpaNSoEdLT0xEREYGuXbuidevWGDJkCFauXImhQ4fi8ePHcHR0RGRkJAICAtC5c+dPPs+XZ+nSpWjWrBmaN2+O0aNHw9LSEm/evMH9+/exf/9+SZLp5uYGBwcHNGjQAJUrV0ZMTAyCg4NhYWEBW1vb4p7mz2KSR1QARUVF7Nu3D0uXLsXGjRsRGBgIJSUlmJqaomXLlpI3MH19fRw8eBCTJk3CoEGDoKGhge7duyMsLKxEnwmzsbGBj48Pjh07hj///BPPnz+HsrIybG1tMX/+fPj4+OSbI6asKSsrY//+/ZgwYQI8PDygpKSEdu3a4e+//5Z6EL44/P39kZCQgB9++AFv3ryBhYWF1LdfampqcHNzw6ZNm+Dp6fmFR0JE/zV8+HAAH5770dHRgZ2dHaZNm4aRI0d+MsEDPgyEcfToUcyZMweJiYmoVKkSHBwcsG/fPsmzVgCwdu1aTJkyBd26dUNmZiaGDh362Xk5P7XP4cOHY86cObh37x6qVKmCoKAgTJw4UdJGUVER+/fvx9ixY+Hp6QmxWIz+/ftjxYoV+Qa1mDBhAm7cuIEZM2YgJSUFgiAUOuBMjRo1EBUVhRkzZmDMmDFIT0+HnZ0d1q1b99k5y2TRsmVLHDt2DHPmzMGwYcOQm5uLOnXqYN++ffkG6yiqwYMHA/jQRXLx4sVISUmBnp4enJyccOjQIakBulq3bo1z587hp59+gre3N169egV9fX3UqlULffv2LZFjBD50x//jjz+wcOFCuLm5oWrVqvjhhx9gaGhY7CTJysoKwcHBWLp0KVq1aoWcnJxP/n5CQ0Mlc/OFhoZCTU0NtWrVwowZMz65nwULFuDIkSP46aefkJiYiPfv38PMzAwDBw7EzJkzS6T755daunQplJWVERgYiLdv36J+/frYvXs3fvzxxy/a7sCBA/Hvv/8iJCQEc+fOhSAIePTokdQXN/369cNff/1V5EHSZPkcpKmpicjISPj5+WHNmjXw9/eHrq4uGjZsiFGjRgH40GX7+PHjmDlzJhYvXoznz5+jatWqmDx5smTqg8+pVasWLl68iHnz5uHHH39EUlISdHR0YGtrK3kuD/jw97Jr1y7JVCnGxsZo3749Zs2alW9qqZIkEj43NBYR0VcuKysLlpaWaNasWb7JeImIiOjr8t133+HMmTN4/PhxqSY63zLeySOicuv58+e4c+cO1q1bh2fPnmH69OnyDomIiIgKkJmZiYsXL+LcuXPYs2cPgoKCmOCVIiZ5RFRuHTx4EMOHD4eJiQlCQkI4bQIREdFXKiEhAS4uLtDS0oKHh8cnn2mkL8fumkRERERERBUIp1AgIiIiIiKqQJjkERERERERVSBM8oiIiIiIiCqQb27gldzcXDx9+hSamprFmiyUiIi+LoIg4M2bN6hSpYrc54v82vCaR0RUsRT1mvfNJXlPnz6FmZmZvMMgIqISFhcXB1NTU3mH8VXhNY+IqGL63DXvm0vyNDU1AXw4MVpaWnKOhojof3bt2gUPDw/88ssvaNKkCdatW4cNGzbg7NmzBX5QP336NDp37ozAwEB07NgRCQkJmDhxIqytrbF582YAwObNmzF9+nRcuHBBal0jI6MyOaaykJqaCjMzM8n7O/0Pr3lERBVLUa9531ySl9ddRUtLixc8IvqqrF69Gu7u7pK5gxo2bIjjx49j06ZNCAwMzNf+2rVrsLS0xNSpUwEAtWvXxujRo7Fo0SLJ+5uamhpEIhFsbW3L7kDkhN0R8+M1j4ioYvrcNY8PLxARfQWysrIQHR0NV1dXqXJXV1dERUUVuI6LiwuePHmCQ4cOQRAEPHv2DDt37kSXLl2k2r19+xYWFhYwNTVF165dcenSpVI7DiIiIpI/JnlERF+BFy9eICcnJ183SiMjIyQmJha4jouLCzZv3ox+/fpBRUUFxsbG0NHRwfLlyyVtatasidDQUOzbtw9bt26FqqoqmjZtinv37pXq8RAREZH8MMkjIvqKfNz9QhCEQrtk3Lx5E+PHj8fs2bMRHR2Nw4cP49GjR/D09JS0adKkCQYNGoQ6deqgefPm2L59O6pXry6VCBIREVHF8s09k0dE9DUyMDCAoqJivrt2SUlJhQ6SEhgYiKZNm2LKlCkAPjyTp6GhgebNm2P+/PkwMTHJt46CggIaNmzIO3lEVK7k5OQgOztb3mEQlTplZWUoKip+8XaY5BERfQVUVFTg5OSE8PBw9OzZU1IeHh6O7t27F7hOWloalJSk38bzLgyCIBS4jiAIuHz5MhwdHUsociKi0iMIAhITE/H69Wt5h0JUZnR0dGBsbPxFA4oxySMi+kr4+Phg8ODBaNCgAZydnbFmzRrExsZKul/6+voiPj4eGzZsAAC4ubnhhx9+wKpVq9ChQwckJCTA29sbjRo1QpUqVQAA/v7+aNKkCWxtbZGamoply5bh8uXLWLlypdyOk4ioqPISPENDQ6irq3MUXarQBEFAWloakpKSAKDAHjlFxSSPqBwJCQnB4sWLkZCQAHt7ewQHB6N58+aFtt+8eTMWLVqEe/fuQVtbGx07dsTPP/8MfX19AMDu3bsREBCA+/fvIzs7G7a2tpg0aRIGDx5cVodE/9GvXz8kJydj7ty5SEhIgIODAw4dOgQLCwsAQEJCAmJjYyXthw0bhjdv3mDFihWYNGkSdHR00KZNGyxcuFDS5vXr1xg1ahQSExOhra2NevXq4eTJk2jUqFGZHx8RkSxycnIkCV7edYuoolNTUwPw4XENQ0PDYnfdFAmF9empoFJTU6GtrY2UlBTOGUTlSlhYGAYPHoyQkBA0bdoUv/76K37//XfcvHkT5ubm+dpHRkaiZcuWWLJkCdzc3BAfHw9PT0/Y2tpiz549AIATJ07g1atXqFmzJlRUVHDgwAFMmjQJBw8eRIcOHcr6EImKhe/rheO5ofIsIyMDjx49gqWlpeSDL9G3ID09HY8fP4aVlRVUVVWl6or6vs7RNYnKiaCgILi7u2PkyJGws7NDcHAwzMzMsGrVqgLbnzlzBpaWlhg/fjysrKzQrFkzeHh44MKFC5I2rVq1Qs+ePWFnZwdra2tMmDABtWvXRmRkZFkdFhER0SexiyZ9a0ri/zyTPKJyoDQnys4jCAL++ecf3LlzBy1atCjxYyAiIiKissEkj6gcKK2JsgEgJSUFlSpVgoqKCrp06YLly5ejffv2pXYsRN+CkydPws3NDVWqVIFIJMLevXul6gVBgJ+fH6pUqQI1NTW0atUKN27ckGqTmZmJcePGwcDAABoaGujWrRuePHlShkdBRFR0J06cgEgkkoyEGhoaCh0dHbnG9C1jkkdUjpT0RNkAoKmpicuXL+P8+fP46aef4OPjgxMnTpTWIRB9E969e4c6depgxYoVBdYvWrQIQUFBWLFiBc6fPw9jY2O0b98eb968kbTx9vbGnj17sG3bNkRGRuLt27fo2rUrcnJyyuowiOgrFRcXB3d3d1SpUgUqKiqwsLDAhAkTkJycXCb7b9WqFby9vaXKXFxckJCQAG1t7TKJgT6No2sSlQOlOVG2goICbGxsAAB169bFrVu3EBgYiFatWpXeARFVcJ06dUKnTp0KrBMEAcHBwZg5cyZ69eoFAFi/fj2MjIywZcsWeHh4ICUlBWvXrsXGjRvRrl07AMCmTZtgZmaGv//+mwMjEX3DHj58CGdnZ1SvXh1bt26FlZUVbty4gSlTpuCvv/7CmTNnoKenVyr7zs7OhrKycoF1eb2G6OvAJI+oHCiribLz6jIzM0sgaiIqyKNHj5CYmCj1jK1YLEbLli0RFRUFDw8PREdHIzs7W6pNlSpV4ODggKioqEKTvMzMTKm/39TU1BKJOTY2Fi9evCiRbZF8ZGZmQiwWyzsMmQiCACUlJaSlpfEO9v8TBAGenp5QVlbGnj17JKOOtmjRAvv27YOjoyOmTp2KpUuXolKlSti6dSvc3Nwk61etWhULFy7EoEGDAACzZs3C/v37ER8fDyMjI/Tt2xe+vr6SRO6nn37CgQMHMHr0aCxatAgxMTEYMGAAIiIiEBERgaVLlwIAbty4gZiYGHTu3BlPnjyBjo6O5L3o3bt3kv0fOnQIAQEBuHXrFkxMTDBw4EBMnTo13+eVikxJSalM/ha/nTNKVM6VxkTZgYGBaNCgAaytrZGVlYVDhw5hw4YNhY7YWRFZTj8o7xC+eY8XFDwYUEWVd0e+oGdsY2JiJG1UVFSgq6ubr01hz+ECH/6m/f39SzTe2NhY2NnZIS0trUS3S2VLpCCCkFu+Zs2ysLDA6tWrkZ2dLe9QvhopKSn4+++/MXr0aDx+/DhfvaurK3bs2AEPDw8AwJMnT3Dr1i1JfU5ODp4+fSopS09Px/Tp01G5cmXcv38fP/30E9LT0zFkyBAAH8YEuH//PjZs2ID58+dDQUEBJiYmuHbtGqytrSX7efPmjWQe17t370JTUxNPnz5FTk6OZF+nT5+Gr68vJk+ejDlz5iA+Ph4BAQF48eIFfvjhh1I7Z18bBQUF2Nvbl3qixySPqJwojYmy3717By8vLzx58gRqamqoWbMmNm3ahH79+pX58RF9a2R5xraobXx9feHj4yNZTk1NhZmZ2RfF+eLFC6SlpWHa0ukws8k/Jyd9/c4fP4f1P4di/MIJqO5QQ97hFJmqoir0KuvBxMwEyioFdxH8lrxLfYfr169DEAQ0dGkIc9v8f4/1GtbD3r17oa6rDgAwMDGQaqegoAB9I31Jmf+C/30p1KRlE6S8S8Gfu//Ej/N+BABo62nj/fv3WLtpLQwMDCRtNbU0Udm4Muo715eUPX3+FABgWs0U2jra0DfSh4KCgmRf48aPw4RJE+A10UuyjkhZhLlz5mLeonlffH7Kg6yMLCTGJeL9+/dM8ojof7y8vODl5VVgXWhoaL6ycePGYdy4cYVub/78+Zg/f35JhUdERZD3zEpiYqLk2VhA+hlbY2NjZGVl4dWrV1J385KSkuDi4lLotsVical9cDCzMYeto22pbJtKV9z9D18AmlYzLVe/Q4X3ClB6qwwVsRgqqiryDkfusjKyJD8rq6hArKaar43i/3d7rKSlWXA7kQhKKsqSsj9378Wq5avw8MFDvHv7Du/fv4emlqakXlFZCWbmZqhqZiq1H5GiAhSVlKS2rSz+8DtSURNDrKYKJRVlQCSStLl65SouX7qMpb8slayTk5ODjIwM5Ai5UFdXL/a5ofw4uiYREVEZsrKygrGxMcLDwyVlWVlZiIiIkCRwTk5OUFZWlmqTkJCA69evfzLJI6KKzdTUFCKRCHdu3y6w/t6duzCobAAdHR2IRCIIkO6i+/4/XV/Pnz2PEYNGoF2HdgjbE4aTZ09h0vTJyMqS7h6rrqFRIrHn5ubCd5YvTp07JXlFRUfh4o2LUFXNn7DSl+GdPCIiohL29u1b3L9/X7L86NEjXL58GXp6ejA3N4e3tzcCAgJga2sLW1tbBAQEQF1dHQMHDgQAaGtrw93dHZMmTYK+vj709PQwefJkODo6SkbbJKJvj46ODlq0aoG1v66F1/gxkoFXAOBZ4jPs2LYDIz1HAgAMKhvgWcL/nuF9cO+B1LO1Z6LOwMzcDJOnT5GUxf3nsY9PUVFWlnkwnDr16uDevXuoZmMt03pUPEzyiIiIStiFCxfQunVryXLec3JDhw5FaGgopk6divT0dHh5eeHVq1do3Lgxjh49Ck1NTck6S5YsgZKSEvr27Yv09HS0bdsWoaGhklFyiejbFLAwAN06d0Ovrr3wo9+PsLC0wO2btzHbdxasba0xdeY0AECLVi3w26rf0KBxQwi5uZgzY47U9AfVrKvhSdwT7Nq+E/Wd6uPIX0dx4M8DRYrB3MIc0ecvIOZxDCpVqgRdPd3PrjN1xlT069kPVU1N0eO7HlAQKeDG9eu4ef0mfvSfVbyTQYVid00iIqIS1qpVKwiCkO+V9+ysSCSCn58fEhISkJGRgYiICDg4OEhtQ1VVFcuXL0dycjLS0tKwf//+Lx5EhYjKv2rW1XDs3+OwtLLE8O+HwdHWAb27fQdrW2scOXEUlSpVAgDMX/gTqppWRZe2nTFyyEiMmzgeav957q1Lty7wGu+FKd5T0LxRc5w7cxZTfKcWKYZxE8dDUVERTeo2hnXVaoiLjfvsOm1dP3QLPfHPcbRxaY32Ldph5dKVMDPn+1ppEAmfmjCrAkpNTYW2tjZSUlKgpaUl73CISM44hYL8fekUCnxfL1xJnJuLFy/CyckJKw6GlKtBO+h/ju35BwsnLMCiHYtRp3FdeYdTZArvFaD3VhdmFmYceAXAm1epSIxLhGk1U6hVkh6kJGBuAEKWrsTug3vQqEkjOUVIn5OZnoHYex+mpdH4xLOOGRkZePToEaysrPI9r1jU93V21yQiIiIiKsdmzJ4BcwtzXDh3AQ0aNYCCAjvrfeuY5BF9Au/yyN+3NlE2ERFRcQwaOkjeIdBXhGk+ERERERFRBcIkj4iIiCq8a2evYvbwWRjQoB86mLdH1JF/peoFQcDGoA0Y0KAf3Gy7YErfSXh857F8giUi+kJM8oiIiKjCy0jLQLVa1TBm3tgC67evCsPu33dhzLyxWH5gBXQr68H3+2lIe5tWYHsioq8ZkzwiIiKq8Bq2boRhU4ajWafm+eoEQcDetXvQf+wANOvUHJY1rDA5aAoyMzJxfO8xOURLRPRlmOQRERHRNy0xNhEvn7+EU4sGkjIVsQocG9fGzeibcoyMiKh4mOQRERHRN+3l85cAAF0DHalyXQNdvPr/OiKi8kTuSV5ISIhkoj8nJyecOnXqk+03b96MOnXqQF1dHSYmJhg+fDiSk5PLKFoiIiKqsEQiqUVBEPKVERGVB3KdJy8sLAze3t4ICQlB06ZN8euvv6JTp064efMmzM3N87WPjIzEkCFDsGTJEri5uSE+Ph6enp4YOXIk9uzZI4cjICIiovJOr7IeAODV81fQN9KXlL9Ofg1dA115hUWFiIuNK9Mv+PX19WFmblZm+yMqCXJN8oKCguDu7o6RI0cCAIKDg3HkyBGsWrUKgYGB+dqfOXMGlpaWGD9+PADAysoKHh4eWLRoUZnGTURERBWHsbkx9Crr4eKpaNg42AAAsrOyce3sVbhPHynn6Oi/4mLj0Lh2A6SlZ5TZPtXVVHH26gWZEr3RI0dj68YtAAAlJSVUNa0Ktx5u8J09AxoaGqUVKpGE3JK8rKwsREdHY/r06VLlrq6uiIqKKnAdFxcXzJw5E4cOHUKnTp2QlJSEnTt3okuXLoXuJzMzE5mZmZLl1NTUkjkAIiIiKjfS36Xj6eN4yXJiXCIe3LgPTR0tGFY1RA/3nti2ciuqWlVFVauq2LpiK8SqYrTu0UaOUdPHkpOTkZaegeXdO8NWX//zK3yhe8nJGPfnISQnJ8t8N6+dazus/C0E2dnZOP3vaYz3HIe0d2kIWrGkxOPMysqCiopKiW+Xyi+5JXkvXrxATk4OjIyMpMqNjIyQmJhY4DouLi7YvHkz+vXrh4yMDLx//x7dunXD8uXLC91PYGAg/P39SzR2IiIiKl/uXr2Lqf0mS5Z/nbsaANC+d3tMDpqKvqP7ISsjCytmLseb1DeoWbcmAjcvgHoldXmFTJ9gq68PRxOjzzeUIxWxGEbGH2Ls078PTkWcxMH9BxH4ywLMmj4Lu3fswpvUN6jnVA8BiwNQv4GTZN3Ik5GY7TsL169eh66eLgYMGoAJ3hMk9V3ad0GtWnZQVlHBts1bUbOWHQ79fajMj5G+XnLtrgkAogIecv64LM/Nmzcxfvx4zJ49Gx06dEBCQgKmTJkCT09PrF27tsB1fH194ePjI1lOTU2FmRn7VRMREX1L6jjXwZHY8ELrRSIRBvsMwWCfIWUYFX1LVFXVkJ2djdm+s7F/7z6s+n01zCzMsPSXpejVtRcu3bwEXT09PI1/ir7d+2Dg4IFYvfZX3L1zFxO8xkMkiDCw/0DJ9rZu2ooRo0bgyPGjHwYJIvoPuSV5BgYGUFRUzHfXLikpKd/dvTyBgYFo2rQppkyZAgCoXbs2NDQ00Lx5c8yfPx8mJib51hGLxRCLxSV/AERERERERRB9Pho7w3agecvm+GPNWoT8vgrtO7YHACxbtQy1/zmOjes2YvykCVj76++oaloVi5f+DJFIhOo1qyMxIQFzZsxB/779Jdu0srbC3MB58jok+srJbQoFFRUVODk5ITxc+lu18PBwuLi4FLhOWloaFBSkQ1ZUVAQAfoNBRERERF+NI4cOo6peFRhpGaJ9i3ZwaeaCUV4eyM7ORmPnxpJ2ysrKqN/ACXfu3AUA3Ll9Bw2bNJLq2dbYpQnevXuHpKQkSVk9p3pldzBU7si1u6aPjw8GDx6MBg0awNnZGWvWrEFsbCw8PT0BfOhqGR8fjw0bNgAA3Nzc8MMPP2DVqlWS7pre3t5o1KgRqlSpIs9DISIiIiKSaN6yOYKWB0FJWRkmVUygrKyMa1evASjscaW8nwuu/5i6OkfppMLJNcnr168fkpOTMXfuXCQkJMDBwQGHDh2ChYUFACAhIQGxsbGS9sOGDcObN2+wYsUKTJo0CTo6OmjTpg0WLlwor0MgIiIiIspHXUMD1WyspcqqWVeDiooKzkSdkYzWmZ2djcsXL2H02NEAgJp2NbBvzz6pcSrOnT6LSpUqwdDQsGwPgsotuQ+84uXlBS8vrwLrQkND85WNGzcO48aNK+WoiIiIiIhKloaGBkaMcsds31nQ1dWFqbkplv6yFGlpaRg8fDAAwN1jJFYtX4Wp3lPww+hRuHf3HgLnBeIHjx/yPbZEVBi5J3lERERERLK4l5xcbvfj95MfcnNz4TFiFN6+eYt6TvWw+8Bu6OjqAgCqVK2C7X/uwGzfWVjfsCl09XQxeNhgjPcejxcJL0o8HqqYmOQRERERUbmgr68PdTVVjPuz7OaEU1dThb6ME6+v+n1VoXWqqqpYtGQRFi1ZVGibZi2a4di/x6XK3rxKlfx8MPygTPHQt4dJHhERERGVC2bmZjh79QKSy+hOHvAhscx7fo6ovGCSR0RERETlhpm5GZMuos/g05tEREREREQVCJM8IiIiIiKiCoTdNYmIiOiz7l6/g7S0d/IOg4oh5kGMvEMgojLGJI+IiIgKlZmZCZGCCMumLZV3KPSFBEGQdwhEVEaY5BEREVGhxGIxhFwBzYaMgraxibzDoWKIv3ENlw/uhkgkkncoRFRGmOQRERHRZ1Vr6Awj2xryDoOK6fLB3fIOgYjKEAdeISIiIiIiqkB4J4+IiIiIyo242DhOhv4Jmzdshu9kX8Qmxco7FJIjJnlEREREVC7Excahce2GSEtPL7N9qqup4ezV80VO9EaPHI2tG7dgzvw5mDjFR1J+4M8DGNT3e7zOTCmtUEuEY3VHjB47Gl7jveQdSoUTGxOLhg0bIioqCs7OzqW6LyZ5RERERFQuJCcnIy09HeumfYea5pVLfX+3Y59j+MJdSE5OlulunqqqKoJ/DsbwkcOho6tbihFWHFlZWVBRUZF3GBUGn8kjIiIionKlpnll1LOtUuqv4iaSLdu0gpGREYIWBX2y3dnTZ9GpbScYaxvB3roWpk6cinfv/jcfZVZWFmb7zoKdVU1Ut6qOYcOGISoySmobmzdshoONPUx0jPF9n+/xMvmlVP21q9fQ1bUrTPWrwszAFC2btMCl6ItFPhYdsTbW/fYH+vXoCxMdYzSq3RDnzpzDw/sP0KV9F1TRNUH7Fu3w6MFDyTqB8wLRrGEzrPvtD9hb14KJjjGGDhiC169fS9qMHjkaA3sPRNCiX1DTsgacHJwAADeu34Bbh64w1jaClYklJowej7dv3wIA/jn6N4y0DKW2AwBTJ05F53adi3xeHas7YnHgYniM8EBVvSpwsHXAwX0H8eL5Cwz4bgCq6lWBS33nfOepKNv9ZeHPGDNqDEz1q8LBxh6hv6+T1Des0xAA4OLiApFIhFatWhX59yArJnlERERERCVIUVERs+bNxpqQNYh/El9gmxvXb+C7rr3g1t0N/16Iwh+b1uFM1GlM8Z4iaTPmBy+cPX0Wazf+gaPHj6Jt27YY2HcgHtx7AAC4cO4Cxo4aA3cPd5w6F4nmLZvj5wWLpfYzaugPqFK1Co79exwnTkdg4pSJUFJWlul4FgcuRv9B/XHqXCRsa1THyCHu8B7jDZ8pE3E86gQASMUNAI8ePMSenXuwdfc27Ny/C9euXMOUCZOl2pw8HoE7t+9iz6G9CNsThrS0NPR2+w46Ojo4FnUcoVvW48SxE5Jtt2rbGto62ti3Z59kGzk5Odi7aw/69u9T5PMKACHLVqKJc2OcPHsKHTq6wnOEBzxHeKDfwL6IOHMSVtbV4DnCUzK/ZFG3uyJ4BerVr4uTZ0/C3cMdPuN8cPf2XQDA4WOHAQD79+9HQkICdu8uvVFvmeQREREREZUwt+5ucKzjiMB5AQXWLwtaht79esNrvBesba3R2LkxFgYtwrZNW5GRkYFHDx5iZ9hOhG5ZD5dmLrC0tMTgwYPRqHEjbN6wCQCwesUqtG3fFhOn+MCmug08x3qibfu2Uvt5EvcErdq0QvWa1WFta40e3/WEY21HmY5l4JDv0bN3L9hUt4H3ZG/ExsSiz4C+aOvaDjXsasBzrCciT0ZKrZORkYFVa1ejdp3aaNq8KRYtWYxd23fhWeIzSRt1DXUsX70cdrXsUMu+FnZs3Y709HSs/uNX1LKvhZatW2Jx8M8I27wNSc+SoKioiJ69e2Hnth2SbUQcO4HXr16jx3c9inRe87Tv6IrhP4yAta01ps6chjdv3qBeg/ro8V1PyXHeuX0HSc+SZN7uSM8fUM3GGt6TJ0LfQB+RJ08B+DCIT96/xsbG0NPTk+n3IAs+k0dEREREVAr8fvJHtw5uGOs9Ll/dlYuX8fDBQ+z4T8IiCAJyc3MR8ygGt27ehCAIaPD/3RgFQYAgCMjOzoaBoQEA4M7tO+ja3U1quw0bN8LfR/+RLHtNGIPxnuMQtnkbWrVthR69esDKuppMx+HgaC/5ubLhhy6s9g61/lNmiIyMDKSmpkJLSwsAYGpmiqqmVf8XV5OGyM3Nxb2792BkbAQAqGVfS+o5vDu378KhtiM0NDQkZY1dGkvWMzQyRN8BfdG+RTskPE2ASRUTbN+2A+07ukqeffzcea1h92G+TweH/x2ToZFhAcf04TifP38OI2OjYm1XJBLB0MgIz5+/KMppLlFM8oiIiIiISkHT5k3Rtn1bzJ01FwMHD5Sqy83NxbCRw+E5xiPfeqbmZrhx/ToUFRVx4nQEFBUV8Db1LV4kvICxmTH0/z/J+/+ehJ/kO8sXffr1wZG/juDvI+EInBuItZv+gNtHyeGnKCn9r3unSCT6UKacvyw3N7fQbeS1yfsXANT/k8wBH5Km/1QXuL5TQydYVbPCru274O7hjoN/HsCK31ZK2n3uvEqOqYD4CzrOvGMqznbztvOp81JamOQREREREZWSOT/5oXnDZrCxtZYqr1OvDm7fvIVqNtYFrle7Th3k5OTg+fPncGnmgjevUqGmpAbTaqZQq6QOAKhpVwMXzp6XWu/CufP5tmVT3QY21W0wZsIYuA8egc3rN8uU5BXHk7gnkrttAHD+zDkoKCjAxtam0HVq2tXA1k1b8O7dO8ndvLNRZ/Ot17t/H+zYth1VTatApKCADp06SOo+d16LqyS2m3fXMicnp6TCKhSfySMiIiIiKiX2DvboM6Av1oSskSqfMNkb58+ex+Txk3D1ylU8uPcAh/YfkgzkYVPdBn0H9IXnCA/s27sPsTGxuHHjBlYsXYGjfx0FAHiM8cTfR//G0p+Dcf/ufawJWYO/j/4t2Ud6ejqmTJiMUxGnEBsTizNRZ3DxwkXUqFm91I9bVVUVo909ce3qNURFRmGazzT07N1T0lWzIH0G9JWsd/PGTZw8cRJTJ05Bv+/7S7pUAkDf/n1x5dIV/LzgF3Tv1Q2qqqqSus+d1+Iqie0aVDaAWCxGeHg4nj17hpSU0pszkXfyiIiIiKhcuR37vFztZ+acmdi7c49UmYOjAw7+fRDzZs9D5zadIAgCLKtZoVefnpI2K38LweLAxfhx6kwkPE2AlpYWGjVphM7duwAAGjZuiGWrl2PBvEAsmL8ALdu0wuTpU7A48MMIm4qKinj58iVGu3si6VkS9A300bW7G3xnzyiR4/oUK+tqcOvhhr7d++DVy1do37E9fln2yyfXUVdXx64DuzF90jS0cWkNNXU1dOvRDT8tlh68xtrWGvUb1MfFCxcR+HOgVF1RzmtxlMR2lZSUMHnyZPzxxx+YP38+mjdvjhMnTnxRXIURCUJRevNWHKmpqdDW1kZKSorkwVCiwlhOPyjvEL55jxd0KdXt83csf1/6O+b7euFK4txcvHgRTk5OGLJ8HYxsa5RwhFQWbh47goOL/LFox2LUaVxX3uEUmcJ7Bei91YWZhRlUVD90c4uLjUPj2g2Rlp5eZnGoq6nh7NXzMk2GXhrevEpFYlyiVHfNr1XgvEAc3HcQkecjP9/4G5KZnoHYe7Gws7OTGlzmYxkZGXj06BGsrKyk7lICRX9f5508IiIiIioXzMzNcPbqeSQnJ5fZPvX19eWe4BHJikkeEREREZUbZuZmTLqIPoMDrxARERERUYnxneXLrppyxiSPiIiIiIioAmGSR0REREREVIEwySMiIiIiIqpA5J7khYSESIYHdXJywqlTpwptO2zYMIhEonwve3v7MoyYiIiIiIjo6yXXJC8sLAze3t6YOXMmLl26hObNm6NTp06IjY0tsP3SpUuRkJAgecXFxUFPTw99+vQp48iJiIiIiIi+TnJN8oKCguDu7o6RI0fCzs4OwcHBMDMzw6pVqwpsr62tDWNjY8nrwoULePXqFYYPH17GkRMREREREX2d5DZPXlZWFqKjozF9+nSpcldXV0RFRRVpG2vXrkW7du1gYWFRaJvMzExkZmZKllNTU4sXMBERERHJXVxsHCdDl5Mu7bvAsbYjFvyyoNA2jtUdMXrsaHiN9yrDyOhjckvyXrx4gZycHBgZGUmVGxkZITEx8bPrJyQk4K+//sKWLVs+2S4wMBD+/v5fFCsRERERyV9cbBwa1m6IjPT0Mtunqpoazl89L3Oid/b0WXRq0xGt27bGrgO7Sym64mEiVvHJLcnLIxKJpJYFQchXVpDQ0FDo6OigR48en2zn6+sLHx8fyXJqairMzPhtDBEREVF5k5ycjIz0dHSc8iP0zArvyVVSXsbF4PDi+UhOTpY5ydu0fiNGeXlg47oNiIuN491AKlNyeybPwMAAioqK+e7aJSUl5bu79zFBEPDHH39g8ODBUFFR+WRbsVgMLS0tqRcRERERlV96ZhYwsqlR6q/iJpLv3r3D3p174T7KHR06d8CWjdI9zw7tP4RWzi1hpGWIalWsMKjv95K6zMxMzPadBXvrWjDUrIz6tephw7oNkvo7t++gT7feqKpXBbZmNhg1fBSSX/yv+2qX9l0wZcJkTJkwGeaG5rAyscT8OfMgCIKkPi4mFjOm+EJHrA0dsTYA4GXyS7gPHoFa1exgomMMl/rO2Bm2M9+x5bx/X+i2C5KSkoIJo8fDxtQaZgamcOvQFdeuXivWeaWik1uSp6KiAicnJ4SHh0uVh4eHw8XF5ZPrRkRE4P79+3B3dy/NEImIiIiIZLZ7x27YVLeBbQ1b9B3QD5vXb5IkQkcOHcHgfoPg2qkDTp49hT8P70M9p3qSdT1HeGD3jt1YELQQ566cw5IVS1CpkgaAD4879erWC451HHE86gR27t+F58+SMOz7oVL737ppKxSVlPDPqX+wMGgRQpaFYMMf6wEAm8I2oqppVcyYMxN3Yu7iTsxdAEBGRgbq1quLbXvCcPriaQx1HwaP4aNw4dyFIm/7Y4IgoF+Pvnj2LAk7/tyBE6cjUKduHXTv2A2vXr4smZNNBZJrd00fHx8MHjwYDRo0gLOzM9asWYPY2Fh4enoC+NDVMj4+Hhs2bJBab+3atWjcuDEcHBzkETYREdEXe//+Pfz8/LB582YkJibCxMQEw4YNw48//ggFhQ/fwQqCAH9/f6xZswavXr1C48aNsXLlSs4PS/SV2xS6EX0H9AMAtOvQDu/evUPEsRNo1bY1fln4M77r+x1mzJ4hae9Y2xEAcP/ufezZuQd7D+1Fq7atAQCW1awAAG9epWLnzp1wrO2I2fPmSNZdsWYl7K1r4f7d+7CpbgMAqGpaFYE/B0IkEsG2hi1uXr+BkGUhGOo+DLp6elBQVESlSpVgZPy/3nNVqlbBOJ/xkmWPMR745+jf2LtrDxo0aiAp/9S2P3byxEncvH4T957ch1gsBgDMX/gTDu47iD93/4lhIzlCfmmRa5LXr18/JCcnY+7cuUhISICDgwMOHTokGS0zISEh35x5KSkp2LVrF5YuXSqPkImIiErEwoULsXr1aqxfvx729va4cOEChg8fDm1tbUyYMAEAsGjRIgQFBSE0NBTVq1fH/Pnz0b59e9y5cweamppyPgIiKsi9O/cQfT4aG8M2AQCUlJTQq3cvbFq/Ca3atsa1K9cwZMTQAte9dvUqFBUV0bRFswLrb9++jXPnzqGqXpV8dY8ePpIkeQ0aN5Qa46Jh40ZYEbwCOTk5UFRULHDbOTk5WLI4CLt37EHC06fIysxCZmYm1DXUpdrJsu0rFy/j7du3qGZiJVWenp6ORw8fFRgHlQy5D7zi5eUFL6+CR/YJDQ3NV6atrY20tLRSjoqIiKh0nT59Gt27d0eXLl0AAJaWlti6dSsuXPjQNUoQBAQHB2PmzJno1asXAGD9+vUwMjLCli1b4OHhIbfYiahwG0M34P3797CzqikpEwQBysrKeP3qFVTVVAtdV1VV7ZPbzs3NRfsO7TF/4fx8dUYmxsUPGsCKJcsRsiwEgT8vQC2HWtBQV4fvZF9kZWUXe5u5Qi6MTYxx4OiBfHXaOjpfEC19jtyTPCIiom9Rs2bNsHr1aty9exfVq1fHlStXEBkZieDgYADAo0ePkJiYCFdXV8k6YrEYLVu2RFRUVIFJHueGJZKv9+/fY9vmbZi/8Ce0ad9Gqm5Iv8HYvnUH7B0dcPJ4BAYNHZRv/VoOtZCbm4t/T0ZKumv+V82aNXHy1EmYW1pASanwj/EXzp6XXj53HtY21pI7bSrKysjJyZFqE/XvaXR264x+Az90M83NzcWD+w9QvWYNmbb9X3Xq1sGzxGdQVFKChWXpj4ZK/yO3gVeIiIi+ZdOmTcOAAQNQs2ZNKCsro169evD29saAAQMAQDL6tCzzyQYGBkJbW1vy4pRBRGXr8MHDeP3qNQYPH4xa9rWkXt17dcfG0A2YNnMadobtRMDcANy5dQc3rt/A0p+DAQAWlhYYMHggxnqMxYE/D+Dxo8c4FXEKe3Z+mGevT58+eP36NdwHj0D0+Wg8fvgIx8L/wZhRY6SStvgn8ZgxZQbu3bmHnWE7sSZkDTzHekrqzS3MERUZhafxTyUjc1azroYT/5zA2dNncefWHXiPmYCkZ0n5jvFz2/6vVm1bo1GTRvi+z/f45+jfiHkcg7Onz2L+nHm4FH2xpE47FYB38oiIiOQgLCwMmzZtwpYtW2Bvb4/Lly/D29sbVapUwdCh/3teR5b5ZDk3LH0rXsbFfJX72Ri6Ea3atIK2tna+Oree3fDLwl+gqaWJ0K3rsThgEYIXL4GmliZcmv1vZPmg5UGYO2suJk+YhJfJL2FqZgqfaZMAAJUrV8a+Q/sQ+FMgenXtiazMLJiZm6GtazvJgE0A0P/7/shIT0fbZm2goKiAUV6jpAY5mTFnJrzHeKOeXV1kZmbidWYKps6YgpjHMfiuay+oqathqPswdO7WBakp0j0CPrft/xKJRNj+5w7Mmz0PYz3G4sXzFzAyNoJLMxdUNjSU6dySbJjkERERycGUKVMwffp09O/fHwDg6OiImJgYBAYGYujQoTA2/vB8Td7Im3k+NZ+sWCyWjGBHVBHp6+tDVU0NhxfnfyattKiqqUFfX79IbcP2hBVaV7deXbzOTJH83K1Ht4L3p6qKgMUBCFgcIFX+5tWHZKuadTVs2r75k3EoKStjwS8LELRiSYH1DRs3xL8X/pUq09XTw5adWwpsn+dg+EHJz4Vt+9pd6TnwNDU1sWjJIixasuiT26aSxSSPiIhIDtLS0qS+eQcARUVF5ObmAgCsrKxgbGyM8PBw1Kv3YQ6trKwsREREYOHChWUeL9HXwMzcDOevnkdycvLnG5cQfX19mJnzjjiVL0zyiIiI5MDNzQ0//fQTzM3NYW9vj0uXLiEoKAgjRowA8KGbk7e3NwICAmBrawtbW1sEBARAXV0dAwcOlHP0RPJjZm7GpIvoM5jkERERycHy5csxa9YseHl5ISkpCVWqVIGHhwdmz54taTN16lSkp6fDy8tLMhn60aNHOUceERXqv10q6dvFJI+IiEgONDU1ERwcLJkyoSAikQh+fn7w8/Mrs7iIiKj84xQKREREREREFQiTPCIiIiIiogqESR4REREREVEFwiSPiIiIiIioAmGSR0REREREVIFwdE0iIiIiKjfiYuM4GfpnOFZ3xOixo+E13gsAoCPWxqbtm9G1e1c5R0ZlhUkeEREREZULcbFxaFSnIdLT0stsn2rqajh35bxMid7okaOxdeOWfOVt27fFrgO7SzI8ufk4kaSvC5M8IiIiIioXkpOTkZ6WjsnBU2BmY17q+4u7H4ufvRcjOTlZ5rt57VzbYeVvIVJlYrFKSYZHVCgmeURERERUrpjZmMPG0UbeYXySilgMI2OjfOWnIk6hV5ee+PPwPrg0cwEALF+yHEsWByEq+jSMTYzx+vVrzPGdjUMHDiE1JRXVrKth6vSpcLBzAACcPX0Wfj/64dKFi9A30EeXbl0xZ/4caGhoFCm2p/FPMXPqDBz7+xgUFBTQxMUZC35ZAAtLCwAf7kSmvE6Bs0sTrFi6AllZWfiuz3cI/GUBlJWV0aV9F8TFxGLGFF/MmOILAHidmVISp41KCAdeISIiIiIqI81bNsfocaPhMcIDKSkpuHb1GubPmYelq5bB2MQYubm56NOtN86dOYc169bg7OWzmDPfD4qKigCAWzdv4buuveDW3Q3/XojCH5vW4UzUaUzxnlKk/aelpcHNtSs0Kmng0D9/4fCxI6hUSQO93b5DVlaWpF1kxCk8evgI+48cwKrfV2PLxi3YsmEzAGBT2EZUNa2KGXNm4k7MXdyJuVvyJ4q+CO/kERERERGVsCOHDqOqXhWpsgmTvTF1xlT86D8LJ46dgLfXBNy+eRv9vu8Ht+5uAIAT/xxH9PlonLtyHjbVP9yttKxmhTevUpEYl4iQ5SHo3a+35Fk4a1trLAxahC7tOiNoeRBUVVU/Gdeu7bugoKCA5atXQCQSAQBW/hYCC0NzREacQpv2bQEA2ro6WLz0ZygqKqJ6zepw7eSKiOMRGOo+DLp6elBQVESlSpUKvFtJ8sckj4iIiCq8Swd24/KBPUhNSgAA6JtbweX7EajW0Dlf2yNLF+LqX3+itccENOjZr6xDpQqiecvmCFoeJFWmq6cLAFBRUcGa0N/Q1MkFZuZmCPx5gaTNtSvXUMW0qiTB+9jVK1fx+NFj7Ni2Q1ImCAJyc3MR8ygGNexqfDKuKxcv4+GDhzDVrypVnpGRgUcPH0mW7exqSu4eAoCRsTFu3rjxmaOmrwWTPCIiIqrwNA0M0XLEaOhUMQUA3Pj7EPb4T8PQFaEwsKwmaXcvKgIJd26ikr6BvEKlCkJdQwPVbKwLrT93+iwA4NWrV3j18pXkeTpVNbVPbjc3NxfDRg6H5xiPfHWmRRgcJjc3F3Xr18Vvob/lq9Ov/L//90rKylJ1IpEIubnCZ7dPXwcmeURERFTh2TRpJrXcfJgnLh/Yg6e3b0iSvDcvnuPvkCD0mb8Eu2ZPlkeY9I149OAhZkyZgaWrlmHvzj3wdPfEvsP7oKCgAHtHezx9Eo/7d+8XeDfPsY4jbt+89ckE8lPq1KuD3Tt3w8CwMrS0tIp9DCrKysjJySn2+lS6OPAKERERfVNyc3Jw60Q4sjMzUOX/RysUcnNxaLE/GvUeKHVnj6i4sjIz8SzxmdQr+UUycnJy4DHCA63btcagoYOw8rcQ3LpxEyuWLAcANGvRDC7Nm2JI/8E4/vcxPH70GOGHw3H82HEAwNjxY3H+7HlMHj8JV69cxYN7D3Bo/6EiD7zSZ0Bf6OvrY2DvgYiKjMLjR48ReTIS03ymIf5JfJGPz9zCHFGRUXga/xTJL8pucnoqGt7JIyIiom/C80cPsHniKLzPyoKKmhp6zAqEgYUVAODs9k0QKSqifve+co6SiiLufuxXv5+/j/6NGhbVpcpsq9uid/8+iI2JxbbdYQAAI2MjLFu1HMO/H4ZW7Vqjdp3a2LhtA36cPgvuQ9yR9i5NMoUCANSyr4WDfx/EvNnz0LlNJwiCAMtqVujVp2eR4lJXV8ehf/7CnJlzMLjfILx98xYmVUzQsnVLaGppFvn4ZsyZCe8x3qhnVxeZmZmcQuErwySPiIiIvgl6puYYGrIemW/f4G7kCRz6ZT76L1qJ91mZiP5zO4auWCcZbZC+Tvr6+lBTV8PP3ovLbJ9q6mrQ19eXaZ1Vv6/Cqt9XFVo/beY0qeUu3bog6c1zybKunh5Wrlkp1SZvdE0AqN/ACXsO7S10+9fuXpNa/jgBMzI2wuq1qz8Z/8cW/LJAarlh44b498K/hW6D5ItJHhEREX0TFJWVofv/A68YV7dDwt1biN67Hfrmlkh7/QqrB/eStBVyc3Dit+WI3hMGjw275RUyfcTM3AznrpxHcnLZdQ/U19eHWREGNCH6mjDJIyIiom+UgJzsbNi37QiLeg2kanbOnIhabTvCsX0XOcVGhTEzN2PSRfQZTPKIiIiowju5bjWqNWwCTQMjZKWn4XZEOOKuXkLv+UFQ09KGmpa2VHsFRSVo6OpDz8xCThETERUfkzwiIiKq8NJevcTBRXPx7lUyxOoaMLCyQe/5QbCs30jeoRERlTi5J3khISFYvHgxEhISYG9vj+DgYDRv3rzQ9pmZmZg7dy42bdqExMREmJqaYubMmRgxYkQZRk1ERETlSUefGTK153N4XwsBAjgBN31bBOHL/8/LNckLCwuDt7c3QkJC0LRpU/z666/o1KkTbt68CXNz8wLX6du3L549e4a1a9fCxsYGSUlJeP/+fRlHTkRERESlSVDIhSAIyEzPhFhVLO9wiMpMWloaAEBZWbnY25BrkhcUFAR3d3eMHDkSABAcHIwjR45g1apVCAwMzNf+8OHDiIiIwMOHD6GnpwcAsLS0LMuQiYiIiKgMCApAmko6kp+/AACI1cQQ4dud4uJ99oebGtlZ2VDMyJJzNFQc2VnZAD70TFRUVMxXLwgC0tLSkJSUBB0dnQLbFJXckrysrCxER0dj+vTpUuWurq6IiooqcJ19+/ahQYMGWLRoETZu3AgNDQ1069YN8+bNg5qaWoHrZGZmIjMzU7KcmppacgdBRERERKUmXT0DSANynuX8/xyG326Sl5GWjtRXqXgvyoGKioq8w6FieJ+djZcvXkJZWfmTv0MdHR0YGxt/0b7kluS9ePECOTk5MDIykio3MjJCYmJiges8fPgQkZGRUFVVxZ49e/DixQt4eXnh5cuX+OOPPwpcJzAwEP7+/iUePxERERGVMhGQrpGBdLUMKOQqyDsauTp75gx++2kNpiydihq1a8o7HCqGmLsxmOfpj127dqFGjRoFtlFWVv6iO3h55D7wyodvZf5HEIR8ZXlyc3MhEomwefNmaGt/GOo4KCgIvXv3xsqVKwu8m+fr6wsfHx/JcmpqKszMOLcKERERUbmhAOQq5Mo7Crl6k/4GMTExSMtOQ67St30uyquMnAzExMRAJBJBVVW1VPcltyTPwMAAioqK+e7aJSUl5bu7l8fExARVq1aVJHgAYGdnB0EQ8OTJE9ja2uZbRywWQyzmw7pERERERPRtkNt9bxUVFTg5OSE8PFyqPDw8HC4uLgWu07RpUzx9+hRv376VlN29excKCgowNTUt1XiJiIiIiIjKA7l2bvbx8cHvv/+OP/74A7du3cLEiRMRGxsLT09PAB+6Wg4ZMkTSfuDAgdDX18fw4cNx8+ZNnDx5ElOmTMGIESMKHXiFiIiIiIjoWyLXZ/L69euH5ORkzJ07FwkJCXBwcMChQ4dgYWEBAEhISEBsbKykfaVKlRAeHo5x48ahQYMG0NfXR9++fTF//nx5HQIREREREdFXRe4Dr3h5ecHLy6vAutDQ0HxlNWvWzNfFk4iIiIiIiD74tseiJSIiIiIiqmCY5BEREREREVUgMid5fn5+iImJKY1YiIiIiIiI6AvJnOTt378f1tbWaNu2LbZs2YKMjIzSiIuIiIiIiIiKQeYkLzo6GhcvXkTt2rUxceJEmJiYYPTo0Th//nxpxEdEREREREQyKNYzebVr18aSJUsQHx+PP/74A/Hx8WjatCkcHR2xdOlSpKSklHScREREREREVARfNPBKbm4usrKykJmZCUEQoKenh1WrVsHMzAxhYWElFSMREREREREVUbGSvOjoaIwdOxYmJiaYOHEi6tWrh1u3biEiIgK3b9/GnDlzMH78+JKOlYiIiIiIiD5D5iSvdu3aaNKkCR49eoS1a9ciLi4OCxYsgI2NjaTNkCFD8Pz58xINlIiIiIiIiD5PSdYV+vTpgxEjRqBq1aqFtqlcuTJyc3O/KDAiIiIiIiKSncx38gRBgK6ubr7y9PR0zJ07t0SCIiIiIiIiouKR+U6ev78/PD09oa6uLlWelpYGf39/zJ49u8SCIyIiIiICgCEug/DsybN85W5D3DB2/nhsDNqAE/tP4PnT51BWVoKNoy2GTx2OmvXsyj5YIjmTOckTBAEikShf+ZUrV6Cnp1ciQRERERER/dey/SuQm/O/x4Ee33kM3++noXmXlgCAqtVMMWbuWJiYmyAzIxN71u6C76DpWHdyPXT0deQUNZF8FDnJ09XVhUgkgkgkQvXq1aUSvZycHLx9+xaenp6lEiQRERERfds+TtTCQrbBxKIKajepDQBo06ONVP2oWZ44vO0wHt16iHrN6pdVmERfhSInecHBwRAEASNGjIC/vz+0tbUldSoqKrC0tISzs3OpBElERERElCc7KxvH9vyDXj98V2APs+ysbBzacggaWhqoVstaDhESyVeRk7yhQ4cCAKysrODi4gJlZeVSC4qIiIiIqDBRR6LwNvUtXHu7SpWf+fsMAsf+hMz0TOgZ6iFw80Jo62kXshWiiqtISV5qaiq0tLQAAPXq1UN6ejrS09MLbJvXjoiIiIioNBwJ+wsNWzWCvrGBVHldlzoIObwaqS9T8NfWv/CT13ws+3MZdAzyjwxP8vG5AXQAIPZeDNYG/o6rZ69CyBVgUd0CM0NmwbCqYVmHW24VKcnT1dVFQkICDA0NoaOjU+Bt8bwBWXJycko8SCIiIiIiAHj25BkuRV7CrDVz8tWpqquhqmVVVLWsCrv6tTC8xVAc3nYY/ccOkEOkVJDPDaDz9PFT+Hw3ER37dcJgn6HQ0NRA7P1YqIjZi1AWRUryjh07Jhk58/jx46UaEBERERFRYY5uPwIdfR00btP4s20F4cPzefT1+NwAOqGL16FR60YYOfMHSRsTC5OyDLFCKFKS17Llh8z6/fv3OHHiBEaMGAEzM7NSDYyIiIiI6L9yc3NxdMcRtOvdHopKipLyjLR0bFm+Bc7tnaFnqI/UV6k4sHEfXiQ+R/MuLeQYMX3KxwPo5Obm4tyxs+jj2RczBk3H/RsPYGxmjP5j+sOlQ1N5h1uuKMjSWElJCT///DO7ZBIRERFRmbsUeRFJ8Uno0K+jVLmCgiKePIjDPI+5cG81HLOH/4jXySn4ZecSWNawlE+w9FkfD6Dz+sVrpL9LR1hIGBq0aojATYFo2qEp5o7yx9UzV+Qcbfki82Tobdu2xYkTJzBs2LBSCIeIiIiIqGBOLRrgSGx4vnIVVRXMXuNX9gHRF/l4AB0h98Ozes6uzug18jsAgLW9DW5G38DBTQdQu0kducVa3sic5HXq1Am+vr64fv06nJycoKGhIVXfrVu3EguOiIiIiIgqnoIG0NHS04aikiIsbC2k2prZmOPG+etlHWK5JnOSN3r0aABAUFBQvjqOrklERERERJ9T0AA6yirKqF6nBp48iJNqG/8oHoamRmUdYrkm0zN5wIcHXgt7McEjIiIiIqJPKWwAHQDo49EHEQcicGjLIcQ/jsefoXtx5u/TcBvM3oKykDnJIyIiopIRHx+PQYMGQV9fH+rq6qhbty6io6Ml9YIgwM/PD1WqVIGamhpatWqFGzduyDFiIqIvV9gAOgDQtGMzjA+YgB2rw+DZfhQOb/sLs36dA4dGDnKItPySubsmALx79w4RERGIjY1FVlaWVN348eNLJDAiIqKK7NWrV2jatClat26Nv/76C4aGhnjw4AF0dHQkbRYtWoSgoCCEhoaievXqmD9/Ptq3b487d+5AU1NTfsETEX2BwgbQydOhX8cCE0AqOpmTvEuXLqFz585IS0vDu3fvoKenhxcvXkBdXR2GhoZM8oiIiIpg4cKFMDMzw7p16yRllpaWkp8FQUBwcDBmzpyJXr16AQDWr18PIyMjbNmyBR4eHmUdMhERlRMyd9ecOHEi3Nzc8PLlS6ipqeHMmTOIiYmBk5MTfv7559KIkYiIqMxlZGSU6vb37duHBg0aoE+fPjA0NES9evXw22+/SeofPXqExMREuLq6SsrEYjFatmyJqKioAreZmZmJ1NRUqRcREX17ZE7yLl++jEmTJkFRURGKiorIzMyEmZkZFi1ahBkzZsgcQEhICKysrKCqqgonJyecOnWq0LYnTpyASCTK97p9+7bM+yUiIvpYbm4u5s2bh6pVq6JSpUp4+PAhAGDWrFlYu3Ztie7r4cOHWLVqFWxtbXHkyBF4enpi/Pjx2LBhAwAgMTERAGBkJD2inJGRkaTuY4GBgdDW1pa8zMzMSjRmIiIqH2RO8pSVlSESiQB8uNDExsYCALS1tSU/F1VYWBi8vb0xc+ZMXLp0Cc2bN0enTp0+u507d+4gISFB8rK1tZX1MIiIiPKZP38+QkNDsWjRIqioqEjKHR0d8fvvv5fovnJzc1G/fn0EBASgXr168PDwwA8//IBVq1ZJtcu75uYRBCFfWR5fX1+kpKRIXnFxcQW2IyKiik3mJK9evXq4cOECAKB169aYPXs2Nm/eDG9vbzg6Osq0raCgILi7u2PkyJGws7NDcHAwzMzM8l3gPmZoaAhjY2PJS1FR8ZPtiYiIimLDhg1Ys2YNvv/+e6lrS+3atUu814iJiQlq1aolVWZnZyf5otPY2BgA8t21S0pKynd3L49YLIaWlpbUi4iIvj0yJ3kBAQEwMTEBAMybNw/6+voYPXo0kpKSsGbNmiJvJysrC9HR0VLPGgCAq6troc8a5KlXrx5MTEzQtm1bHD9+/JNt+XwCEREVVXx8PGxsbPKV5+bmIjs7u0T31bRpU9y5c0eq7O7du7CwsAAAWFlZwdjYGOHh/xuBLisrCxEREXBxcSnRWIiIqGKReXTNBg0aSH6uXLkyDh06VKwdv3jxAjk5OTI9a2BiYoI1a9bAyckJmZmZ2LhxI9q2bYsTJ06gRYsWBa4TGBgIf3//YsVIRETfFnt7e5w6dUqSaOXZsWMH6tWrV6L7mjhxIlxcXBAQEIC+ffvi3LlzWLNmjeQLU5FIBG9vbwQEBMDW1ha2trYICAiAuro6Bg4cWKKxEBFRxVKsefJKkizPGtSoUQM1atSQLDs7OyMuLg4///xzoUmer68vfHx8JMupqakV8kH0kJAQLF68GAkJCbC3t0dwcDCaN2/+2fX+/fdftGzZEg4ODrh8+bKkPDQ0FMOHD8/XPj09HaqqqiUZOhHRV2POnDkYPHgw4uPjkZubi927d+POnTvYsGEDDhw4UKL7atiwIfbs2QNfX1/MnTsXVlZWCA4Oxvfffy9pM3XqVKSnp8PLywuvXr1C48aNcfToUc6RR0REn1SkJK9evXqFJl4fu3jxYpHaGRgYQFFRUaZnDQrSpEkTbNq0qdB6sVgMsVhc5O2VR3kD2ISEhKBp06b49ddf0alTJ9y8eRPm5uaFrpeSkoIhQ4agbdu2ePbsWb56LS2tfF2JmOARUUXm5uaGsLAwBAQEQCQSYfbs2ahfvz7279+P9u3bl/j+unbtiq5duxZaLxKJ4OfnBz8/vxLfNxERVVxFSvJ69OhR4jtWUVGBk5MTwsPD0bNnT0l5eHg4unfvXuTtXLp0SfKM4LfqvwPYAEBwcDCOHDmCVatWITAwsND1PDw8MHDgQCgqKmLv3r356kUikeTBfyKib0WHDh3QoUMHeYdBRERUbEVK8ubMmVMqO/fx8cHgwYPRoEEDODs7Y82aNYiNjYWnpyeAD10t4+PjJXMGBQcHw9LSEvb29sjKysKmTZuwa9cu7Nq1q1TiKw/yBrCZPn26VPnnBrBZt24dHjx4gE2bNmH+/PkFtnn79i0sLCyQk5ODunXrYt68eSX+TAoREREREZUsuT6T169fPyQnJ2Pu3LlISEiAg4MDDh06JHngPSEhQWrOvKysLEyePBnx8fFQU1ODvb09Dh48iM6dO8vrEOSuOAPY3Lt3D9OnT8epU6egpFTwf4GaNWsiNDQUjo6OSE1NxdKlS9G0aVNcuXKF8xISUYWiq6tb5EcSXr58WcrREBERfbkiJXl6enq4e/cuDAwMPnsxlPUC6OXlBS8vrwLrQkNDpZanTp2KqVOnyrT9b0VRB7DJycnBwIED4e/vj+rVqxe6vSZNmqBJkyaS5aZNm6J+/fpYvnw5li1bVnKBExHJWXBwsLxDICIiKlFFSvKWLFkiGcmLF8Ovi6wD2Lx58wYXLlzApUuXMHbsWAAf5n8SBAFKSko4evQo2rRpk289BQUFNGzYEPfu3SudAyEikpOhQ4fKOwQiIqISVaQk778XQF4Mvy6yDmCjpaWFa9euSZWFhITg2LFj2LlzJ6ysrArcjyAIuHz5MhwdHUv2AIiI5Cw1NRVaWlqSnz8lrx0REdHXrNjP5CUlJSEpKQm5ublS5bVr1/7ioEg2sgxgo6CgAAcHB6n1DQ0NoaqqKlXu7++PJk2awNbWFqmpqVi2bBkuX76MlStXlumxERGVNl1dXSQkJMDQ0BA6OjoFdnXP6wKfk5Mjhwi/Dk/u3ca7tHfyDoOKISn2sbxDIKIyJnOSFx0djaFDh+LWrVsQBEGq7lu/AMqLrAPYFMXr168xatQoJCYmQltbG/Xq1cPJkyfRqFGj0jgEIiK5OXbsGPT09AAAx48fl3M0X5/MzExAJMKxZQvlHQp9oY8/txFRxSVzkjd8+HBUr14da9euhZGRUZFHJKPSJcsANh8raKLdJUuWYMmSJSUUHRHR16tly5aSn62srGBmZlbgYFZxcXFlHdpXQSwWA4KAucPaw9JYV97hUDFE3YjB6v1n+ZmN6Bsic5L36NEj7N69GzY2NqURDxERkdxYWVlJum7+18uXL2FlZfVN91bp2Kg66ttWlXcYVEyr95+VdwhEVIYUZF2hbdu2uHLlSmnEQkREJFeFTT/z9u1bqKqqyiEiIiIi2cl8J+/333/H0KFDcf36dTg4OEBZWVmqvlu3biUWHBERUVnw8fEB8OHZ8lmzZkFdXV1Sl5OTg7Nnz6Ju3bpyio6IiEg2Mid5UVFRiIyMxF9//ZWvjgOvEBFReXTp0iUAH+7kXbt2DSoqKpI6FRUV1KlTB5MnT5ZXeERERDKROckbP348Bg8ejFmzZhU42TYREVF5kzeq5rBhw7B8+XJoamrKOSIiIqLik/mZvOTkZEycOJEJHhERVSjv37/Hpk2bEBMTI+9QiIiIvojMd/J69eqF48ePw9raujTiKTcspx+UdwjfvMcLusg7BCKqQJSUlGBhYcHHDoiIqNyTOcmrXr06fH19ERkZCUdHx3wDr4wfP77EgiMiIipLP/74I3x9fbFp0ybJBOlERETlTbFG16xUqRIiIiIQEREhVScSiZjkERFRubVs2TLcv38fVapUgYWFBTQ0NKTqL168KKfIiIiIiq5Yk6ETERFVRD169JB3CERERF9M5iSPiIioopozZ468QyAiIvpiRUryfHx8MG/ePGhoaEgmjC1MUFBQiQRGREREREREsitSknfp0iVkZ2dLfi6MSCQqmaiIiIjkICcnB0uWLMH27dsRGxuLrKwsqfqXL1/KKTIiIqKiK1KSlzdJ7Mc/ExERVST+/v74/fff4ePjg1mzZmHmzJl4/Pgx9u7di9mzZ8s7PCIioiKReTL0j8XExODmzZvIzc0tiXiIiIjkZvPmzfjtt98wefJkKCkpYcCAAfj9998xe/ZsnDlzRt7hERERFUmRk7z169cjODhYqmzUqFGoVq0aHB0d4eDggLi4uJKOj4iIqMwkJibC0dERAFCpUiWkpKQAALp27YqDBw/KMzQiIqIiK3KSt3r1amhra0uWDx8+jHXr1mHDhg04f/48dHR04O/vXypBEhERlQVTU1MkJCQAAGxsbHD06FEAwPnz5yEWi+UZGhERUZEVOcm7e/cuGjRoIFn+888/0a1bN3z//feoX78+AgIC8M8//5RKkERERGWhZ8+ekmvZhAkTMGvWLNja2mLIkCEYMWKEnKMjIiIqmiLPk5eeng4tLS3JclRUlNQFr1q1akhMTCzZ6IiIiMrQggULJD/37t0bpqamiIqKgo2NDbp16ybHyIiIiIquyEmehYUFoqOjYWFhgRcvXuDGjRto1qyZpD4xMVGqOycREVF516RJEzRp0kTeYRAREcmkyEnekCFDMGbMGNy4cQPHjh1DzZo14eTkJKmPioqCg4NDqQRJRERUFjZs2PDJ+iFDhpRRJERERMVX5CRv2rRpSEtLw+7du2FsbIwdO3ZI1f/7778YMGBAiQdIRERUViZMmCC1nJ2djbS0NKioqEBdXZ1JHhERlQtFTvIUFBQwb948zJs3r8D6j5M+IiKi8ubVq1f5yu7du4fRo0djypQpcoiIiIhIdl88GToREVFFZmtriwULFuS7y0dERPS1knuSFxISAisrK6iqqsLJyQmnTp0q0nr//vsvlJSUULdu3dINkIiIvnmKiop4+vSpvMMgIiIqkiJ31ywNYWFh8Pb2RkhICJo2bYpff/0VnTp1ws2bN2Fubl7oeikpKRgyZAjatm2LZ8+elWHERERUke3bt09qWRAEJCQkYMWKFWjatKmcoiIiIpKNXJO8oKAguLu7Y+TIkQCA4OBgHDlyBKtWrUJgYGCh63l4eGDgwIFQVFTE3r17yyhaIiKq6Hr06CG1LBKJULlyZbRp0wa//PKLfIIiIiKSkdySvKysLERHR2P69OlS5a6uroiKiip0vXXr1uHBgwfYtGkT5s+f/9n9ZGZmIjMzU7Kcmppa/KCJiKhCy83NBQA8f/4cKioqnP+ViIjKJZmTvJycHISGhuKff/5BUlKS5IKY59ixY0XazosXL5CTkwMjIyOpciMjIyQmJha4zr179zB9+nScOnUKSkpFCz0wMBD+/v5FaktERN+u169fY+bMmQgLC5OMslm5cmUMHz4cs2bNgrq6upwjJCIiKhqZk7wJEyYgNDQUXbp0gYODA0Qi0RcF8PH6giAUuM2cnBwMHDgQ/v7+qF69epG37+vrCx8fH8lyamoqzMzMih8wERFVOC9fvoSzszPi4+Px/fffw87ODoIg4NatW1i+fDnCw8MRGRmJK1eu4OzZsxg/fry8QyYiIiqUzEnetm3bsH37dnTu3PmLdmxgYABFRcV8d+2SkpLy3d0DgDdv3uDChQu4dOkSxo4dC+BDtxpBEKCkpISjR4+iTZs2+dYTi8UQi8VfFCsREVVsc+fOhYqKCh48eJDvGjR37ly4urpi8ODBOHr0KJYtWyanKImIiIpG5iRPRUUFNjY2X7xjFRUVODk5ITw8HD179pSUh4eHo3v37vnaa2lp4dq1a1JlISEhOHbsGHbu3AkrK6svjomIiL5Ne/fuxa+//lrgl4zGxsZYtGgROnfujDlz5mDo0KFyiJCIiKjoZE7yJk2ahKVLl2LFihVf3FXTx8cHgwcPRoMGDeDs7Iw1a9YgNjYWnp6eAD50tYyPj8eGDRugoKAABwcHqfUNDQ2hqqqar5yIiEgWCQkJsLe3L7TewcEBCgoKmDNnThlGRUREVDwyJ3mRkZE4fvw4/vrrL9jb20NZWVmqfvfu3UXeVr9+/ZCcnIy5c+ciISEBDg4OOHToECwsLAB8uOjGxsbKGiIREZFMDAwM8PjxY5iamhZY/+jRIxgaGpZxVERERMUjc5Kno6Mj1b3yS3l5ecHLy6vAutDQ0E+u6+fnBz8/vxKLhYiIvk0dO3bEzJkzER4eDhUVFam6zMxMzJo1Cx07dpRTdERERLKROclbt25dacRBREQkN/7+/mjQoAFsbW0xZswY1KxZEwBw8+ZNhISEIDMzExs2bJBzlEREREUjt8nQiYiIvhampqY4ffo0vLy84OvrC0EQAHyY5qd9+/ZYsWIFzM3N5RwlERFR0RQrydu5cye2b9+O2NhYZGVlSdVdvHixRAIjIiIqS1ZWVvjrr7/w6tUr3Lt3DwBgY2MDPT09OUdGREQkGwVZV1i2bBmGDx8OQ0NDXLp0CY0aNYK+vj4ePnyITp06lUaMREREZUZXVxeNGjVCo0aNmOAREVG5JHOSFxISgjVr1mDFihVQUVHB1KlTER4ejvHjxyMlJaU0YiQiIiIiIqIikjnJi42NhYuLCwBATU0Nb968AQAMHjwYW7duLdnoiIiIiIiISCYyJ3nGxsZITk4GAFhYWODMmTMAPswhlPegOhEREREREcmHzElemzZtsH//fgCAu7s7Jk6ciPbt26Nfv34lOn8eERERERERyU7m0TXXrFmD3NxcAICnpyf09PQQGRkJNzc3eHp6lniAREREREREVHQyJ3kKCgpQUPjfDcC+ffuib9++JRoUERERERERFY/M3TUB4NSpUxg0aBCcnZ0RHx8PANi4cSMiIyNLNDgiIiIiIiKSjcxJ3q5du9ChQweoqanh0qVLyMzMBAC8efMGAQEBJR4gERERERERFZ3MSd78+fOxevVq/Pbbb1BWVpaUu7i44OLFiyUaHBER0bcgMDAQIpEI3t7ekjJBEODn54cqVapATU0NrVq1wo0bN+QXJBERlRsyJ3l37txBixYt8pVraWnh9evXJRETERHRN+P8+fNYs2YNateuLVW+aNEiBAUFYcWKFTh//jyMjY3Rvn17yfy0REREhZE5yTMxMcH9+/fzlUdGRqJatWolEhQREdG34O3bt/j+++/x22+/QVdXV1IuCAKCg4Mxc+ZM9OrVCw4ODli/fj3S0tKwZcsWOUZMRETlgcxJnoeHByZMmICzZ89CJBLh6dOn2Lx5MyZPngwvL6/SiJGIiKhCGjNmDLp06YJ27dpJlT969AiJiYlwdXWVlInFYrRs2RJRUVFlHSYREZUzMk+hMHXqVKSkpKB169bIyMhAixYtIBaLMXnyZIwdO7Y0YiQiIqpwtm3bhosXL+L8+fP56hITEwEARkZGUuVGRkaIiYkpdJuZmZmSAdEAIDU1tYSiJSKi8kTmJA8AfvrpJ8ycORM3b95Ebm4uatWqhUqVKpV0bERERBVSXFwcJkyYgKNHj0JVVbXQdiKRSGpZEIR8Zf8VGBgIf3//EouTiIjKp2LNkwcA6urqaNCgARo1asQEj4iISAbR0dFISkqCk5MTlJSUoKSkhIiICCxbtgxKSkqSO3h5d/TyJCUl5bu791++vr5ISUmRvOLi4kr1OIiI6OtU5Dt5I0aMKFK7P/74o9jBEBERfQvatm2La9euSZUNHz4cNWvWxLRp01CtWjUYGxsjPDwc9erVAwBkZWUhIiICCxcuLHS7YrEYYrG4VGMvr1bvP4Nf95/D42evAAC1LAzx46A26NSoBgBAqf2MAtdb8ENHTO6bf1RxIqKvWZGTvNDQUFhYWKBevXoQBKE0YyIiIqrQNDU14eDgIFWmoaEBfX19Sbm3tzcCAgJga2sLW1tbBAQEQF1dHQMHDpRHyOVeVQNt/OTeATZV9QEAG45eRK85m3Bh1VjYWxrhSZivVPvD5+7ih6Dd6NXcoaDNERF91Yqc5Hl6emLbtm14+PAhRowYgUGDBkFPT680YyMiIvpmTZ06Fenp6fDy8sKrV6/QuHFjHD16FJqamvIOrVxyc7aTWp4/whW/HjiLs7fiYG9pBGM96fO67/RNtKpjhWom/KxDROVPkZ/JCwkJQUJCAqZNm4b9+/fDzMwMffv2xZEjR3hnj4iI6AudOHECwcHBkmWRSAQ/Pz8kJCQgIyMDERER+e7+UfHk5OQi7PgVvMvIQpNaZvnqn716g0Nn72BEpwZyiI6I6MvJNLqmWCzGgAEDMGDAAMTExCA0NBReXl7Izs7GzZs3OQALERERfbWuPUpEs/GrkZH1HpXUVLBzziDUssg/kM2Go5egqS5Gz2b2coiSiOjLFWsKBeDDN4wikQiCICA3N7ckYyIiIiIqcTVMDRC9ehxev03H7sgbGLF4B4798kO+RC/0yAUMbFMHqirKcoqUiOjLyDSFQmZmJrZu3Yr27dujRo0auHbtGlasWIHY2FjexSMiIqKvmoqyEmyq6qNBDVMEuHdA7WomWL4nSqrNqWuPcCfuBUZ0aiinKImIvlyR7+R5eXlh27ZtMDc3x/Dhw7Ft2zbo6+uXZmxEREREpUYQBGRm5UiVrfsrGk62VVHH2kROURERfbkiJ3mrV6+Gubk5rKysEBERgYiIiALb7d69u8SCIyIiIioJM9ceQcdG1WFWWQdv0jMRdvwqIq4+wsGAYZI2qe8ysPPUNSwe1Vl+gRIRlYAid9ccMmQIWrduDR0dHWhraxf6klVISAisrKygqqoKJycnnDp1qtC2kZGRaNq0KfT19aGmpoaaNWtiyZIlMu+TiIiIvi1Jr99i2MIdqDUiCK5T1+Lc7TgcDBiG9k62kjZhJ65CEID+berIMVIioi8n02ToJS0sLAze3t4ICQlB06ZN8euvv6JTp064efMmzM3N87XX0NDA2LFjUbt2bWhoaCAyMhIeHh7Q0NDAqFGjSjw+IiIiqhh+m/TdZ9v80KURfujSqAyiISIqXTINvFLSgoKC4O7ujpEjR8LOzg7BwcEwMzPDqlWrCmxfr149DBgwAPb29rC0tMSgQYPQoUOHT979IyIiIiIi+pbILcnLyspCdHQ0XF1dpcpdXV0RFRVVyFrSLl26hKioKLRs2bI0QiQiIiIiIip3ij1P3pd68eIFcnJyYGQkPTeNkZEREhMTP7muqakpnj9/jvfv38PPzw8jR44stG1mZiYyMzMly6mpqV8WOBERERER0VdMrt01gQ+Tqv+XIAj5yj526tQpXLhwAatXr0ZwcDC2bt1aaNvAwECpgWHMzMxKJG4iIiIiIqKvkdzu5BkYGEBRUTHfXbukpKR8d/c+ZmVlBQBwdHTEs2fP4OfnhwEDBhTY1tfXFz4+PpLl1NRUJnpERERERFRhye1OnoqKCpycnBAeHi5VHh4eDhcXlyJvRxAEqe6YHxOLxdDS0pJ6ERERERERVVRyu5MHAD4+Phg8eDAaNGgAZ2dnrFmzBrGxsfD09ATw4S5cfHw8NmzYAABYuXIlzM3NUbNmTQAf5s37+eefMW7cOLkdAxERERER0ddErklev379kJycjLlz5yIhIQEODg44dOgQLCwsAAAJCQmIjY2VtM/NzYWvry8ePXoEJSUlWFtbY8GCBfDw8JDXIRAREREREX1V5JrkAYCXlxe8vLwKrPt4AvZx48bxrh0REREREdEnyH10TSIiIiIiIio5TPKIiIiIiIgqECZ5REREREREFQiTPCIiIiIiogqESR4REREREVEFwiSPiIiIiIioAmGSR0REREREVIEwySMiIiIiIqpAmOQRERERERFVIEzyiIiIiIiIKhAmeURERERERBUIkzwiIiIiIqIKhEkeERERERFRBcIkj4iIiIiIqAJhkkdERERERFSBMMkjIiIiIiKqQJjkERERERERVSBM8oiIiIiIiCoQJnlEREREREQVCJM8IiIiIiKiCoRJHhERERERUQWiJO8AiIiIiKj0Pbz1UN4h0BeIeRAj7xCoHGGSR0RERFSBZb9/D5FIhNWzV8k7FCoBgiDIOwQqB5jkEREREVVgykpKEAQBDfsPhaG5pbzDoWKKv3ENlw/uhkgkkncoVA4wySMiIiL6BpjXa4hqderLOwz6ApcP7pZ3CFROcOAVIiIiIiKiCoRJHhERERERUQXCJI+IiIiIiKgCYZJHRERERERUgcg9yQsJCYGVlRVUVVXh5OSEU6dOFdp29+7daN++PSpXrgwtLS04OzvjyJEjZRgtERERERHR102uSV5YWBi8vb0xc+ZMXLp0Cc2bN0enTp0QGxtbYPuTJ0+iffv2OHToEKKjo9G6dWu4ubnh0qVLZRw5ERERERHR10muUygEBQXB3d0dI0eOBAAEBwfjyJEjWLVqFQIDA/O1Dw4OlloOCAjAn3/+if3796NevXplETIRERERkdw8vPVQ3iFQMT15+KTM9iW3JC8rKwvR0dGYPn26VLmrqyuioqKKtI3c3Fy8efMGenp6pREiEREREdFXISf7PUQiEVbPXiXvUOgLiBREyMzMLPX9yC3Je/HiBXJycmBkZCRVbmRkhMTExCJt45dffsG7d+/Qt2/fQttkZmZKncjU1NTiBUxEREREJCeKykoQBAEN+w+FobmlvMOhYkhJTEDkhjUQi8Wlvi+5dtcEAJFIJLUsCEK+soJs3boVfn5++PPPP2FoaFhou8DAQPj7+39xnERERERE8mZeryGq1akv7zCoGJ7du4PIDWvKZF9yS/IMDAygqKiY765dUlJSvrt7HwsLC4O7uzt27NiBdu3afbKtr68vfHx8JMupqakwMzMrfuBEREREJBdx1y7h/M4tSLx3B+9evkCP2YGwdWkpqb8beQJXDu3Fs/t3kJ6agiErQ2FkXV2OERPJh9xG11RRUYGTkxPCw8OlysPDw+Hi4lLoelu3bsWwYcOwZcsWdOnS5bP7EYvF0NLSknoRERERUfmTnZGBylY2aOflU0h9Oqra10aL4aPLODKir4tcu2v6+Phg8ODBaNCgAZydnbFmzRrExsbC09MTwIe7cPHx8diwYQOADwnekCFDsHTpUjRp0kRyF1BNTQ3a2tpyOw4iIiIiKn3VGjqjWkPnQuvt23UC8OHZJ6JvmVyTvH79+iE5ORlz585FQkICHBwccOjQIVhYWAAAEhISpObM+/XXX/H+/XuMGTMGY8aMkZQPHToUoaGhZR0+ERERERHRV0fuA694eXnBy8urwLqPE7cTJ06UfkBERERERETlmNyeySMiIiIiIqKSxySPiIhIDgIDA9GwYUNoamrC0NAQPXr0wJ07d6TaCIIAPz8/VKlSBWpqamjVqhVu3Lghp4iJiKi8YJJHREQkBxERERgzZgzOnDmD8PBwvH//Hq6urnj37p2kzaJFixAUFIQVK1bg/PnzMDY2Rvv27fHmzRs5Rk5ERF87uT+TR0RE9C06fPiw1PK6detgaGiI6OhotGjRAoIgIDg4GDNnzkSvXr0AAOvXr4eRkRG2bNkCDw8PeYRNJFdZ6Wl49fSJZDklMQHPHtyFmqYWtAyNkf4mFalJiXiX/AIA8OrJhwH8NHT1UUlPXy4xk7TPzXUoCAKiNq3Flb/2IfNtKkxq2KPdmEkwsKwmx6jLH97JIyIi+gqkpKQAAPT09AAAjx49QmJiIlxdXSVtxGIxWrZsiaioKLnESCRviXdvY8OYYdgwZhgA4PiaZdgwZhgiN/wOAHhw+hQ2jBmGXbMnAwD2B87GhjHDcOXgHnmFTB/53FyH53ZswoU929DOyweDlq2Fhp4ets/wRlbauwLbU8F4J4+IiEjOBEGAj48PmjVrBgcHBwCQzAVrZGQk1dbIyAgxMTEFbiczMxOZmZmS5dTU1FKKmEg+zOvUx5TDhX/J4eDaBQ6uXcowIpLVp+Y6FAQB0Xu2o0n/oajerBUAoNOkWQgZ0BU3j4ejbpceZRdoOcc7eURERHI2duxYXL16FVu3bs1XJxKJpJYFQchXlicwMBDa2tqSl5mZWanES0RUGlISn+Ldq2RY1m8kKVNSUYGZY108vXVNjpGVP0zyiIiI5GjcuHHYt28fjh8/DlNTU0m5sbExgP/d0cuTlJSU7+5eHl9fX6SkpEhecXFxpRc4EVEJe/fqJQBAQ1dPqlxdVw/vXibLI6Ryi901iYiI5EAQBIwbNw579uzBiRMnYGVlJVVvZWUFY2NjhIeHo169egCArKwsREREYOHChQVuUywWQywWl0q8l+/GIi0trVS2TaXrTmyCvEMgktFHvRUEASikBwMVjEkeERGRHIwZMwZbtmzBn3/+CU1NTckdO21tbaipqUEkEsHb2xsBAQGwtbWFra0tAgICoK6ujoEDB5ZZnJmZmVAQiTAqeH+Z7ZNKh5AryDsEok/Ku4P37lUyKukbSMrTXr/Kd3ePPo1JHhERkRysWrUKANCqVSup8nXr1mHYsGEAgKlTpyI9PR1eXl549eoVGjdujKNHj0JTU7PM4hSLxcgVBExr1RwWOtpltl8qOWfj4rE++hJECrwTQl83beMq0NDVx+NL52FkUwMAkJOdjbhrl9FihJecoytfmOQRERHJgSB8/q6KSCSCn58f/Pz8Sj+gz2hnUw21TYzlHQYV0/roS/IOgQjA5+c6dOrZF2e3bYBuFTPoVjXF2W0boCRWRa3W7eUYdfnDJI+IiIiIiMpE4t3bCJs2VrJ8fM0yAIB9u87oPPlHNOozCO8zM/H3ip+R8fYNTGrWQp+AJVBR15BXyOUSkzwiIiIiIioTn5vrUCQSoengkWg6eGQZRlXxcAoFIiIiIiKiCoRJHhERERERUQXCJI+IiIiIiKgCYZJHRERERERUgXDgFSIiIqJvwLOH9+UdAn2BpNjH8g6ByhEmeUREREQVWHZODiASIfLXYHmHQiVAyP38HJtETPKIiIiIKjBlRUVAEDBzYHPUMDeRdzhUTFE3YrB6/1mIFETyDoXKASZ5RERERN+A9vVt0KyOrbzDoC+wev9ZeYdA5QQHXiEiIiIiIqpAmOQRERERERFVIEzyiIiIiIiIKhA+k0dEREREVE5wKozy61V8XJnti0keEREREdFXLvv9e06FURGIRMjMzCz13TDJIyIiIiL6yikrKXEqjHLuceIrzA4Nh1gsLvV9MckjIiIiIionOBVG+XXxXjxmh4aXyb7kPvBKSEgIrKysoKqqCicnJ5w6darQtgkJCRg4cCBq1KgBBQUFeHt7l12gRERERERE5YBck7ywsDB4e3tj5syZuHTpEpo3b45OnTohNja2wPaZmZmoXLkyZs6ciTp16pRxtERERERERF8/uSZ5QUFBcHd3x8iRI2FnZ4fg4GCYmZlh1apVBba3tLTE0qVLMWTIEGhra5dxtERERERERF8/uSV5WVlZiI6Ohqurq1S5q6sroqKi5BQVERERERFR+Sa3gVdevHiB/2vv3sOiKvc9gH+H2zDcVIarxUUECVO0cFtqiKaJ1m6jlptMU0TtIHl/DHNreTtJur3CSXxKEUzULMvMC4ohqMdSQcgSREUEL0OoqAgot3nPHx7XbgIV5bKY8ft5Hp6Htd71vus3887Mjx+zLjU1NXB0dNRZ7+joiMLCwkbbT0VFhc5lSktKShptbCIiIiIiopZG9qtrKhQKnWUhRK11DREZGYn58+c32nhEREREJI+DJ/Ow7JtDOHHmMjTFt7Ft3kgE9eoIAKiqrsHH65OQeCwH5wuL0crCHP1e9MSisYFoa2cjc+REzUu2wzXt7OxgbGxc61u7oqKiWt/uNcSsWbNw69Yt6efixea70zwRERG1DD/nX8TILd/Cd8XncFy4GLtPn9FpLyotw+QfdsF3xedwj1yGdzZtxfnrxTJFSw9SdrcSvh5OiJr4Zq228ooqZJy7gtkj++L46on4Zu4InLl0DUM++UqGSInkJds3eWZmZvDz80NSUhKGDBkirU9KSkJQUFCj7UepVDbLDQeJiIio5SqvqsTzjg4Y3qUzQr/drtMmhEDI1u9gamyE+OChsDYzw5qjxzEs4WscDBsLSzMzeYKmWgZ198ag7t51trWyNMfexaE661ZNfBM9Jq5GQdFNuDq0boYIiVoGWQ/XnD59Ot577z1069YNPXr0wBdffIGCggKEhYUBuPct3OXLl7FhwwapT2ZmJgCgtLQUV69eRWZmJszMzNCxY0c5HgIRERHpgX6e7dHPs32dbeeLbyD98hWk/lconnOwBwAsHjQAzy+PxvensjHyBd62SV/dKrsLhUKB1pbmcodC/+9hh9wC9/7psuCrn7B213HcKL2D7s+5IHrSP/C8e+Md6fc0kLXICw4OxvXr17FgwQJoNBp06tQJu3fvhpubG4B7Nz//6z3zXnjhBen39PR0bNq0CW5ubrhw4UJzhk5EREQGoqK6BgBgbvKfP4uMjYxgamyMYwWXWOTpqbuVVZi9di+Gv9oFNizyWoz7h9yGDHgRwxZsqtX+768PYuW2/0XsjLfg9awdFm06gIEzY5G1fjqsLXh0Xn3JfuGV8PBwhIeH19kWFxdXa50QookjIiIioqeJl50tXFrZ4NPkVPz7jYGwMDPFml+Oo6i0DH+UlsodHj2BquoavPvpFmiFwP9M+ofc4dCfPOyQWyEEor4/glnD+2CIfycAwPoPh6HtPxdhc3Im3v/7S80Zql6T9WboRERERHIzNTbGumFDkFt8A95LV8E9chmO5Begn6cHjI34p5K+qaquwTv/vRkXCm8gcXEov8XTI3mFN1BYfBuvdfOS1inNTNDbtx1+zip4SE/6K9m/ySMiIiKSWxdnJyS/PwYldytQWVMDO0sLDFy3AV3bOskdGj2G+wXeucvXsP/f46C2sZA7JHoMhcW3AQCOra101ju2sUL+HzdliEh/scgjIiIi+n825vfO+Tl/vRi/agrxUR9/mSOiPyu9U4Fzl69Ly3mFxcg8dwW2NhZoq7bGPxdsQsa5K/hh4SjUaIVUNNhaq2Bmyj979cVfb5l97z7a8sSir/hqJyIiIoNXVlmJvOIb0nLBzVv4vfAPtFap8GwrG+zIOg21hQWeaWWD7KKr+Hjvfgzy9kKf9u1kjJr+Ku3MZfSfsVZanrFmNwBg1Gsv4pNR/fDjz9kAAL+waJ1++5eOQ58uHs0XKD0RJ1trAEDhjVI4q/9zA/uim2VwbGP1oG5UBxZ5REREZPAyrxRi6FebpeW5SckAgGDfTogKegN/lJZiblIyrpaWwdHaCsM6P4/pvXvJFS49QJ8uHqhOWvTA9oe1UcvXzqkNnGytsT/9HF7wbAsAqKyqxsGTeYgcFyhzdPqFRR4REREZvF7urvjj45kPbB/fvRvGd+/WjBERPZ0edsitq0NrTB7SE59tToHXM2p4PqPGZ5tTYKE0xfBXu8oXtB5ikUdERERERM3iYYfcxka8jQ+De+NOZRUmRu/Ajdt30P25Z7HnszG8R95jYpFHRERERETN4lGH3CoUCswd1R9zR/VvxqgMD2/+QkREREREZEBY5BERERERERkQFnlEREREREQGhEUeERERERGRAWGRR0REREREZEBY5BERERERERkQFnlEREREREQGhEUeERERERGRAWGRR0REREREZEBY5BERERERERkQFnlEREREREQGxETuAIiIiIio6f2We1nuEKgBcgo0ADiP+uzMpWvNti8WeUREREQGrKqmBkYKYFLMPrlDoQbiPOo/I4UCFRUVTb4fFnlEREREBszU2BhaAUzr0R1ejg5yh9NkEs+cw46s0+jr0Q7DfJ+XO5xGd/TiZcSnZ3Ae9Vj+zVtYnHIISqWyyffFIo+IiIjoKRDQzh092reTO4wmkXFFg4wrGnR0sIennS3e6mxYxcF98ekZnEc9dlJTiMUph5plX7zwChERERHprbLKSoR//yOWvTEQrVXmcodDT4jz2LhY5BERERGR3vpoTxL6e7VHgIe73KFQA3AeGxeLPCIiIiLSS9//noWTmkLMfjVA7lCoATiPjY9FHhERERHpncu3SjBn309YPfhNmJvwMhP6ivPYNPhMEhEREZHe+VVTiGtl5XhtbZy0rkYI/Jx/EbHHT+Div2bA2IjfZ7R0nMemwSKPiIiIiPRO73ZuSPmvUJ11U3fshqedGhN7vsTCQE9wHpuG7M/a6tWr0a5dO5ibm8PPzw+HDj38sqKpqanw8/ODubk5PDw8sGbNmmaKlIiIqPk9bp4kelpYKZXwcbDX+bEwM0UblTl8HOzlDo/qifPYNGQt8r7++mtMnToVs2fPRkZGBvz9/TFo0CAUFBTUuX1eXh5ef/11+Pv7IyMjA//6178wefJkbNu2rZkjJyIianqPmyeJiIgAmYu85cuXY+zYsRg3bhx8fHywcuVKuLi4ICYmps7t16xZA1dXV6xcuRI+Pj4YN24cQkNDsXTp0maOnIiIqOk9bp4ketp9P+pd/Hdgf7nDoAbiPDacbEVeZWUl0tPTMWDAAJ31AwYMwJEjR+rs8/PPP9faPjAwEGlpaaiqqmqyWImIiJrbk+RJIiIiQMYLr1y7dg01NTVwdHTUWe/o6IjCwsI6+xQWFta5fXV1Na5duwZnZ+dafSoqKlBRUSEt37p1CwBQUlLSoPi1FeUN6k8N19A5rA/Os/yaep45x/Jr6Bzf7y+EaIxwWownyZNNkfNKS0sB3LsCXlll5ROPQ/I5c+06AOBUURFgYixzNPSkOI/679z1YgD3Plef9HO5vjlP9qtrKhQKnWUhRK11j9q+rvX3RUZGYv78+bXWu7i4PG6o1MK0Wil3BNQcOM+Gr7Hm+Pbt22jVqlXjDNaCPE6ebMqcN2PX3gaPQfKavT9F7hCoEXAe9V9AQMNv+v6onCdbkWdnZwdjY+Na/40sKiqq9V/L+5ycnOrc3sTEBGq1us4+s2bNwvTp06VlrVaL4uJiqNXqhxaThq6kpAQuLi64ePEibGxs5A6HmgDn+OnAeb5X9Ny+fRtt27aVO5RG9SR5kjnvyfB9pP84h/qPc1g/9c15shV5ZmZm8PPzQ1JSEoYMGSKtT0pKQlBQUJ19evTogR9//FFn3b59+9CtWzeYmprW2UepVEKpVOqsa926dcOCNyA2NjZ8Ixk4zvHT4WmfZ0P8Bu9J8iRzXsM87e8jQ8A51H+cw0erT86T9eqa06dPx9q1axEbG4vs7GxMmzYNBQUFCAsLA3DvP5KjRo2Stg8LC0N+fj6mT5+O7OxsxMbGYt26dZgxY4ZcD4GIiKjJPCpPEhER1UXWc/KCg4Nx/fp1LFiwABqNBp06dcLu3bvh5uYGANBoNDr3AmrXrh12796NadOm4fPPP0fbtm0RFRWFt956S66HQERE1GQelSeJiIjqIvuFV8LDwxEeHl5nW1xcXK11AQEBOHHiRBNHZfiUSiXmzp1b67AeMhyc46cD59nwPSxPUuPg+0j/cQ71H+ewcSmEoV1zmoiIiIiI6Ckm6zl5RERERERE1LhY5BERERERERkQFnktSJ8+fTB16lTZ9h8SEoLBgwe3mHio8f11jqlpCSHw/vvvw9bWFgqFApmZmXKH9NhSUlKgUChw8+ZNuUOhp4zcOYg5Ub8x3zU+5jT9IvuFV6jl+u677x54/0HST6tWrUJjnoYbFxeHqVOnPhUflk8iMTERcXFxSElJgYeHB+zs7OQOiYieEHOifmG+a3zMafqFRR49kK2trdwhUCMzxBtGt2S5ublwdnZGz5495Q6FiBqIOVG/MN81PuY0/cLDNVuY6upqTJw4Ea1bt4ZarcacOXOk/0Rt3LgR3bp1g7W1NZycnPDuu++iqKhI6nvjxg2MGDEC9vb2UKlU8PLywvr166X2y5cvIzg4GG3atIFarUZQUBAuXLjwwFj+emiKu7s7Fi1ahNDQUFhbW8PV1RVffPGFTp/H3cfT6ttvv0Xnzp2hUqmgVqvRv39/lJWV1Xk40ODBgxESEiItV1RUICIiAi4uLlAqlfDy8sK6deuk9lOnTuGNN96AjY0NrK2t4e/vj9zcXAB1H340efJkREREwNbWFk5OTpg3b57O/m/evIn3338fjo6OMDc3R6dOnbBz506kpKRgzJgxuHXrFhQKBRQKRa2+T7OQkBBMmjQJBQUFUCgUcHd3R0VFBSZPngwHBweYm5vjlVdewfHjx3X6PWz+6vP6WL16Nby8vGBubg5HR0e8/fbbUpsQAkuWLIGHhwdUKhW6dOmCb7/9Vme83bt3o0OHDlCpVOjbty/fvyQr5kT9x3xnGJjT9A+LvBYmPj4eJiYmOHr0KKKiorBixQqsXbsWAFBZWYmFCxfi119/xfbt25GXl6fzRvj444+RlZWFPXv2IDs7GzExMdJX6eXl5ejbty+srKxw8OBBHD58GFZWVhg4cCAqKyvrHd+yZcvQrVs3ZGRkIDw8HBMmTMDp06cbdR+GTqPRYPjw4QgNDUV2djZSUlIwdOjQeh9WMmrUKGzZsgVRUVHIzs7GmjVrYGVlBeDeHxS9e/eGubk5kpOTkZ6ejtDQUFRXVz9wvPj4eFhaWuLo0aNYsmQJFixYgKSkJACAVqvFoEGDcOTIEWzcuBFZWVn47LPPYGxsjJ49e2LlypWwsbGBRqOBRqPBjBkzGv4EGYhVq1ZhwYIFePbZZ6HRaHD8+HFERERg27ZtiI+Px4kTJ+Dp6YnAwEAUFxcDeLL5+7O0tDRMnjwZCxYsQE5ODhITE9G7d2+pfc6cOVi/fj1iYmJw6tQpTJs2DSNHjkRqaioA4OLFixg6dChef/11ZGZmYty4cfjoo48a/8khqifmRP3GfGc4mNP0kKAWIyAgQPj4+AitViutmzlzpvDx8alz+2PHjgkA4vbt20IIId58800xZsyYOrddt26d8Pb21hm7oqJCqFQqsXfvXiGEEKNHjxZBQUE68UyZMkVadnNzEyNHjpSWtVqtcHBwEDExMfXeBwmRnp4uAIgLFy7Uavvrcy6EEEFBQWL06NFCCCFycnIEAJGUlFTn2LNmzRLt2rUTlZWVdbbXNcevvPKKzjZ/+9vfxMyZM4UQQuzdu1cYGRmJnJycOsdbv369aNWqVZ1tJMSKFSuEm5ubEEKI0tJSYWpqKhISEqT2yspK0bZtW7FkyRIhxKPn71Gvj23btgkbGxtRUlJSq29paakwNzcXR44c0Vk/duxYMXz4cGn/dX0GARA3btx4nIdO1GDMifqP+c6wMKfpF36T18K8/PLLUCgU0nKPHj1w9uxZ1NTUICMjA0FBQXBzc4O1tTX69OkDACgoKAAATJgwAVu2bEHXrl0RERGBI0eOSOOkp6fj3LlzsLa2hpWVFaysrGBra4u7d+9KX5vXh6+vr/S7QqGAk5OTdHhMY+3D0HXp0gX9+vVD586dMWzYMHz55Ze4ceNGvfpmZmbC2NgYAQEBD2z39/d/rIsD/HlOAcDZ2Vma08zMTDz77LPo0KFDvcejuuXm5qKqqgq9evWS1pmamqJ79+7Izs4G8GTz92evvfYa3Nzc4OHhgffeew8JCQkoLy8HAGRlZeHu3bt47bXXpPenlZUVNmzYIL0/s7Oz6/wMIpILc6J+Y74zXMxpLR8vvKIn7t69iwEDBmDAgAHYuHEj7O3tUVBQgMDAQOmwj0GDBiE/Px+7du3C/v370a9fP3zwwQdYunQptFot/Pz8kJCQUGtse3v7esfx1zeqQqGAVqsFgEbbh6EzNjZGUlISjhw5gn379iE6OhqzZ8/G0aNHYWRkVOswlqqqKul3lUr10LEf1V6Xh83pk4xHdbs/r39ONvfX31/3qOf7Ua8Pa2trnDhxAikpKdi3bx8++eQTzJs3D8ePH5fmdNeuXXjmmWd0xlAqlToxErV0zIn6gfnOcDGntXz8Jq+F+eWXX2ote3l54fTp07h27Ro+++wz+Pv747nnntM5wfw+e3t7hISEYOPGjVi5cqV0EviLL76Is2fPwsHBAZ6enjo/jXUFqubYh6FQKBTo1asX5s+fj4yMDJiZmeH777+Hvb09NBqNtF1NTQ1+//13ablz587QarXS8eZ/5evri0OHDul8SDaEr68vLl26hDNnztTZbmZmhpqamkbZl6Hz9PSEmZkZDh8+LK2rqqpCWloafHx8ADx6/h71+gAAExMT9O/fH0uWLMHJkydx4cIFJCcno2PHjlAqlSgoKKj1/nRxcQEAdOzYsc7PICK5MCfqP+Y7w8Sc1vKxyGthLl68iOnTpyMnJwebN29GdHQ0pkyZAldXV5iZmSE6Ohrnz5/Hjh07sHDhQp2+n3zyCX744QecO3cOp06dws6dO6U32ogRI2BnZ4egoCAcOnQIeXl5SE1NxZQpU3Dp0qVGib059mEIjh49ikWLFiEtLQ0FBQX47rvvcPXqVfj4+ODVV1/Frl27sGvXLpw+fRrh4eE69+Rxd3fH6NGjERoaKl1oICUlBVu3bgUATJw4ESUlJXjnnXeQlpaGs2fP4quvvkJOTs4TxRoQEIDevXvjrbfeQlJSEvLy8rBnzx4kJiZK8ZSWluKnn37CtWvXpMMoqDZLS0tMmDABH374IRITE5GVlYXx48ejvLwcY8eOBfDo+XvU62Pnzp2IiopCZmYm8vPzsWHDBmi1Wnh7e8Pa2hozZszAtGnTEB8fj9zcXGRkZODzzz9HfHw8ACAsLAy5ubnSZ9CmTZsQFxfX3E8VkYQ5Ub8x3xku5jQ9INfJgFRbQECACA8PF2FhYcLGxka0adNGfPTRR9IJo5s2bRLu7u5CqVSKHj16iB07dggAIiMjQwghxMKFC4WPj49QqVTC1tZWBAUFifPnz0vjazQaMWrUKGFnZyeUSqXw8PAQ48ePF7du3RJC1O8k8xUrVujE3KVLFzF37tx674OEyMrKEoGBgcLe3l4olUrRoUMHER0dLYS4d9LyhAkThK2trXBwcBCRkZE6JyELIcSdO3fEtGnThLOzszAzMxOenp4iNjZWav/111/FgAEDhIWFhbC2thb+/v4iNzdXCPHoORZC1Nrf9evXxZgxY4RarRbm5uaiU6dOYufOnVJ7WFiYUKvVAoDOa4F0T1IX4t7cTZo0SXp/9OrVSxw7dkynz8Pm71Gvj0OHDomAgADRpk0boVKphK+vr/j666+lsbVarVi1apXw9vYWpqamwt7eXgQGBorU1FRpmx9//FF4enoKpVIp/P39RWxs7FNzkjq1LMyJ+o/5zrAwp+kXhRBP+QGrREREREREBoSHaxIRERERERkQFnlEREREREQGhEUeERERERGRAWGRR0REREREZEBY5BERERERERkQFnlEREREREQGhEUeERERERGRAWGRR0REREREZEBY5BEZiJSUFCgUCty8eVPuUCQhISEYPHiw3GEQEZGBYc4jejgWeUSNICQkBAqFQvpRq9UYOHAgTp48KXdoREREjYo5j6jlY5FH1EgGDhwIjUYDjUaDn376CSYmJvj73/8ud1iyqKmpgVarlTsMIiJqIsx5/8GcRy0RizyiRqJUKuHk5AQnJyd07doVM2fOxMWLF3H16lUAwOXLlxEcHIw2bdpArVYjKCgIFy5ckPrfP8xj6dKlcHZ2hlqtxgcffICqqippm4qKCkRERMDFxQVKpRJeXl5Yt26dThzp6eno1q0bLCws0LNnT+Tk5Eht8+bNQ9euXREbGwtXV1dYWVlhwoQJqKmpwZIlS+Dk5AQHBwd8+umnOmMuX74cnTt3hqWlJVxcXBAeHo7S0lKpPS4uDq1bt8bOnTvRsWNHKJVK5Ofn13qO0tPT6xyfiIj0C3Mecx61bCzyiJpAaWkpEhIS4OnpCbVajfLycvTt2xdWVlY4ePAgDh8+DCsrKwwcOBCVlZVSvwMHDiA3NxcHDhxAfHw84uLiEBcXJ7WPGjUKW7ZsQVRUFLKzs7FmzRpYWVnp7Hv27NlYtmwZ0tLSYGJigtDQUJ323Nxc7NmzB4mJidi8eTNiY2Pxxhtv4NKlS0hNTcXixYsxZ84c/PLLL1IfIyMjREVF4ffff0d8fDySk5MRERGhM255eTkiIyOxdu1anDp1Cg4ODjrtKSkp6NevH+bPn4/Zs2c39CkmIqIWgjmPOY9aIEFEDTZ69GhhbGwsLC0thaWlpQAgnJ2dRXp6uhBCiHXr1glvb2+h1WqlPhUVFUKlUom9e/dKY7i5uYnq6mppm2HDhong4GAhhBA5OTkCgEhKSqozhgMHDggAYv/+/dK6Xbt2CQDizp07Qggh5s6dKywsLERJSYm0TWBgoHB3dxc1NTXSOm9vbxEZGfnAx7t161ahVqul5fXr1wsAIjMzs9bzEhQUJLZv3y6sra3Fpk2bHjgmERHpB+Y85jxq+UzkKi6JDE3fvn0RExMDACguLsbq1asxaNAgHDt2DOnp6Th37hysra11+ty9exe5ubnS8vPPPw9jY2Np2dnZGb/99hsAIDMzE8bGxggICHhoHL6+vjr9AaCoqAiurq4AAHd3d504HB0dYWxsDCMjI511RUVF0vKBAwewaNEiZGVloaSkBNXV1bh79y7KyspgaWkJADAzM9PZ931Hjx7Fzp078c0332DIkCEPjZ2IiPQDcx5zHrVsLPKIGomlpSU8PT2lZT8/P7Rq1QpffvkltFot/Pz8kJCQUKufvb299LupqalOm0KhkE7mVqlU9Yrjz2MoFAoA0DkhvK59PGy/+fn5eP311xEWFoaFCxfC1tYWhw8fxtixY3XOnVCpVNL+/qx9+/ZQq9XSITJmZmb1ehxERNRyMecx51HLxnPyiJqIQqGAkZER7ty5gxdffBFnz56Fg4MDPD09dX5atWpVr/E6d+4MrVaL1NTUJo5cV1paGqqrq7Fs2TK8/PLL6NChA65cuVLv/nZ2dkhOTkZubi6Cg4N1kiQRERkG5rx7mPOopWCRR9RIKioqUFhYiMLCQmRnZ2PSpEkoLS3Fm2++iREjRsDOzg5BQUE4dOgQ8vLykJqaiilTpuDSpUv1Gt/d3R2jR49GaGgotm/fjry8PKSkpGDr1q1N+rjat2+P6upqREdH4/z58/jqq6+wZs2axxrDwcEBycnJOH36NIYPH47q6uomipaIiJoDc96DMedRS8Aij6iRJCYmwtnZGc7OznjppZdw/PhxfPPNN+jTpw8sLCxw8OBBuLq6YujQofDx8UFoaCju3LkDGxubeu8jJiYGb7/9NsLDw/Hcc89h/PjxKCsra8JHBXTt2hXLly/H4sWL0alTJyQkJCAyMvKxx3FyckJycjJ+++03jBgxAjU1NU0QLRERNQfmvIdjziO5KYQQQu4giIiIiIiIqHHwmzwiIiIiIiIDwiKPiIiIiIjIgLDIIyIiIiIiMiAs8oiIiIiIiAwIizwiIiIiIiIDwiKPiIiIiIjIgLDIIyIiIiIiMiAs8oiIiIiIiAwIizwiIiIiIiIDwiKPiIiIiIjIgLDIIyIiIiIiMiAs8oiIiIiIiAzI/wG2RAO4Kxan3QAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 900x450 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Add mean similarity to each benchmark\n",
    "for benchmark in benchmarks:\n",
    "    benchmark[\"mean_similarity\"] = benchmark[\"data\"][\"Similarity\"].mean()\n",
    "\n",
    "# Sort benchmarks by mean similarity\n",
    "benchmarks.sort(key=lambda x: x[\"mean_similarity\"], reverse=False)\n",
    "\n",
    "\n",
    "# Plot the mean similarity for each benchmark\n",
    "mean_similarities = [benchmark[\"mean_similarity\"] for benchmark in benchmarks]\n",
    "\n",
    "fig, axs = plt.subplots(1, 2, figsize=(9, 4.5))\n",
    "axs[0].bar(benchmark_names, mean_similarities)\n",
    "for i, v in enumerate(mean_similarities):\n",
    "    axs[0].text(i, v + 0.01, str(round(v, 2)), ha=\"center\", va=\"bottom\")\n",
    "axs[0].set_xlabel(\"Benchmark\")\n",
    "axs[0].set_ylabel(\"Mean Similarity\")\n",
    "axs[0].set_title(\"Mean Similarity\")\n",
    "\n",
    "# Plot the distribution of semantic similarity scores across quartiles\n",
    "\n",
    "# -- Create a dataframe with the quartile data for all benchmarks combined\n",
    "quartiles = [0.25, 0.5, 0.75]\n",
    "quartile_data = np.array([])\n",
    "quartile_names = np.array([])\n",
    "for benchmark in benchmarks:\n",
    "    df = benchmark[\"data\"]\n",
    "    semscores = np.array(df[\"Similarity\"].values)\n",
    "    quartile_data = np.append(quartile_data, np.digitize(semscores, quartiles))\n",
    "    quartile_names = np.append(quartile_names, [benchmark[\"name\"]] * len(semscores))\n",
    "\n",
    "df = pd.DataFrame({\"name\": quartile_names, \"quartile\": quartile_data})\n",
    "\n",
    "# -- Plot the distribution of semantic similarity scores across quartiles\n",
    "hue_order = list(df[\"quartile\"].unique()) # Best performers on top\n",
    "hue_order.sort(reverse=True)\n",
    "ax = sns.histplot(\n",
    "    df,\n",
    "    x=\"name\",\n",
    "    hue=\"quartile\",\n",
    "    multiple=\"stack\",\n",
    "    hue_order=hue_order,\n",
    "    palette=[\"#a2d9a4\", \"#47a0b3\", \"#fca55d\", \"#e2514a\"],\n",
    ")\n",
    "ax.set_xlabel(\"Benchmark\")\n",
    "ax.set_ylabel(\"Quartile\")\n",
    "ax.set_title(\"Distribution of Semantic Similarity Scores\")\n",
    "ax.legend(\n",
    "    title=\"Quartile\", labels=[\"Poor\", \"Needs Improvement\", \"Acceptable\", \"Excellent\"]\n",
    ")\n",
    "\n",
    "# -- Add the counts to the bars for easy reference\n",
    "for container in ax.containers:\n",
    "    labels = [\n",
    "        f\"{round(v.get_height())}\" if v.get_height() > 0 else \"\" for v in container\n",
    "    ]\n",
    "    ax.bar_label(container, labels=labels, label_type=\"center\")\n",
    "\n",
    "plt.tight_layout()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Observations\n",
    "\n",
    "* The `succinct` agent represents a significant improvement over the baseline, with a mean similarity of `0.83` and a distribution of semantic similarity scores across quartiles that is much closer to the top performer.\n",
    "* However, the `focused` agent out-performs the `succinct` agent, with a mean similarity of `0.85`, with a handful of better answers.\n",
    "* The performance is close enough that it may be worth while to look at the number of answers that would be considered correct across a range of possible thresholds. \n",
    "\n",
    "#### Number of answers with a semantic similarity score >= a given threshold\n",
    "\n",
    "* Note: that I show every possible threshold starting at 0.01, but in practice it's unlikely that a threshold of 0.01 would be used as a threshold for acceptable answers."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 208,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAHFCAYAAADrBB1NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMmUlEQVR4nOzddXgU19vG8e9m4yEOJCFYcCdIkeBenLZAgf4KFIqUtkhatBRri1uhaFukpbi1uBR3d9dgIWgSiCfn/SNvtiwJkIUkk02ez3XtBTs7cmfWnj1z5oxOKaUQQgghhBDJYqF1ACGEEEIIcyLFkxBCCCGECaR4EkIIIYQwgRRPQgghhBAmkOJJCCGEEMIEUjwJIYQQQphAiichhBBCCBNI8SSEEEIIYQIpnoQQQgghTGD2xdO8efPQ6XTY2tpy8+bNRI/XrFmTEiVKaJAMduzYgU6nY/ny5Zps31Q3btygcePGuLm5odPp6N27t9aRMi2dTsewYcMM98+dO8ewYcO4ceNGonm1fI2bg5EjR7J69epE0xPenzt27EiTHAmfVUk9hym5zo4dO5I3b94U20aCmjVrUrNmTcP9sLAwhg0blmb7T5ju7t27DBs2jBMnTiR6rGPHjmTJkiXtQ71CauTJmzcvHTt2fON8b/NZYPn2sdKXyMhIBg8ezJ9//ql1FLPVp08fDh48yJw5c/D09MTLy0vrSJnW/v37yZkzp+H+uXPnGD58ODVr1kyVL8aMbOTIkbRs2ZIWLVoYTS9btiz79++nWLFiaZKjcePG7N+/P0XfV6mxzleZPn260f2wsDCGDx8OYFRUifTj7t27DB8+nLx58+Lr66t1nAwlwxRP77//PgsXLuTbb7+ldOnSWsdJU+Hh4dja2qLT6d5pPWfOnKFChQqJvmQys7CwMOzt7dN8u5UqVUrzbWY2Tk5Oabqfs2XLRrZs2dL9Ol+W8B5IqyIzPUiJz9Tw8HAePnxIrly5UjBZ+hAbG0tMTAw2NjZaR9GM2R+2S9CvXz/c3d3p37//a+e7ceMGOp2OefPmJXrs5UMlw4YNQ6fTcerUKVq1aoWzszNubm74+/sTExPDxYsXef/993F0dCRv3ryMHTs2yW1GRETg7++Pp6cndnZ21KhRg+PHjyea78iRIzRr1gw3NzdsbW0pU6YMS5cuNZonoZl+8+bNdOrUiWzZsmFvb09kZOQr/+aAgAD+97//kT17dmxsbChatCgTJkwgLi4O+K/J8sqVK2zYsAGdTvfGwwvTpk2jevXqZM+eHQcHB0qWLMnYsWOJjo42mi/hkNLhw4epVq0a9vb25MuXj9GjRxu2DxAXF8ePP/5I4cKFsbOzw8XFhVKlSvHzzz8DcPbsWXQ6HcuWLTMsc/ToUXQ6HcWLFzfaZrNmzShXrpzRtCVLllC5cmUcHBzIkiULDRo0SPQcJDQbnz59mvr16+Po6EidOnUAOH78OE2aNDHswxw5ctC4cWNu37792n1kYWFBUFCQYdqECRPQ6XR8+eWXRn+7q6sr33zzjWHai6/FefPm0apVKwBq1apleH5efg2/aR+/yrJly6hYsSLOzs6GZTt16mQ0T0hICN9++y0+Pj5YW1vj7e1N7969ef78udF8Op2Or776irlz5xqey/Lly3PgwAGUUowbNw4fHx+yZMlC7dq1uXLlitHyW7ZsoXnz5uTMmRNbW1sKFChAt27dePjwodF8Ce/Ns2fP0rZtW5ydnfHw8KBTp04EBwcb5Xn+/Dnz58837LeEVpJXNdUfPHiQpk2b4u7ujq2tLfnz53/jIew3vX4h6UNsCe+P/fv34+fnh52dHXnz5mXu3LkArFu3jrJly2Jvb0/JkiXZuHGj0XaTeyjQ1Pfrrl278PPzw97e3vBaePGw3Y0bNwxF2/Dhww37tmPHjuzevRudTseiRYsS5fjjjz/Q6XQcPnz4lVnDwsIMrzVbW1vc3NwoX758ovUl53nas2cPderUwdHREXt7e/z8/Fi3bl2S+/BVn6nJ+exIyv3798mTJw/Vq1dnxowZiV7DqW3Hjh289957AHz22WeG5+jF7ziAK1eu0KhRI7JkyUKuXLn45ptvjL5PEr4zx44dy48//oiPjw82NjZs374dSN73VnKf0+TkAXj8+DE9evTA29sba2tr8uXLx3fffffa78EEFy5c4P3338fe3p6sWbPSvXt3QkNDk7VPjSgzN3fuXAWow4cPq59//lkB6t9//zU8XqNGDVW8eHHD/evXrytAzZ07N9G6ADV06FDD/aFDhypAFS5cWP3www9qy5Ytql+/fgpQX331lSpSpIiaMmWK2rJli/rss88UoFasWGFYfvv27QpQuXLlUs2bN1dr1qxRCxYsUAUKFFBOTk7q6tWrhnm3bdumrK2tVbVq1dSSJUvUxo0bVceOHRNlTfh7vb29VdeuXdWGDRvU8uXLVUxMTJL7JygoSHl7e6ts2bKpmTNnqo0bN6qvvvpKAeqLL75QSikVHBys9u/frzw9PVWVKlXU/v371f79+1VERMQr93ufPn3UjBkz1MaNG9W2bdvUpEmTVNasWdVnn31mNF+NGjWUu7u7KliwoJo5c6basmWL6tGjhwLU/PnzDfONGjVK6fV6NXToUPXvv/+qjRs3qsmTJ6thw4YZ5vHy8lJdu3Y13B89erSys7NTgLpz545SSqno6Gjl5OSk+vXrZ5jvp59+UjqdTnXq1EmtXbtWrVy5UlWuXFk5ODios2fPGubr0KGDsrKyUnnz5lWjRo1S//77r9q0aZN69uyZcnd3V+XLl1dLly5VO3fuVEuWLFHdu3dX586de+U+unDhggLUwoULDdPef/99ZWdnpwoWLGiYdvDgQQWo9evXG6a9+FoMCgpSI0eOVICaNm2a4fkJCgoyaR8nZd++fUqn06k2bdqo9evXq23btqm5c+eqTz/91DDP8+fPla+vr8qaNauaOHGi2rp1q/r555+Vs7Ozql27toqLizPKnSdPHuXn56dWrlypVq1apQoVKqTc3NxUnz59VPPmzdXatWvVX3/9pTw8PFSpUqWMlp8xY4YaNWqU+ueff9TOnTvV/PnzVenSpVXhwoVVVFSUYb4X35tDhgxRW7ZsURMnTlQ2NjZGr8H9+/crOzs71ahRI8N+S3jOE96f27dvN8y/ceNGZWVlpUqVKqXmzZuntm3bpubMmaPatGnz2v2YnNdvwnv3+vXrhmkJz13hwoXV77//rjZt2qSaNGmiADV8+HBVsmRJtWjRIrV+/XpVqVIlZWNjY3itv2qdHTp0UHny5DHKZ8r71c3NTeXKlUtNnTpVbd++Xe3cudPwWI0aNZRSSkVERKiNGzcqQHXu3Nmwb69cuaKUUqpMmTKqSpUqifbTe++9p957773X7stu3bope3t7NXHiRLV9+3a1du1aNXr0aDV16lTDPMl5nnbs2KGsrKxUuXLl1JIlS9Tq1atV/fr1lU6nU4sXL060D5P6TE3uZ0dSYmJi1OrVq1WbNm2Ug4ODsrS0VA0bNlR//PGHCgkJee2y0dHRybq9+N55WXBwsOFvGzx4sOE5unXrllIq/nVibW2tihYtqsaPH6+2bt2qhgwZonQ6nRo+fLhhPQnfmd7e3qpWrVpq+fLlavPmzer69evJ/t5KznOa3Dzh4eGqVKlSysHBQY0fP15t3rxZff/998rS0lI1atTIaB/kyZNHdejQwXA/MDBQZc+eXXl7e6u5c+eq9evXq08++UTlzp070WfBm2So4ikyMlLly5dPlS9f3vCiSoniacKECUbz+fr6KkCtXLnSMC06Olply5ZNffjhh4ZpCR/OZcuWNXqR37hxQ1lZWanPP//cMK1IkSKqTJkyKjo62mhbTZo0UV5eXio2Ntbo723fvn2y9s+AAQMUoA4ePGg0/YsvvlA6nU5dvHjRMC1PnjyqcePGyVrvi2JjY1V0dLT6448/lF6vV48fPzY8VqNGjSS3X6xYMdWgQQOjv9PX1/e12/nf//6n8uXLZ7hft25d1aVLF+Xq6mooEvbu3asAtXnzZqWUUgEBAcrS0lJ9/fXXRusKDQ1Vnp6eqnXr1oZpHTp0UICaM2eO0bxHjhxRgFq9enVydoeRnDlzqk6dOimllIqMjFQODg6qf//+ClA3b95USsUXd1ZWVurZs2eG5V5+LS5btuyVb+7k7uOkjB8/XgHq6dOnr5xn1KhRysLCQh0+fNho+vLly5Ms+jw9PY3+ltWrVytA+fr6Gr0PJk+erAB16tSpJLcbFxenoqOj1c2bNxWg/v77b8NjCe/NsWPHGi3To0cPZWtra7QdBwcHow/QBEkVT/nz51f58+dX4eHhr9wfSUnO6/dVxROgjhw5Ypj26NEjpdfrlZ2dnVGhdOLECQWoKVOmvHadSRVPL0rO+/XFH6AvPpZQPCml1IMHDxK9Tl/Odfz4ccO0Q4cOJaugL1GihGrRosVr50nO81SpUiWVPXt2FRoaapgWExOjSpQooXLmzGl4jbzqM9WUz443ef78uVqyZIn64IMPlK2trbKzs1OtWrVSK1euTPQjNeE7Kjm3N33ZHz58+JXfdwmfd0uXLjWa3qhRI1W4cOFEefLnz2/0A0ap5H9vJec5TW6emTNnJjnfmDFjjD77lUpcPPXv31/pdDp14sQJo2Xr1atncvGUYQ7bAVhbW/Pjjz9y5MiRRM2G76JJkyZG94sWLYpOp6Nhw4aGaZaWlhQoUCDJM/7atWtndOw8T548+Pn5GZo9r1y5woULF/jkk08AiImJMdwaNWrEvXv3uHjxotE6P/roo2Rl37ZtG8WKFaNChQpG0zt27IhSim3btiVrPS87fvw4zZo1w93dHb1ej5WVFe3btyc2NpZLly4Zzevp6Zlo+6VKlTLaVxUqVODkyZP06NGDTZs2ERISkmibderU4dq1a1y/fp2IiAj27NnD+++/T61atdiyZQsAW7duxcbGhqpVqwKwadMmYmJiaN++vdF+tbW1pUaNGkmeXfHyvi1QoACurq7079+fmTNncu7cuWTvpzp16rB161YA9u3bR1hYGP7+/mTNmtUoc8JhgbeVnH2clIRm/datW7N06VLu3LmTaJ61a9dSokQJfH19jfZhgwYNkjzsVatWLaO/pWjRogA0bNjQ6H2QMP3FjEFBQXTv3p1cuXJhaWmJlZUVefLkAeD8+fOJsjVr1izR3xwREWF0qDS5Ll26xNWrV+ncuTO2trYmLZuc1++reHl5GR1mdnNzI3v27Pj6+pIjRw7D9KT2V3KZ8n51dXWldu3aJm/jRW3btiV79uxMmzbNMG3q1Klky5aNjz/++LXLVqhQgQ0bNjBgwAB27NhBeHi40ePJeZ6eP3/OwYMHadmypdEZXHq9nk8//ZTbt2+/8TP1bT47XsXe3p7WrVuzcuVK7t+/z6xZs3j+/DmtW7fGw8ODvXv3GubNkSMHhw8fTtbt5e4JptLpdDRt2tRo2qs+N5o1a4aVlZXhvinfW296Tk3Js23bNhwcHGjZsqXRfAln1f3777+v/Hu3b99O8eLFE/WLbteu3SuXeZUMVTwBtGnThrJly/Ldd98lOp7/ttzc3IzuW1tbY29vn+iNa21tTURERKLlPT09k5z26NEjIP7YOMC3336LlZWV0a1Hjx4AiY6XJ/fsmkePHiU5b8KHckIGUwQEBFCtWjXu3LnDzz//zO7duzl8+LDhg/LlN4a7u3uiddjY2BjNN3DgQMaPH8+BAwdo2LAh7u7u1KlThyNHjhjmqVu3LhBfbOzZs4fo6Ghq165N3bp1DW+YrVu3UqVKFezs7ID/9u17772XaN8uWbIk0X61t7fHycnJaJqzszM7d+7E19eXQYMGUbx4cXLkyMHQoUPf+BqrW7cuAQEBXL58ma1bt1KmTBmyZ89O7dq12bp1K+Hh4ezbt8/wt72t5OzjpFSvXp3Vq1cbviRy5sxJiRIljPoi3L9/n1OnTiXaf46OjiilEu3DpN4vr5ue8J6Ji4ujfv36rFy5kn79+vHvv/9y6NAhDhw4ACR+XSX1dyd0YH3T352UBw8eABid5ZhcyXn9vsrL+wXi982b9ldymfp+TYkz92xsbOjWrRsLFy7k6dOnPHjwgKVLl/L555+/sZPxlClT6N+/P6tXr6ZWrVq4ubnRokULLl++DCTveXry5AlKKZM++16e19TPjuR6/vw5T58+JTg4mNjYWBwdHQ3PLcQ/z76+vsm6veup/Ul9j9nY2CT5GnvV/knO99abnlNT8jx69AhPT89EnfmzZ8+OpaXla7/TEpZ9WVLT3iTDnG2XQKfTMWbMGOrVq8fs2bMTPZ7wxLzcsextiojkCgwMTHJawgd/1qxZgfgP4A8//DDJdRQuXNjofnLPAnF3d+fevXuJpt+9e9do26ZYvXo1z58/Z+XKlYZWASDJsUSSy9LSEn9/f/z9/Xn69Clbt25l0KBBNGjQgFu3bmFvb0/OnDkpVKgQW7duJW/evJQvXx4XFxfq1KlDjx49OHjwIAcOHDCcPv3i37d8+XKjrK/yqv1asmRJFi9ejFKKU6dOMW/ePEaMGIGdnR0DBgx45foSOpxv3bqVLVu2UK9ePcP0wYMHs2vXLiIjI9+5eHoXzZs3p3nz5kRGRnLgwAFGjRpFu3btyJs3L5UrVyZr1qzY2dkxZ86cJJd/m9dQUs6cOcPJkyeZN28eHTp0MEx/uVN5aknoAP26kwBeJTmvX62Y+n5917N2E3zxxReMHj2aOXPmEBERQUxMDN27d3/jcg4ODgwfPpzhw4dz//59Q4tF06ZNuXDhQrKeJ1dXVywsLEz67Hv57zb1s+N1Hj58yIoVK1i8eDG7du3C1dWVjz76iJ9++onq1asbbfvGjRv4+Pgka73bt29Ps2EiXrV/kvO99abn1BTu7u4cPHgQpZRRpqCgIGJiYl77eeTu7v7K72NTZbjiCeJ/7derV48RI0YkOk3Uw8MDW1tbTp06ZTT977//TrU8ixYtwt/f3/BE37x5k3379tG+fXsg/gVWsGBBTp48yciRI1N023Xq1GHUqFEcO3aMsmXLGqYnnPVSq1Ytk9eZ8He8+AtSKcWvv/767oEBFxcXWrZsyZ07d+jduzc3btwwnCZdt25dli5dSq5cuWjcuDEAhQoVInfu3AwZMoTo6GijQqRBgwZYWlpy9erVZB/qfB2dTkfp0qWZNGkS8+bN49ixY6+d38vLi2LFirFixQqOHj1qeH7r1atHt27dmDhxIk5OTobDZ6/yLi0qyWVjY0ONGjVwcXFh06ZNHD9+nMqVK9OkSRNGjhyJu7t7sj/U30ZSryuAWbNmvdN6k9MCB/Gvo/z58zNnzhz8/f3f+jTs171+tZBa79c3vSa9vLxo1aoV06dPJyoqiqZNm5I7d26TtuHh4UHHjh05efIkkydPJiwsLFnPk4ODAxUrVmTlypWMHz/e0BIdFxfHggULDD/EXuddPzuioqJYsGABS5YsYdu2bdjY2NCsWTP+/vtvGjRoYHQI7EUJh+2S4+Uf1S9Lzc+Nt/3eSuo5NeXHRZ06dVi6dCmrV6/mgw8+MEz/448/DI+/Sq1atRg7diwnT540OnS3cOHCZG8/QYYsngDGjBlDuXLlCAoKMjqVXafT8b///Y85c+aQP39+SpcuzaFDh95q5yVXUFAQH3zwAV26dCE4OJihQ4dia2vLwIEDDfPMmjWLhg0b0qBBAzp27Ii3tzePHz/m/PnzHDt2zOgUfVP06dOHP/74g8aNGzNixAjy5MnDunXrmD59Ol988cUbP0CSUq9ePaytrWnbti39+vUjIiKCGTNm8OTJk7fKCNC0aVNKlChB+fLlyZYtGzdv3mTy5MnkyZOHggULGuarU6cO06dP5+HDh0yePNlo+ty5c3F1dTXqB5A3b15GjBjBd999x7Vr13j//fdxdXXl/v37HDp0yPCL6HXWrl3L9OnTadGiBfny5UMpxcqVK3n69KmhJel16tSpw9SpU7Gzs6NKlSoA+Pj44OPjw+bNm2nWrBmWlq9/KyaMID579mwcHR2xtbXFx8cnycN1phgyZAi3b9+mTp065MyZk6dPn/Lzzz9jZWVFjRo1AOjduzcrVqygevXq9OnTh1KlShEXF0dAQACbN2/mm2++oWLFiu+UA6BIkSLkz5+fAQMGoJTCzc2NNWvWGPqGva2SJUuyY8cO1qxZg5eXF46Ojq/80pk2bRpNmzalUqVK9OnTh9y5cxMQEMCmTZv466+/XrmN5L5+tZAa71cAR0dH8uTJw99//02dOnVwc3Mja9asRoO49urVy/DaSBh+4U0qVqxIkyZNKFWqFK6urpw/f54///yTypUrG75kk/M8jRo1inr16lGrVi2+/fZbrK2tmT59OmfOnGHRokVvbGF718+Ou3fv0r17dxo0aMAff/xB8+bNk1UkWFtbU758+WTtqzfJnz8/dnZ2/PXXXxQtWpQsWbKQI0cOo7507yK531vJeU6Tq3379kybNo0OHTpw48YNSpYsyZ49exg5ciSNGjV6bSt+7969mTNnDo0bN+bHH3/Ew8ODv/76y+TWLyBjDVXwsnbt2inA6Gw7peJP4fz888+Vh4eHcnBwUE2bNlU3btx45dl2Dx48MFq+Q4cOysHBIdH2Xj6zL+Fsnj///FP17NlTZcuWTdnY2Khq1aoZnV2T4OTJk6p169Yqe/bsysrKSnl6eqratWurmTNnJuvvfZWbN2+qdu3aKXd3d2VlZaUKFy6sxo0bZzgTIoEpZ9utWbNGlS5dWtna2ipvb2/Vt29ftWHDhkRnLLy8TxK8fEbQhAkTlJ+fn8qaNauytrZWuXPnVp07d1Y3btwwWu7JkyfKwsJCOTg4GJ358ddffynA6GzHF61evVrVqlVLOTk5KRsbG5UnTx7VsmVLtXXrVqNMST2vFy5cUG3btlX58+dXdnZ2ytnZWVWoUEHNmzcvWfvq77//VoCqV6+e0fQuXbokOnsqwcuvRaXiz07z8fFRer3e6Aya5O7jpKxdu1Y1bNhQeXt7K2tra5U9e3bVqFEjtXv3bqP5nj17pgYPHqwKFy6srK2tlbOzsypZsqTq06ePCgwMNMr95ZdfGi2bcLbOuHHjjKYnvD+WLVtmmHbu3DlVr1495ejoqFxdXVWrVq1UQEBAst+bSZ19duLECVWlShVlb2+vAMMZY0mdbadU/PAGDRs2VM7OzsrGxkblz59f9enT57X7MTmv31edbZfUc/eq9+LL+ze5Z9u96/s14bEXz7ZTSqmtW7eqMmXKKBsbGwUkeVZj3rx5VdGiRZNcZ1IGDBigypcvr1xdXZWNjY3Kly+f6tOnj3r48KHRfMl5nnbv3q1q166tHBwclJ2dnapUqZJas2aN0Txv+kxNzmdHUiIiItSjR4+S/XenlkWLFqkiRYooKysro/fRqz7vEt5bCV71/k2QnO+t5Dynyc2jVPwZqd27d1deXl7K0tJS5cmTRw0cODDRmYsvn22n1H+fMba2tsrNzU117tzZ8Bltytl2OqWUMr3kEkIIIV7v1KlTlC5dmmnTphk6EQuREUjxJIQQIkVdvXqVmzdvMmjQIAICArhy5YqmneaFSGkZbqgCIYQQ2vrhhx+oV68ez549Y9myZVI4iQxHWp6EEEIIIUwgLU9CCCGEECaQ4kkIIYQQwgRSPAkhhBBCmCDDDpJpiri4OO7evYujo2OKXZpACCGEEKlLKUVoaCg5cuTAwiLt2oOkeCJ+JNiXL+MihBBCCPNw69att7qo99uS4on4ywxA/M53cnLSOI0QQgghkiMkJIRcuXIZvsfTihRP/HfhTCcnJymehBBCCDOT1l1upMO4EEIIIYQJpHgSQgghhDCBFE9CCCGEECaQPk9CCCEyrdjYWKKjo7WOIV7BysoKvV6vdYxEpHgSQgiR6SilCAwM5OnTp1pHEW/g4uKCp6dnuhqHUYonIYQQmU5C4ZQ9e3bs7e3T1ReziKeUIiwsjKCgIAC8vLw0TvQfTYunXbt2MW7cOI4ePcq9e/dYtWoVLVq0MDyulGL48OHMnj2bJ0+eULFiRaZNm0bx4sUN80RGRvLtt9+yaNEiwsPDqVOnDtOnT0/TwbKEEEKYj9jYWEPh5O7urnUc8Rp2dnYABAUFkT179nRzCE/TDuPPnz+ndOnS/PLLL0k+PnbsWCZOnMgvv/zC4cOH8fT0pF69eoSGhhrm6d27N6tWrWLx4sXs2bOHZ8+e0aRJE2JjY9PqzxBCCGFGEvo42dvba5xEJEfC85Se+qZp2vLUsGFDGjZsmORjSikmT57Md999x4cffgjA/Pnz8fDwYOHChXTr1o3g4GB+//13/vzzT+rWrQvAggULyJUrF1u3bqVBgwZp9rcIIYQwL3Kozjykx+cp3Q5VcP36dQIDA6lfv75hmo2NDTVq1GDfvn0AHD16lOjoaKN5cuTIQYkSJQzzCCGEEEKkpHRbPAUGBgLg4eFhNN3Dw8PwWGBgINbW1ri6ur5ynqRERkYSEhJidBNCCCHSu5o1a9K7d2/Ntt+xY0ejvsla59FKuj/b7uXmOqXUG5vw3jTPqFGjGD58eIrkE0IIITKrlStXYmVlpXWMNJduiydPT08gvnXpxdMTg4KCDK1Rnp6eREVF8eTJE6PWp6CgIPz8/F657oEDB+Lv72+4n3BV5pQW9OAqh65eo2xu1zfPnNnYOoO1g+GuDh0eDh5Y6NJtY6gQQoiXuLm5aR1BE+m2ePLx8cHT05MtW7ZQpkwZAKKioti5cydjxowBoFy5clhZWbFlyxZat24NwL179zhz5gxjx4595bptbGywsbFJ9b/hx78/Z7vVQ7iY6pvKEPI752dM9TEUdiusdRQhhEi3YmJi+Oqrr1iwYAF6vZ4vvviCH374AZ1Ox4IFC5g8eTIXL17EwcGB2rVrM3nyZLJnzw7AkydP+Oqrr9i8eTPPnj0jZ86cDBo0iM8++wyAO3fu4O/vz+bNm7GwsKBq1ar8/PPP5M2bN8ksNWvWxNfXl8mTJwOQN29eunbtypUrV1i2bBmurq4MHjyYrl27GpYxdRvpkaY/8589e8aJEyc4ceIEEN9J/MSJEwQEBKDT6ejduzcjR45k1apVnDlzho4dO2Jvb0+7du0AcHZ2pnPnznzzzTf8+++/HD9+nP/973+ULFnScPadVpRS6HV6bOKU3JK8xcXf0GGjt0av03M1+Crt1rVj0YVFKKU0ff6EEJmHUoqwqBhNbm/zWTd//nwsLS05ePAgU6ZMYdKkSfz2229AfCPDDz/8wMmTJ1m9ejXXr1+nY8eOhmW///57zp07x4YNGzh//jwzZswga9asAISFhVGrVi2yZMnCrl272LNnD1myZOH9998nKioq2fkmTJhA+fLlOX78OD169OCLL77gwoULKboNrWna8nTkyBFq1apluJ9wKK1Dhw7MmzePfv36ER4eTo8ePQyDZG7evBlHR0fDMpMmTcLS0pLWrVsbBsmcN2+e5gNp6XQ6JnXeyt4rD+mz5ARBoZFYW1rwfeOi/K9SnnR56mWaiYuDA9Ng63CIiwbnXDxuOpnvb65i1+1djDw4kgN3DzCiygicbZy1TiuEyODCo2MpNmSTJts+N6IB9tamfRXnypWLSZMmodPpKFy4MKdPn2bSpEl06dKFTp06GebLly8fU6ZMoUKFCjx79owsWbIQEBBAmTJlKF++PIBRa8/ixYuxsLDgt99+M3xHzZ07FxcXF3bs2GF0ZvvrNGrUiB49egDQv39/Jk2axI4dOyhSpEiKbUNrmhZPNWvWfG3VrdPpGDZsGMOGDXvlPLa2tkydOpWpU6emQsJ3V6VAVjb0qsa3y06y/eIDvv/7LEuP3MbFPnU62DnbWdGzTkEKeTi+eWatWFiA39eQpwos7wRPruP2V2t+aTCSv96rzMSjE9l2axun/z5NAZcCRovmdsrNl75f4mor/ciEEJlTpUqVjH6AV65cmQkTJhAbG8upU6cYNmwYJ06c4PHjx8TFxQEQEBBAsWLF+OKLL/joo484duwY9evXp0WLFoY+wkePHuXKlStGDRQAERERXL16Ndn5SpUqZfi/TqfD09PTcImVlNqG1tJtn6eMxD2LDXM6vsecvTcYveE8p+8Ep+r2tp6/z5AmxWlbIVf6buHyLgvddsG6b+D0UnSbBvK/zzZSttEC+u3qx82QmzwIf2C0yP57+9l+azujq43mPc/3NAouhMhI7Kz0nBuhzaDKdlYpd5QkIiKC+vXrU79+fRYsWEC2bNkICAigQYMGhkNiDRs25ObNm6xbt46tW7dSp04dvvzyS8aPH09cXBzlypXjr7/+SrTubNmyJTvHy2ff6XQ6QxGXUtvQmhRPaUSn09G5qg+1i2TnxK0nqbadlcfusPvyQwatOs3eKw8Z+WFJnO3S8Wmktk7w0a9goYeTi2BVN4p9sZelTZay9+5eImIiDLPGxMUw58wcboTcoPOmznQt1ZXupbtjaSEvYyHE29PpdCYfOtPSgQMHEt0vWLAgFy5c4OHDh4wePdpwBvmRI0cSLZ8tWzY6duxIx44dqVatGn379mX8+PGULVuWJUuWkD17dpycnFIle1psIy2Yz6slg/DJ6oBPVoc3z/iWmpf25tfd1xi36SLrTt/jxK2n9K5b8I0fDG4O1lTK56ZdS9X7o+H6LnhyHbYMwb7xBOrlqZdotgZ5GzD60GhWXVnFrFOzOBR4iHZF2qVIbkdrRyp6VkRvkT4uPCmEEEm5desW/v7+dOvWjWPHjjF16lQmTJhA7ty5sba2ZurUqXTv3p0zZ87www8/GC07ZMgQypUrR/HixYmMjGTt2rUULVoUgE8++YRx48bRvHlzRowYQc6cOQkICGDlypX07duXnDlzvnP2tNhGWpDiKYOxsNDRrUZ+KuVz5+tFxwl4HEbf5aeStWzdoh6Ma1kKVwfrVE6ZBDsXaD4N/mwBh3+Dwo2gQJ1Es9lb2TOiyggqeVVixIERHA86zvGg4ykW4z3P9xhVdRQeDh5vnlkIITTQvn17wsPDqVChAnq9nq+//pquXbui0+mYN28egwYNYsqUKZQtW5bx48fTrFkzw7LW1tYMHDiQGzduYGdnR7Vq1Vi8eDEQfwHeXbt20b9/fz788ENCQ0Px9vamTp06KdZKlBbbSAs6JeeEExISgrOzM8HBwWb15L1JaEQ0EzZf4vy9119+RgEnAp4SFRuHp5Mtk9v4Uimfe9qEfNn6vnBoNjjmgB77wO7VHcNvhd5i6rGpifpFva2zj84SHhOOi40LP1b5kRq5aqTIeoUQ6UtERATXr1/Hx8cHW1tbreOIN3jd86XV97cUT2Tc4skUZ+8G8/Wi41x78BwLHXxVuyA9axfAUp/GQ4FFhcHMqvD4KpT6GD6cnWabvhF8g367+nH+8XkAPin6Cf7l/LHWa9ASJ4RINVI8mRcpntIpKZ7ihUXFMPTvsyw7ehsAe2s9eovX9yXK7mjDvM8qkMvNPuWC3DoMc+qDigMbJyDt+mFFAZOcbFmQJX4E+iLRsYx9HIZPbPyZIljo44u6usPASj50hTBHUjyZFyme0ikpnoz9feIOg1edITQyJlnzV8jrxqKuld5YaJlk+yjYOTrl1meinXa2DM7mzlO9Hru4OL579IRmz57/V8Z5lICWcyCbXEpGCHMjxZN5keIpnZLiKbGwqBjuh0S+dp4nYVF8+ttBnkfF8l2jonSpni/lAigFwbchVrvh+u+HP2LgiUkcfnQGgMbeNfjesyYO6/tD2EOwsoeGY6HM/yA9j6clhDAixZN5keIpnZLi6e0tPhTAgJWnsba0YO3XVdP3yOZvITYult/P/M70E9OJVbHkcsxFHc9KcHkzPL0FgItbAVpnK4+jxQvjaXmXg2ItpKgSIh2S4sm8pMfiSYYqEO/k4/dysfncfbZdCMJ/6QlW9aiCVVp3Mk9Fegs9XUt15T3P9+i/qz+3Qm8xLzS+aMLl/9+ocUEsu/0PYx88pFTkCy1lxZpD059fe8agEEII8yMtT0jL07sKComg/uRdPA2LpmedgvjXK6R1pFQRHBnMskvLCIn8b+gH9SyQLbd3cic2DEt0fOVYlM8sPbE4sQDiYsA5F3z0O+SuqGFyIcSLpOXJvKTHlicpnpDiKSWsOXmXrxcdR2+hY+UXfpTO5aJ1pDQTEhXCiP0j2HQj/qrslb0qM7LAx2Rd4w9PboBOD7UGQrEPTF+53gpccsvhPyFSkBRP5kWKp3RKiqeU8dXCY6w9dY/CHo5s6FUNi5Q8+y6dU0qx6soqRh0cRURsBG62bvxU4TuqHlsKp5e928qr9okfGkEIkSKkeDIv6bF4yjidU4TmfmheAkdbSy7eD2XbhSCt46QpnU7HhwU/ZEmTJRRyLcTjiMd8sesbJuQuQnTTqeCcG2ydTb8B7JkMN/Zq+vcJITK3jh070qJFC61jpBvS8oS0PKWkURvOM2vnNSrkdWNp98pax9FEZGwk4w+PZ/HF+OtFFXcvztjqY8ntlNv0lf39JRxfEH/o7ot9YJOxzmYUQgvS8mS64OBglFK4uLikyPrmzZtH7969efr06RvnTY8tT3K2nUhRnar4MGfPdQ7deMzxgCeUyZ35zjSz0dvwXaXvqJSjEkP2DuHso7O0WtOKou5FTV+XrZ6Ps+am9sMA2PQdNJuSComFEOL1nJ2dtY6QrshhO5GiPJxsae7rDcDsXdc0TqOtOrnrsKLZCspmL0tYTBhH7x81+bYv8BC9HOFHd1cijv8BlzZr/WcJITS0fPlySpYsiZ2dHe7u7tStW5fnz59Ts2ZNevfubTRvixYt6Nixo+F+ZGQk/fr1I1euXNjY2FCwYEF+//13w+Nnz56lcePGODk54ejoSLVq1bh69SqQ+LBdzZo16dmzJ/369cPNzQ1PT0+GDRtmtP2nT5/StWtXPDw8sLW1pUSJEqxdu5YdO3bw2WefERwcjE6nQ6fTJVo2vZOWJ5HiulbPx/Kjt9l4NpAbD5+TN6uD1pE04+ngye8NfudQ4CGeRT0zefkTD07w57k/WeLkyDFbG8at+5r8OfeDvVsqpBUik1IKosO02baVfbLPpr137x5t27Zl7NixfPDBB4SGhrJ7926S2/umffv27N+/nylTplC6dGmuX7/Ow4cPAbhz5w7Vq1enZs2abNu2DScnJ/bu3UtMzKsv0zV//nz8/f05ePAg+/fvp2PHjlSpUoV69eoRFxdHw4YNCQ0NZcGCBeTPn59z586h1+vx8/Nj8uTJDBkyhIsXLwKQJUuWZP0N6YUUTyLFFfJwpFbhbGy/+IDf9lzjxxYltY6kKUsLS/xy+L3VsvXz1qdqjqoM3DOQyzymjUsc3Va0xCOncX+yMgWbkjNnpZSIK0TmEx0GI3Nos+1Bd8E6eT8w7927R0xMDB9++CF58uQBoGTJ5H2+Xrp0iaVLl7Jlyxbq1q0LQL58/11Sa9q0aTg7O7N48WKsrOKvllCo0OvH7CtVqhRDhw4FoGDBgvzyyy/8+++/1KtXj61bt3Lo0CHOnz9vWM+L23N2dkan0+Hp6Zms/OmNHLYTqSLhOnfLjtzm0bPXXyNPvJ6ftx8rmq3Az60EERYW/Bz3gEEB/xjdPtnyOY8fX9E6qhAiFZUuXZo6depQsmRJWrVqxa+//sqTJ0+SteyJEyfQ6/XUqFHjlY9Xq1bNUDglR6lSpYzue3l5ERQUZFhfzpw531iAmStpeRKponI+d0p6O3P6TjB/7L9Jnww66nhayWqXlRlN/mLxv9+y685eFP8101+JDSNIr+OHdR2Z+MkudBbym0gIk1jZx7cAabXtZNLr9WzZsoV9+/axefNmpk6dynfffcfBgwexsLBIdPguOjra8H87O7vXrvtNjyfl5UJLp9MRFxf31uszJ/IpK1KFTqej6/+3Pv2x/wbhUbEaJzJ/FjoL2tWdyMwOB5nV4ZDh9kuVn7BUiq1xwazdOUTrmEKYH50u/tCZFjcTrx6g0+moUqUKw4cP5/jx41hbW7Nq1SqyZcvGvXv3DPPFxsZy5swZw/2SJUsSFxfHzp07k1xvqVKl2L17t1HB9S5KlSrF7du3uXTpUpKPW1tbExtrvt8LUjyJVNOwhCc5Xe14EhZNqeGbKDR4g+FWa/wO7j4N1zpihlC0cHO6u5YBYNSN1QQGHtc4kRAiNRw8eJCRI0dy5MgRAgICWLlyJQ8ePKBo0aLUrl2bdevWsW7dOi5cuECPHj2MxlDKmzcvHTp0oFOnTqxevZrr16+zY8cOli5dCsBXX31FSEgIbdq04ciRI1y+fJk///zT0KHbVDVq1KB69ep89NFHbNmyhevXr7NhwwY2btxoyPPs2TP+/fdfHj58SFiYRh3235IUTyLVWOot6FWnIADRsYqomDjD7frD5/RfcSrZZ4mI1+vc6FdKxlkSaqFjyKZuqP9vOhdCZBxOTk7s2rWLRo0aUahQIQYPHsyECRNo2LAhnTp1okOHDrRv354aNWrg4+NDrVq1jJafMWMGLVu2pEePHhQpUoQuXbrw/PlzANzd3dm2bRvPnj2jRo0alCtXjl9//dWkPlAvW7FiBe+99x5t27alWLFi9OvXz9Da5OfnR/fu3fn444/Jli0bY8eOffsdowEZYRwZYTy1PXoWSUTMf1/m90MiaPfrASKi4/iheXE+rZxXu3AZyPXr22m942siLHR851GTNu9P1TqSEOmSjDBuXmSEcZEpuWexMbrv7WLHgPeLMGzNOX5af56qBbPhk4nHgkopPj616H2hGqOD9jDx3nau7uiPzs60UYHtLe1pXbg1ObJodNq2EEKYASmehCbaV87L5nP32Xf1Ed8sPcGy7n7oLUzrOCkSa1t/Ktv/rMxBiwgW31z/VutYemkpw/2GUy9PvRROJ4QQGYMUT0ITFhY6xrUqzfuTdnEs4Cmzdl2lR80CWscyexZ6S8Y2nMPyJR8QFRcFPtUhd/IHz9x3dx+nH57Gf4c/rQq1ot97/bC1lMMaQgjxIunzhPR50tKyI7fou/wUVnods9uXx9Ppvy9qe2s9ud3s0Zl4Kq8Ajv8Ff/cACyvouh08kzcKcXRcNNOOT2POmTkoFAVcCjCo4iCcrFPnfeFs44yng3mOMCzMl/R5Mi/psc+TFE9I8aQlpRRd/zzKlnP3k3y8QXEPxnxUChd76zROZuaUgsXt4OJ68CgBXbaBpc2bl/t/++/uZ9CeQTwMf5iKIeN9XPhj+r7XFxt98vMJ8S6keDIvUjylU1I8aevhs0g+n3+EOy+N+/T4eRSxcYoczrb83LYM7+WVi+Ga5FkQTK8EYY+gqj/UHWrS4o/CHzHy4EiOBR1LpYAYirOCrgUZX308+VzyvWEJId6dFE/mRYqndEqKp/Tp9O1gvl50jBuPwrDQQa86hfiqdgHpWG6Kc3/D0vags4BOmyBXBa0TGdl7Zy+D9gziccRjbPW2DKgwgA8LfiiHakWqkuLJvKTH4kkGyRTpVsmczqztWY0Py3gTp2DS1ku0+/UA94JlZPJkK9YcSn0MKg5WdYOnt7ROZKSKdxVWNFtBZa/KRMRGMGz/MPrt6kdoVKjW0YQQ4pWkeBLpWhYbSyZ+7MvE1qWxt9Zz8PpjGv68+5V9pEQSGo4Fp5zw+BrMrALn/tE6kZGsdlmZWW8mfcr1wVJnycYbG2m1phUnH5zUOpoQQiRJiidhFj4sm5N1PatRwtuJp2HRdPnjCMP+OUtEtPleWDLN2LlAx7XgXQ4igmHpp7DWH6LTTwuehc6CTiU6Mb/hfLyzeHPn2R06bujIb6d/I07JpWaESKCUomvXrri5uaHT6Thx4oTWkUy2Y8cOdDqd0bX3zI30eUL6PJmTyJhYxm68yO97rgNQ1MuJae3KkC9bFo2TmYGYKNj+I+z9Of5+9mJQoWt8f6h0JDRrAX648TcbbmwAoJJXJd7P+77J67HWW1M9Z3WcbUwbZV1kfObc52nDhg00b96cHTt2kC9fPrJmzYqlpXkN2bhjxw5q1arFkydPcHFxeeP86bHPk3ntcZHp2Vjq+b5JMaoWyMo3y05y/l4In/5+iI29q+Fo+/YXsMwULK2h3gjwqQGrukPQOVjbW+tUiTgCY/x6UrnSEEYdGceBewc4cO/AW60ru112RlcfzXue76VsSCE0cvXqVby8vPDz89M6SqYmxZMwS7WKZGdjr2p8NHMftx6H88Pac4xtWVrrWOahQB34Yi/sHAMhd7VOYyzqGVzfhW7fFD64WY7S9Sfw+62NhESFmLyqK0+ucPvZbTpv6kzXUl3pXro7lhbykSfMV8eOHZk/fz4AOp2OPHnycPHiRfr27cvixYsJCQmhfPnyTJo0iffe++8Hw9mzZ+nXrx+7d+9GKYWvry/z5s0jf/781KxZE19fXyZPnmyYv0WLFri4uDBv3jwApk+fzqRJk7h16xbOzs5Uq1aN5cuXA/GHEceNG8fMmTO5d+8ehQoV4vvvv6dly5aG9a1fv57evXtz69YtKlWqRIcOHVJ/Z6Uy+SQRZiu7ky0TWvny8ez9LD1ym/rFPKlbzEPrWOYhS3ZoPEHrFEk79w/88xXcOUq+v9ryU9PJULLlGxd7WVh0GKMPjWbVlVXMOjWLQ4GHGFNtDF5ZvFI+szBrSinCY7TpA2hnaZfsoTl+/vln8ufPz+zZszl8+DB6vZ5+/fqxYsUK5s+fT548eRg7diwNGjTgypUruLm5cefOHapXr07NmjXZtm0bTk5O7N27l5iYmGRt88iRI/Ts2ZM///wTPz8/Hj9+zO7duw2PDx48mJUrVzJjxgwKFizIrl27+N///ke2bNmoUaMGt27d4sMPP6R79+588cUXHDlyhG+++eat9lV6IsWTMGsVfNzoUi0fs3ddY8DK02zO44qbg4xGbtaKNYMcZWBlFwjYDys6x99eZJ8VGoyE0h+/cjX2VvaMqDKCSl6VGHFgBMeDjvPRmo8Y4TeCunnqpvIfIcxJeEw4FRdW1GTbB9sdxN7KPlnzOjs74+joiF6vx9PTk+fPnzNjxgzmzZtHw4YNAfj111/ZsmULv//+O3379mXatGk4OzuzePFirKziuzYUKlQo2fkCAgJwcHCgSZMmODo6kidPHsqUKQPA8+fPmThxItu2baNy5coA5MuXjz179jBr1ixq1KjBjBkzyJcvH5MmTUKn01G4cGFOnz7NmDFjTNlN6U766ikqxFvwr1eIQh5ZePgsku9WnebFcyDkfAgz5ZILOqyFGv0hqUNtYQ9hVdf4vluRz167qkb5GrGs6TJKZi1JaFQofXb04Yf9PxARE5FK4YVIG1evXiU6OpoqVaoYpllZWVGhQgXOnz8PwIkTJ6hWrZqhcDJVvXr1yJMnD/ny5ePTTz/lr7/+IiwsDIBz584RERFBvXr1yJIli+H2xx9/cPXqVQDOnz9PpUqVjFrXEgotcyYtT8Ls2VrpmdjalxbT9rLhTCB/n7hLizLeWscS70pvCbUGQZVeEBX2wgMKjsyFnaPh5CK4dQhazoEcvq9cVS7HXMx/fz5TT0xl7pm5LL20lGNBxxhXfRwFXAuk+p8i0jc7SzsOtjuo2bbfVsKPw5cP+ymlDNPs7F6/fgsLi0Q/MqOjow3/d3R05NixY+zYsYPNmzczZMgQhg0bxuHDh4mLix9GZN26dXh7G3/m2tjYGGXMaKR4EhlCCW9nvq5dkElbL/H932c4cO2R0eMFsmehfeW8WFtKY6vZsXaIv72oZn/wqQYrPofHV+G3ulDio/gzChPobaDM/wxFlZXeCv9y/lTyrMSgPYO48vQKbde1pX7e+lhZvP5XuZeDF58W+zTZh1eEedHpdGb53BYoUABra2v27NlDu3btgPjC58iRI/Tu3RuAUqVKMX/+fKKjo5NsfcqWLRv37t0z3I+NjeXMmTPUqlXLMM3S0pK6detSt25dhg4diouLC9u2baNevXrY2NgQEBBAjRo1ksxYrFgxVq9ebTTtwIG3O3s2PZHiSWQYPWrlZ9uF+5y8Hcziw4kvQ7Lm5F2mtC1DHneHJJYWZiePH3TfA/98DRfWwqnFiec5Oi/+gsiVvgSL+MLZz9uP5c2WM3jPYPbe3cs/V5M34vraa2sZV2McRdyKpOAfIcTbc3Bw4IsvvqBv3764ubmRO3duxo4dS1hYGJ07x/cT/Oqrr5g6dSpt2rRh4MCBODs7c+DAASpUqEDhwoWpXbs2/v7+rFu3jvz58zNp0iSjwSvXrl3LtWvXqF69Oq6urqxfv564uDgKFy6Mo6Mj3377LX369CEuLo6qVasSEhLCvn37yJIlCx06dKB79+5MmDABf39/unXrxtGjRw1n8ZkzKZ5EhmGlt+DX9uVZefwOMbH/jUodFRPHvH03OHk7mMZT9vDTByVo7iuH9TIEezf4eAGcXwMPLxo/dvsoXNoAmwfDtR3QYkb8WYbEXxJmet3pbLqxiVuhr7/eX6yKZfnF5dwIuUG7de34pvw3tCvSTi5eLNKF0aNHExcXx6effkpoaCjly5dn06ZNuLq6AuDu7s62bdvo27cvNWrUQK/X4+vra+gn1alTJ06ePEn79u2xtLSkT58+Rq1OLi4urFy5kmHDhhEREUHBggVZtGgRxYsXB+CHH34ge/bsjBo1imvXruHi4kLZsmUZNGgQALlz52bFihX06dOH6dOnU6FCBUaOHEmnTp3SeE+lLBlhHBlhPDO48zScXouOc+TmEwBalcvJsGbFcbCR3w8ZllJwdC5sHAgxEeCQHRqNBefcJq/qSVQoQ87/zo6HJwCombUMnX2/QG/938j2dpZ25HfJL0WVGTDnEcYzo/Q4wrgUT0jxlFnExMYx5d/LTN1+BaUgXzYHprYtQ/EccvmODC3oPCz7DB6cf6fVKGChUxYmuLkS/YoCqZp3NX6s+iNutm7vtC2RuqR4Mi9SPKVTUjxlLvuvPqLPkhMEhkRgrbdgYKMidPTLKy0GGVl0OPw7Ai6uh3e80PAFPYy2jiJQbwG2TmAXf3gkKCyI6LhostllY1S1UVT00mbcIPFmUjyZFyme0ikpnjKfx8+j6Lf8JFvPBwFQt2h2xrYsLQNsiuS5uAEWtQF08Nl6yOPHxccX6berH9eCr6FDx+clP+cL3y/eeCafSHtSPJmX9Fg8yXnbIlNyc7Dm1/blGda0GNZ6C7aeD6Lhz7u4+uD1Ay4KAUDhhuD7P0DB6i8g8hmF3QqzqPEiPir4EQrFr6d/5bONn3Hn2R2t0wohUpgUTyLT0ul0dKziw6ov/ciXzYH7IZH0XnyC6Nh3O6wjMon3R8V3Pn9yI/6MPuIvCTPMbxjjaozD0cqRkw9O0uqfVmy+sVnbrCJJcuDFPKTH50mKJ5HpFc/hzKIulXC2s+L0nWB+2XZF60jCHNg6QYtp8f8/OhcubzE89H7e91nWbBmlspUiNDqUb3Z+w/D9wzW7+KwwljBYZMJlRkT6lvA8ve0lZlKD9HlC+jyJeP+cvEvPRcfRW+hY1cOPUjldtI4kzMGGAXBwBmTxhB7748ee+n/RcdFMPzGd30//jkJRwKUALQu1REfanJxgaWFJ9ZzV8XTwTJPtmZN79+7x9OlTsmfPjr29vZwwkg4ppQgLCyMoKAgXFxe8vLwSzSMdxjUkxZNI8OXCY6w7dY8C2bOw9uuq2FrptY4k0rvocJhZDR5dBpc80HIu5CxnNMuBewcYuHsgD8Mfpnk8RytHhvoNpUHeBmm+7fRMKUVgYKDRaNoifXJxccHT0zPJAleKJw1J8SQSPHkeRf3Ju3gQGknnqj5836SY1pGEObh/DhZ+DMEBYGEJtb8Hv56GS8IAPAp/xG+nf+NB+IM0i3Uj+AYXn8SPvN6yUEv6vdfvnS5EmxHFxsYaXQhXpC9WVlbo9a/+ESvFk4akeBIv2nbhPp3mHUGngwWdK1I+r6vhMQudDiu9dBUUSQh/Cmt6wbnV8ffz14bm08De/fXL6fSgT52R7l8+bJjfOT9jqo/Bx9nH5HXpdXr0FtISK9IXKZ6SEBMTw7Bhw/jrr78IDAzEy8uLjh07MnjwYCz+/xedUorhw4cze/Zsnjx5QsWKFZk2bZrhujvJIcWTeNmAFaeSvLiwTgdNSuXgxxYlcLZLP50XRTqhFBybH98PKrmdwy3toJo/VPsGUqk4SYnDhs42zixouIC8znlTLpgQ70jGeUrCmDFjmDlzJr/88gvnz59n7NixjBs3jqlTpxrmGTt2LBMnTuSXX37h8OHDeHp6Uq9ePUJDQzVMLszd4CbFKOSRJdF0pWDNybs0+nk3R///OnlCGOh0UK4jdN0BnqWSt0xMOGz/Cf5oDiF3UyVWJa9KLG+6nJo5a771OoIjg/n9zO8pF0oIM5auW56aNGmCh4cHv//+3xv2o48+wt7enj///BOlFDly5KB37970798fgMjISDw8PBgzZgzdunVL1nak5UkkJS5O8Twqxmjapfuh9FlykoDHYegtdPjXK0T3GvnRW8iZOuIlSkFkMn7EXVgL676F6Odg5wYtZkDh91MtVlh0GHEmXqLm/OPzdNrUCUsLSzZ9tIns9tlTKZ0QppHDdkkYPXo0M2fOZPPmzRQqVIiTJ09Sv359Jk+eTNu2bbl27Rr58+fn2LFjlClTxrBc8+bNcXFxYf78+UmuNzIyksjISMP9kJAQcuXKJcWTSJbQiGi+W3WGf07GtxL45XdndvvyZLFJnX4rIhN4eAWWfwaBp+LvF2oItm9xwWrPElCxO+hT/pByhw0dOBZ0jE4lOtGnXJ8UX78Qb0Or4ildf9r379+f4OBgihQpgl6vJzY2lp9++om2bdsCEBgYCICHh4fRch4eHty8efOV6x01ahTDhw9PveAiQ3O0teLnNr5UK5iVIX+fZd/VR/y66xp96hXSOpowV1kLwOdbYeswODAdLm14u/WcAs79DR/9Bq55UzAgdCzekWNBx1h2cRldS3XFwcohRdcvhDlJ18XTkiVLWLBgAQsXLqR48eKcOHGC3r17kyNHDjp06GCY7+WxH5RSrx3wbODAgfj7+xvuJ7Q8CZFcOp2OVuVzYWul5+tFx/nzwE2618iPnbWcjSTekqVN/CVfijWH24dNXz4qDPZPi192ZjVo+jOU+DDF4tXIVQMfZx+uB19n+aXldCje4c0LCZFBpeviqW/fvgwYMIA2bdoAULJkSW7evMmoUaPo0KEDnp7xo+YmnImXICgoKFFr1ItsbGywsbFJ3fAiU2hYwpOcrnbcfhLO8mO3+bRSHq0jCXOXu1L87W34toUVn8Otg/GHAa9th1JtjOexcwUP08cvs9BZ0KFYB4btH8aC8wtoV7QdVhZyxqnInNL12XZhYWGGIQkS6PV64uLiOzv6+Pjg6enJli3/XVMqKiqKnTt34ufnl6ZZReZkqbfg86rxY+b8tvsasXHptguhyAxcckPH9VDtW0AHx/6AeY2MbzMqw8klb7X6Jvmb4G7rTuDzQDbd2JSy2YUwI+m6eGratCk//fQT69at48aNG6xatYqJEyfywQcfAPGHTnr37s3IkSNZtWoVZ86coWPHjtjb29OuXTuN04vMovV7uXCxt+LmozA2nw3UOo7I7PSWUOd76PAP5KwA7gX/uznnjp9n/bcQfNvkVdvobWhXNP6zdd6ZeenyavdCpIV0fbZdaGgo33//PatWrSIoKIgcOXLQtm1bhgwZgrW1NfDfIJmzZs0yGiSzRIkSyd6ODFUg3tWEzReZuu0KvrlcWNXDTy4yKtKn2BiY0wDuHIF8NeF/q4wuIZMcwZHB1Ftej/CYcGbVm4VfDmnlF9qRoQo0JMWTeFcPQiOpMmYbUTFxLO1WmQo+blpHEiJpDy/HdyiPCYdG46FCF5NXMfrQaP46/xelspViZt2ZOFo7pkJQId5MRhgXwoxlc7Tho7LeAMzedVXjNEK8RtaCUO//h2rZ/H38GFMm+rTYp9jqbTn14BSt1rTi5IOTKRxSiPRNiichUsjn1fKh08HW80FcCZLLA4l07L0u4FMjvvVpdff4w3km8M7ize8Nfsc7izd3nt2hw4YO/Hb6N5NHLhfCXMlhO+SwnUg5Xf44wpZz96laICvVC2U1efn38rpRJrdrKiQT4iXBt2F6ZYgMgdqDoXpfk1cRGhXKiP0j2HhjIxB/Db2RVUeSzT5bSqcVIknS50lDUjyJlHLkxmNaztz/1svbWlmwvmc18mVLfFFiIVLciUXxLU8Q3xpV/0ewsjVpFUopVl9ZzahDowiPCcfN1o0fq/xItZzVUiGwEMakeNKQFE8iJc3de53Td4JNXu7snRAu3g/FN5cLy7tXxlIvR9VFKlMK/h0OeybF3/coAS3nQLbCJq/q2tNr9N3Vl0tPLgHQvlh7epftjVUqXGdPiARSPGlIiieRHtx9Gk6DybsIjYihb4PCfFmrgNaRRGZxeQus6g5hD8HKHhqOib9MzJvYOMELw3JExkYy4cgEFl1YBEAx92L8VOUnPBxefcUHLVjrrbHRy1UmMgIpnjQkxZNIL1Ycvc03y05ipdex+ssqFM/hrHUkkVmEBsKqbnBtR/KX8SgBH84Gj+JGk7cFbGPIviEER5reApsWrCys6FKyC11LdUVvIdejNGcyVIEQgg/LelO/mAfRsQr/JSeJjInVOpLILBw94wfNrDM0vvUpOe6fgdm14PBv8YcA/1/t3LVZ3nQ5lbze8hp9qSw6LprpJ6fTeXNnAp/LVQGE6aTlCWl5EunLw2eRNJi0i0fPo+heIz8DGhbROpLIbOJi42+vE/4E/vkKLm+Ov1+kCTSbCvbGA8RGx0anUsi3t+nmJn7Y/wNhMWE42zgzwm8EtXPX1jqWeAty2E5DUjyJ9GbT2UC6/XkUCx0s7VaZ8nllxHKRDsXFwcEZsGUoxEWDkzfkfM94HidvqP5toqJKawEhAfTd1Zdzj84BUCVHFRysHF67jLONM51LdsY7i3daRBTJIMWThqR4EumR/9ITrDx2hzzu9qzvWQ0HG0utIwmRtLvHYXkneHwt6ccdc8BHv0Leqmmb6w2iY6P5+djPzD83P9nLOFo5MtRvKA3yNkjFZCK5pHjSkBRPIj0KDo+m4eRd3A2O4H+VcvNji5JaRxLi1SJD4fwaiHr+3zQVB4d+hUeXQWcRPxBn9X6gT18/BE49OMXZR2dfO49SivXX1xsuRfNRwY/oX6E/dpZ2aRFRvIIUTxqS4kmkV3uvPOST3w4CML9TBWoUkpGbhZmJfAYb+sOJBfH3c/tBNX948Sw3K3vwLp/uiqqXRcdFM+PEDH47/RsKRX7n/IytMZZCroW0jpZpSfGkISmeRHo29O8zzN9/Ew8nGzb3roGzvQw6KMzQ6eWwpjdEveK6jzkrwEe/gWueNI31Ng7cO8DA3QN5GP4QG70Nfcv3pXXh1uheGPNKpA0pnjQkxZNIz8KjYmk8ZTfXHj6nhW8OJrcpo3UkId7O42uwaTA8DTCe/uQ6RD0DG2doNgWKt9AknikeRzxm8J7B7L6zG4A6uesw3G84zjYyNltakuJJQ1I8ifTuWMATWs7YR5yCGZ+UpWFJL60jCZFyntyAFZ/D7cPx98t1hAajwDqZ401pJE7FseDcAiYdm0RMXAyeDp6Mrjaach7ltI6WaUjxpCEpnoQ5GLfpAtO2X8XG0oKsWYwvLfFBGW++bWD69ciESDdio2H7yP+/zp4CWxewcUydbdk4wke/g0exFFnd2Udn6bezHwGhAVjoLOheujtdS8ro5WlBiicNSfEkzEFUTBwfzdiX5EWH9RY6Dg2qg3sWuV6XMHNXt8dfJubZ/dTdTpEm0OavFFvd8+jn/HTgJ9ZcWwNAeY/yjKo2Ck8HzxTbhkhMiicNSfEkzEV4VCyXg0JfvBIGA1ae5vy9EH5sUYL/VUr/nW2FeKOoMHhwPnXW/ewBLPoY0MFXRyBryl6Ae83VNfx44EfD6OU/+P1Ardy1UnQb4j9SPGlIiidhzmbvusrI9Reo6OPGkm6VtY4jRPq3sA1c2hDft6rpzym++pshN+m7sy/nH8cXgO2KtMO/vD82emkZTmlyYWAhxFtpXCoHAIduPOZ+SITGaYQwA1V6xv97YhE8C0rx1edxysOCRgtoX6w9AAsvLOSTdZ9wPfh6im9LaEOKJyHMnLeLHeXyuKIUrDt1T+s4QqR/uSvHD8oZGxk/AnoqsNZb0/e9vkyrMw03WzcuPrnIx2s/ZtXlVcgBH/MnxZMQGUDTUvFDF6w5dVfjJEKYAZ3uv9anw78aX1ImhVXPWZ3lTZdT0asi4THhDNk3hP67+/Ms6lmqbVOkPimehMgAGpX0QqeD4wFPufU4TOs4QqR/RZqAqw+EP4HjKXfWXVKy2WdjVt1Z9CrbC71Oz4brG2i1phWnH5xO1e2K1CPFkxAZQHYnWyr5uAOw7rQcuhPijSz0UPnL+P/v/wViY1J1c3oLPZ+X/Jx5788jh0MObj+7TfsN7ZlzZg5xKi5Vty1SnhRPQmQQTUr//6G7k3LoTohk8f0E7N3h6U04/0/abDK7L8uaLaN+nvrEqBgmHZ3EF1u/4GH4wzTZvkgZMlQBMlSByBgeP4/ivZ+2Ehun2PZNDfJly6J1JCHSv+2jYOdocMwBXqVfP6+dK1T/Ftzzv/NmlVKsuLyCMYfGEBEbgZutG6OqjsLP2++d152ZyDhPGpLiSWQUHeYcYuelB/jXK0TPOgW1jiNE+vf8IUwuBdHJ7DRunQUaT4DSbVJk81efXuXbnd9y5ekVAD4r/hlfl/kaK71Viqw/o5PiSUNSPImMYtmRW/RdfooC2bOwpU91dDqd1pGESP8Cz8DdY6+fRyk4tRRu7om/X6oNNB6fItffi4iJYPyR8Sy5uASAEu4lGFtjLLkcc73zujM6KZ40JMWTyCiCw6N578etRMXGsbF3NYp4yutZiBQTFwu7J8COUaDiwC0/tPwdcpRJkdX/e/NfhuwbQkhUCA5WDvQq2wsvB6/XLmOjt6GcRzms9dYpksHcSPGkISmeREbS5Y8jbDl3n67V8zGoUVGt4wiR8dzcDys+h5DbYGEF9YZDpR7x40e9o3vP7jFg9wCOBb2hJewFRdyKMLb6WHycfd55++bGbIqnW7duodPpyJkzJwCHDh1i4cKFFCtWjK5du6ZKyNQmxZPISLaeu8/nfxzB0caSfQNr42grfSeESHFhj+Gfr+HC2vj7BetD8+mQJds7rzomLoZ5Z+ex49aON45GfiPkBiFRIdhZ2jGo4iCa52+eqQ7Xm03xVK1aNbp27cqnn35KYGAghQsXpnjx4ly6dImePXsyZMiQ1MqaaqR4EhlJXJyi3qSdXH3wnMGNi/J5tXxaRxIiY1IKjvwOGwfFX+oliwd8OBvy1UyzCEFhQQzaPYiDgQcBaOTTiO8rfU8W68xxtq3ZFE+urq4cOHCAwoULM2XKFJYsWcLevXvZvHkz3bt359q1a6mVNdVI8SQymsWHAhiw8jQ5nG3Z2a8WVnoZ0k2IVHP/LCz7DB5eBHRQtQ/UGgRpdMZcbFwsc87MYdqJacSqWOwt7bGztHvtMnaWdnxW4jNaFWpl1i1VWn1/m/yJGh0djY2NDQBbt26lWbNmABQpUoR792RkYyHSgxZlvMmaxYa7wRGslevdCZG6PIpD1x1QtgOgYM9EmNsQntxMk83rLfR0KdXFMHp5WEwYjyIevfZ2+9ltfjjwA9/s/IbgyOA0yZmRmNzyVLFiRWrVqkXjxo2pX78+Bw4coHTp0hw4cICWLVty+/bt1MqaaqTlSWRE07ZfYdymixTxdGRDr2pm/etSCLNxdhX80wsig8HGGZr9DMU/SLPNR8dGcyPkBorXf7XvvbOXKcemEKNi8HLwYmz1sfhm902bkCnIbA7b7dixgw8++ICQkBA6dOjAnDlzABg0aBAXLlxg5cqVqRI0NUnxJDKi4LBoKo/+l7CoWP7oVIHqhd69I6sQIhme3Iw/G+/2ofj75TpCg1Fgba9prJedeXiGfrv6cSv0Fnqdno8KfoSLrUuqba9WrlqUyFoiRddpFsWTUoqAgABcXV2JjY3F1dXV8NiNGzewt7cne/bsqRI0NUnxJDKq4WvOMnfvDaoWyMqCzytqHUeIzCM2On48qN0TAQXZikDLOfGH+NKRZ1HP+OHAD6y/vj7VtzWk8hBaFWqVous0i+IpLi4OW1tbzp49S8GCGefSD1I8iYzq1uMwao7fQWycYl3PqhTP4ax1JCEyl2s7YGU3eBYIlrbQ4Cco3zlFxoRKKUop/g34l8OBh1N1O+/7vE+Z7CkzoGgCsyieAIoXL87vv/9OpUqVUitTmpPiSWRkXy86zpqTd2nhm4PJbVL2g0sIkQzPH8LqL+Dy5vj7RZtC0ylg76ZtrgzAbM62Gzt2LH379uXMmTOpkUcIkcK6VY8f52nNqXssPXLrjYPuCSFSmENWaLsEGoyMH5H8/BqYWS1+pHJhlt5qnKewsDBiYmKwtrbGzs54LInHjx+naMC0IC1PIqPrueg4/5yMH7KgWekc/PhBCZxk5HEh0t7d47C8Ezy+BjoLqDEAqn8LFnqtk5klszlsN3/+/Nc+3qFDh3cKpAUpnkRGFxenmLHzKhO3XCI2TpHLzY6pbcvim8tF62hCZD6RobDuWzi1OP5+nqrxI5M7e2ubywyZTfGUEUnxJDKLozef0HPRce48DcfSQse3DQrTtVo+LCzST+dVITKNk4th3TcQ9QzsXKHFDCjcUOtUZsVs+jwBXL16lcGDB9O2bVuCgoIA2LhxI2fPnk3RcEKIlFUujyvre1WjcUkvYuIUozdcoMPcQwSFRmgdTYjMp3Qb6LYLvEpD+BNY1AbW94NoeT+mdyYXTzt37qRkyZIcPHiQlStX8uzZMwBOnTrF0KFDUzygECJlOdtZ8Uu7Moz6sCS2VhbsvvyQRj/vZuelB1pHEyLzcc8PnbdA5a/i7x+aBb/XhYeXtc0lXsvk4mnAgAH8+OOPbNmyBWtra8P0WrVqsX+/nDkghDnQ6XS0rZCbNV9VpYinIw+fRdFhziFGrj9PVEyc1vGEyFwsbeLHf2q3DOyzQuBpmFUdji8A6VmTLplcPJ0+fZoPPkh8nZ5s2bLx6NGjFAklhEgbBT0cWf1lFT6tlAeA2buu0WrmPm4+eq5xMiEyoUL14Yu94FMDosPg7y/jL/MSEaJ1MvESk4snFxcX7t27l2j68ePH8faWMwWEMDe2Vnp+aFGCWZ+Ww9nOipO3g2k8ZQ9/n7ijdTQhMh9HT/h0NdQZCjo9nFkOs6rB7aNaJxMvMLl4ateuHf379ycwMBCdTkdcXBx79+7l22+/pX379qmRUQiRBhoU92RDr2pUyOvGs8gYei0+wbfLTvI8MkbraEJkLhYWUM0fOm0Cl9zw5AbMqQ97JkOcHFZPD0weqiA6OpqOHTuyePFilFJYWloSGxtLu3btmDdvHnq9+Q30JUMVCPGfmNg4pm67wtRtl4lTUMQz/tCerZX5vbeFMHvhT2FNLzi3Ov6+dZb4FqkEltbQaDwUb6FBOO2Z3ThPV69e5fjx48TFxVGmTBmzvlCwFE9CJHbg2iO+WHCUJ2HRTP+kLI1KemkdSYjMSSk49gdsHBDfF+plNk7QYz8450z7bBozm+Lp8uXLZl0oJUWKJyGSNnrDBWbuvErDEp7M+F85reMIkblFhMDzF4YUUQpWd4fbh+M7mX+6Ov6QXyZiNoNkFi5cGG9vb9q1a8esWbO4ePFiauQSQqQDTUvHtzZtuxDEM+n7JIS2bJ3ix4VKuGUtAB/MAit7uL4TDv+mdcJMw+Ti6d69e4wfPx4nJycmTZpE0aJF8fLyok2bNsycOTM1MgohNFLMy4l8WR2IjIlj67n7WscRQrzMPT/UGxH//y1D4OEVbfNkEiYXTx4eHrRt25aZM2dy4cIFLl26RIMGDVixYgVffvllamQUQmhEp9PRpHQOANacvKtxGiFEksp3hnw1ISYcVnWDWGklTm2Wpi7w7Nkz9uzZw44dO9i5cycnTpygaNGifP3119SoUSM1MgohNNS0lBdT/r3MrssPCA6LxtneSutIQogXWVhA82kw3Q/uHIGdo6FUm9cvY20PTjnSJl8GZHKHcSsrK9zc3Pj000+pVasWVatWxdnZObXycefOHfr378+GDRsIDw+nUKFC/P7775QrF995VSnF8OHDmT17Nk+ePKFixYpMmzaN4sWLJ3sb0mFciNd7f/IuLgSGMvajUrR+L5fWcYQQSTmxKL4DeXKVbAWNJ8b3pTJTZtNhvHHjxsTGxvLnn3/yxx9/sHDhQs6fP58a2Xjy5AlVqlTBysqKDRs2cO7cOSZMmICLi4thnrFjxzJx4kR++eUXDh8+jKenJ/Xq1SM0NDRVMgmRGTVNOHR3Sg7dCZFulW4D5T4DW+c339DB6WXx19C7I6OXm+qtx3k6deoUO3fuZOfOnezevRudTkfNmjVZvHhxioUbMGAAe/fuZffu3Uk+rpQiR44c9O7dm/79+wMQGRmJh4cHY8aMoVu3bsnajrQ8CfF6Nx89p8a4HegtdBwcVIesWWy0jiSEeBcBB2FFZwi+BRaW8ZeDqfyV2Q11YDbjPL3o+PHjbN++ne3bt7Nx40Z0Oh1RUVEpFq5YsWI0aNCA27dvs3PnTry9venRowddunQB4Nq1a+TPn59jx45RpkwZw3LNmzfHxcWF+fPnJ7neyMhIIiMjDfdDQkLIlSuXFE9CvEazX/Zw6nYwP7QoYbiQsBDCjIU/gX96wvl/4u9nLwZ2rqm3Pb+voXDDFF2lVsWTyR3GJ02axI4dO9i9ezehoaH4+vpSo0YNunXrRvXq1VM03LVr15gxYwb+/v4MGjSIQ4cO0bNnT2xsbGjfvj2BgYFA/BmAL/Lw8ODmzZuvXO+oUaMYPnx4imYVIqNrWioHp24Hs/bkXSmehMgI7Fyh9R9wdF786OVB51J3eyVbpe7605DJLU/ly5enZs2a1KxZk+rVq6dqpWdtbU358uXZt2+fYVrPnj05fPgw+/fvZ9++fVSpUoW7d+/i5fXfpSO6dOnCrVu32LhxY5LrlZYnIUx392k4fqO3odPB/gF18HS21TqSECKlPL2V+n2fvEqDm0+KrtJsWp6OHDmSGjmS5OXlRbFixYymFS1alBUrVgDg6ekJQGBgoFHxFBQUlKg16kU2NjbY2EifDSFMkcPFjvJ5XDly8wnrTt+jc9WU/RAUQmjIJVf8TSSLyT3DNm7cyJ49ewz3p02bhq+vL+3atePJkycpGq5KlSqJLv9y6dIl8uSJP2Tg4+ODp6cnW7ZsMTweFRXFzp078fPzS9EsQoj/zrpbcOAm4VGxGqcRQghtmFw89e3bl5CQEABOnz7NN998Q6NGjbh27Rr+/v4pGq5Pnz4cOHCAkSNHcuXKFRYuXMjs2bMNI5nrdDp69+7NyJEjWbVqFWfOnKFjx47Y29vTrl27FM0ihIAWZbzxcLLh+sPnjN10Qes4QgihCZP7PGXJkoUzZ86QN29ehg0bxpkzZ1i+fDnHjh2jUaNGhk7cKWXt2rUMHDiQy5cv4+Pjg7+/v+FsO/hvkMxZs2YZDZJZokSJZG9DhioQIvl2XAyi49zDACz8vCJ+BbJqnEgIkVmZzVAFbm5u7Nmzh2LFilG1alXat29P165duXHjBsWKFSMsLCy1sqYaKZ6EMM2gVadZeDAAbxc7NvSuhpOtXLJFCJH2zGaE8apVq+Lv788PP/zAoUOHaNy4MRDfFylnzpwpHlAIkf5816goud3sufM0nB/WpPLpzUIIkc6YXDz98ssvWFpasnz5cmbMmIG3tzcAGzZs4P3330/xgEKI9MfBxpIJrUuj08Gyo7fZcu6+1pGEECLNvNMI4xmFHLYT4u2M2nCeWTuv4e5gTZNSXkaPlfB2plV5OfVZCJF6zGacJ4C4uDiuXLlCUFAQcXFxRo+l9CjjQoj0y79eIXZceMDF+6HM3594VP8ink6UzOmsQTIhhEg9JhdPBw4coF27dty8eZOXG610Oh2xsTL2ixCZhY2lnt86lGflsTvEvvBDat/VRxy5+YTZu68xtW2Z16xBCCHMj8mH7Xx9fSlUqBDDhw/Hy8sLnU5n9Lizs/n9ypTDdkKkrHN3Q2g0ZTd6Cx07vq1JLjd7rSMJITIgsznb7vLly4wcOZKiRYvi4uKCs7Oz0U0IIYrlcKJawazExil+33Nd6zhCCJGiTC6eKlasyJUrV1IjixAiA+lWPT8ASw7f4mlYlMZphBAi5Zjc5+nrr7/mm2++ITAwkJIlS2JlZTw4XqlSpVIsnBDCfFUp4E4xLyfO3QthwYGbfFW7oNaRhBAiRZjc58nCInFjlU6nQyllth3Gpc+TEKlj9fE79F5ygqxZbNjTvxa2VnqtIwkhMhCzGarg+nXpvyCESJ7GpbwYu/ECd4MjWHX8Dm0r5NY6khBCvDOTi6c8efKkRg4hRAZkpbegU1Ufflx3nl93X+Pj8rmwsNC9eUEhhEjH3mqQTIBz584REBBAVJRxR9BmzZq9cyghRMbRpkJufv73MtcePGfr+fvUL+6pdSQhhHgnJhdP165d44MPPuD06dOGvk6AYbwnc+zzJIRIPVlsLPmkYh5m7rzKt8tOMlYp3i/h9eYFhRAinTJ5qIJevXrh4+PD/fv3sbe35+zZs+zatYvy5cuzY8eOVIgohDB3X9TIT+lcLoRExNB9wTG+W3WaiGj5oSWEME8mF0/79+9nxIgRZMuWDQsLCywsLKhatSqjRo2iZ8+eqZFRCGHmnO2tWN69Mt1q5APgr4MBNP9lL5fuh2qcTAghTGdy8RQbG0uWLFkAyJo1K3fv3gXiO5JfvHgxZdMJITIMK70FAxsW5Y9OFciaxYaL90Np9ssejtx4rHU0IYQwicnFU4kSJTh16hQQP9r42LFj2bt3LyNGjCBfvnwpHlAIkbFUL5SNDb2qUaWAOxHRcfRZeoJnkTFaxxJCiGQzuXgaPHgwcf9/9fQff/yRmzdvUq1aNdavX8+UKVNSPKAQIuPJ5mjDzP+Vw9vFjluPw/lp3XmtIwkhRLKZPMJ4Uh4/foyrq6vhjDtzIyOMC6GNfVcf0u7XgwDM/ew9ahXOrnEiIYQ50er72+SWp6S4ubmZbeEkhNCOX/6sfFYlLwD9l5+SCwgLIcxCihRPQgjxtvq/X4R82RwICo3k+7/Pah1HCCHe6K1HGBdCiJRga6VnYmtfPpqxjzUn71I+jyulc7kYHre00FHY0xErvfzWE0KkD1I8CSE055vLhS9r5mfKtisM/Sdx61PbCrkZ9WFJDZIJIURiyfopV7ZsWZ48eQLAiBEjCAsLS9VQQojM5+s6BWlU0pOcrnaGm7eLHQDLjtziXnC4xgmFECJess62s7Oz4/Lly+TMmRO9Xs+9e/fInj3jnBUjZ9sJkX59PGs/B68/plv1fAxsVFTrOEKIdESr7+9kHbbz9fXls88+o2rVqiilGD9+vGGU8ZcNGTIkRQMKITK3rtXzcfD6YxYeDOCr2gVwtLXSOpIQIpNLVsvTxYsXGTp0KFevXuXYsWMUK1YMS8vEdZdOp+PYsWOpEjQ1ScuTEOlXXJyi/uRdXAl6xqBGRehaPb/WkYQQ6YRW398mD5JpYWFBYGCgHLYTQqSZpYdv0W/FKTydbNnVrxbWlnLmnRDCjAbJjIuLy1CFkxAi/WteJgfZHG0IDIlgzcm7WscRQmRyb/Xz7erVq3z99dfUrVuXevXq0bNnT65evZrS2YQQAgAbSz0d/fIC8Ovua6TAVaWEEOKtmVw8bdq0iWLFinHo0CFKlSpFiRIlOHjwIMWLF2fLli2pkVEIIfhfxTzYW+u5EBjKrssPtY4jhMjETO7zVKZMGRo0aMDo0aONpg8YMIDNmzdLh3EhRKoZseYcc/Zep0oBd/76vJLWcYQQGjObPk/nz5+nc+fOiaZ36tSJc+fOpUgoIYRISqeqedFb6Nh75RFHbz7ROo4QIpMyuXjKli0bJ06cSDT9xIkT0pFcCJGqcrra82EZbwD6LT9JRHSsxomEEJmRyde269KlC127duXatWv4+fmh0+nYs2cPY8aM4ZtvvkmNjEIIYfBd46LsvPSAqw+eM3bjRYY0LaZ1JCFEJmNynyelFJMnT2bChAncvRt/ynCOHDno27cvPXv2RKfTpUrQ1CR9noQwL9svBvHZ3MMALOxSEb/8WTVOJITQgtkMkvmi0NBQABwdHVMskBakeBLC/AxceZpFhwLwdrFjY+9qctkWITIhs+kw/iJHR0ezL5yEEObpu8ZFyeVmx52n4fywVk5WEUKkHbnGgRDCLGWxsWRCK190Olh65DZbz93XOpIQIpOQ4kkIYbYq+LjRpVo+AHovOcE/cukWIUQakOJJCGHW/OsVoqKPG88iY+i56Dj9lp8kLCpG61hCiAzMpOIpOjqaWrVqcenSpdTKI4QQJrG10vPX5xXpWbuA4RBek6l7OHs3WOtoQogMyqTiycrKijNnzpjlcARCiIzLUm+Bf/3CLPy8Eh5ONlx78JwPpu1j/r4bchFhIUSKM/mwXfv27fn9999TI4sQQryTyvnd2dCrOnWLZicqNo6h/5ylyx9HefI8SutoQogMxORxnr7++mv++OMPChQoQPny5XFwcDB6fOLEiSkaMC3IOE9CZCxKKebtu8Go9ReIio3D08mWyW18qZTPXetoQogUZDaDZNaqVevVK9Pp2LZt2zuHSmtSPAmRMZ25E0zPRce59vA5FjroWacgveoUlK4HQmQQZlM8ZURSPAmRcT2PjGHoP2dZfvQ2AHM/e49aheUi5kJkBGY3wviVK1fYtGkT4eHhANIpUwiRLjnYWDK+VWnaVcwNwD8nZCwoIcS7Mbl4evToEXXq1KFQoUI0atSIe/fuAfD555/zzTffpHhAIYRICR+VzQnA5rOBRETHapxGCGHOTC6e+vTpg5WVFQEBAdjb2xumf/zxx2zcuDFFwwkhREopm9sFbxc7nkfFsv1CkNZxhBBmzOTiafPmzYwZM4acOXMaTS9YsCA3b95MsWBCCJGSdDodTUp5AbD21D2N0wghzJnJxdPz58+NWpwSPHz4EBsbmxQJJYQQqaFp6RwA/HvhPs8i5RIuQoi3Y3LxVL16df744w/DfZ1OR1xcHOPGjXvtMAZCCKG14jmc8MnqQER0HP+ev691HCGEmbI0dYFx48ZRs2ZNjhw5QlRUFP369ePs2bM8fvyYvXv3pkZGIYRIEQmH7qZuu8Kak/do7uutdSQhhBkyueWpWLFinDp1igoVKlCvXj2eP3/Ohx9+yPHjx8mfP39qZBRCiBSTcOhu56UggsOiNU4jhDBHJrc8AXh6ejJ8+PCUziKEEKmukIcjhT0cuXg/lE3nAmldPpfWkYQQZuatBsl88uQJ48ePp3Pnznz++edMmDCBx48fp3S2REaNGoVOp6N3796GaUophg0bRo4cObCzs6NmzZqcPXs21bMIIcyXnHUnhHgXJhdPO3fuxMfHhylTpvDkyRMeP37MlClT8PHxYefOnamREYDDhw8ze/ZsSpUqZTR97NixTJw4kV9++YXDhw/j6elJvXr1CA0NTbUsQgjz1uT/D93tvfKQR88iNU4jhDA3JhdPX375Ja1bt+b69eusXLmSlStXcu3aNdq0acOXX36ZGhl59uwZn3zyCb/++iuurq6G6UopJk+ezHfffceHH35IiRIlmD9/PmFhYSxcuDBVsgghzJ9PVgdKejsTG6fYcCZQ6zhCCDNjcvF09epVvvnmG/R6vWGaXq/H39+fq1evpmi4BF9++SWNGzembt26RtOvX79OYGAg9evXN0yzsbGhRo0a7Nu375Xri4yMJCQkxOgmhMhcEg7dLToUIB3HhRAmMbl4Klu2LOfPn080/fz58/j6+qZEJiOLFy/m2LFjjBo1KtFjgYHxvxg9PDyMpnt4eBgeS8qoUaNwdnY23HLlkg6jQmQ2zXxzYGel5+zdEBpN2c3Rm6nfb1MIkTEk62y7U6dOGf7fs2dPevXqxZUrV6hUqRIABw4cYNq0aYwePTpFw926dYtevXqxefNmbG1tXzmfTqczuq+USjTtRQMHDsTf399wPyQkRAooITIZL2c7FnetRM/Fx7n5KIzWsw7Qp25BvqhZAL3Fqz8/hBBCp5RSb5rJwsICnU7Hm2bV6XTExqbc1cpXr17NBx98YHSIMDY2Fp1Oh4WFBRcvXqRAgQIcO3aMMmXKGOZp3rw5Li4uzJ8/P1nbCQkJwdnZmeDgYJycnFIsvxAi/QuNiOb71WdYfeIuAJXzuTO1XRmyZpHLTQmR3mn1/Z2slqfr16+ndo4k1alTh9OnTxtN++yzzyhSpAj9+/cnX758eHp6smXLFkPxFBUVxc6dOxkzZowWkYUQZsbR1opJH/tStWA2hvx9hv3XHvH1wuP89XlFLKQFSgiRhGQVT3ny5EntHElydHSkRIkSRtMcHBxwd3c3TO/duzcjR46kYMGCFCxYkJEjR2Jvb0+7du20iCyEMEM6nY6W5XJSKqczzX/Zy/5rj5i37wadqvpoHU0IkQ691Qjjd+7cYe/evQQFBREXF2f0WM+ePVMkWHL169eP8PBwevTowZMnT6hYsSKbN2/G0dExTXMIIcxfIQ9HBjUuyverzzBm4wWqF8pGgexZtI4lhEhnktXn6UVz586le/fuWFtb4+7ubtQxW6fTce3atRQPmdqkz5MQIoFSivZzDrH78kNK53RmxRd+WOrf6mIMQohUptX3t8mfCEOGDGHIkCEEBwdz48YNrl+/briZY+EkhBAv0ul0jG1ZCkdbS07eDmb6jtQZv04IYb5MLp7CwsJo06YNFhbyS0wIkTF5OdvxQ/P4fpVT/r3MmTvBGicSQqQnJldAnTt3ZtmyZamRRQgh0o3mvjloWMKTmDiF/9ITRESn3DAsQgjzZnKfp9jYWJo0aUJ4eDglS5bEysrK6PGJEyemaMC0IH2ehBBJefQskgaTd/HwWRTdqudjYKOiWkcSQrwgXY/z9KKRI0eyadMmChcuDJCow7gQQmQU7llsGPVhKbr8cYTZu69Rt5gH7+V10zqWEEJjJrc8ubq6MmnSJDp27JhKkdKetDwJIV6n77KTLDt6m9xu9mzoVQ0Hm7ca5UUIkcLM5mw7GxsbqlSpkhpZhBAiXRrStBjeLnYEPA7jp/WJL4wuhMhcTC6eevXqxdSpU1MjixBCpEuOtlaMa1UKgIUHA9hxMUjjREIILZnc9nzo0CG2bdvG2rVrKV68eKIO4ytXrkyxcEIIkV745c/KZ1XyMnfvDfqvOMWm3tVxsbfWOpYQQgMmF08uLi58+OGHqZFFCCHStf7vF2HnpQdce/CcXotPMKVtGZztrN68oBAiQzG5w3hGJB3GhRDJdeLWU1rP3E9UbBw5Xe2Y0rYMZXO7ah1LiEzJbDqMCyFEZuaby4Wl3SuTy82O20/CaTVzP9N3XCEuLtP/DhUi0zC55cnHx+e14zmZ4/XtpOVJCGGqkIhovlt1hjUn7wJQpYA7U9uWxc1B+kEJkVbMZpDM3r17G92Pjo7m+PHjbNy4kb59+6ZULiGESNecbK2Y0saXagWyMvSfs+y98gj/pSeY2/E9GTBYiAzO5OKpV69eSU6fNm0aR44ceedAQghhLnQ6Ha3fy0Vxbyc+mL6PHRcfsPjwLdpWyK11NCFEKkqxPk8NGzZkxYoVKbU6IYQwG8VzONOvQfwlq35ce46AR2EaJxJCpKYUK56WL1+Om5tc80kIkTl1quJDBR83nkfF8u2yk8RKB3IhMiyTD9uVKVPG6Hi+UorAwEAePHjA9OnTUzScEEKYCwsLHRNaleb9ybs4dOMxc/Zcp0v1fFrHEkKkApOLpxYtWhjdt7CwIFu2bNSsWZMiRYqkVC4hhDA7udzsGdykGANXnmbc5ovUKJyNQh6OWscSQqQwGSQTGapACJFylFJ0mneY7RcfUDyHEws6V8RVhi8QIlXIIJlCCJEB6HQ6xnxUChd7K87eDaHhz7s5cO2R1rGEECko2cWThYUFer3+tTdLS5OPAgohRIaT3cmWRV0qkS+bA4EhEbT99QATN18kJjZO62hCiBSQ7MN2f//99ysf27dvH1OnTkUpRXh4eIqFSyty2E4IkRrComIY9s9Zlh65DUD5PK5MaVuGHC52GicTImPQ6vv7nfo8XbhwgYEDB7JmzRo++eQTfvjhB3LnNr/B4aR4EkKkpr9P3OG7VWd4FhlDvqwOrOtZDTtrvdaxhDB7ZtXn6e7du3Tp0oVSpUoRExPDiRMnmD9/vlkWTkIIkdqa+3qzvmc1PJ1sufbwOWM2XtA6khDiHZhUPAUHB9O/f38KFCjA2bNn+ffff1mzZg0lSpRIrXxCCJEh5Ha3Z0zLUgDM23eDvVceapxICPG2kl08jR07lnz58rF27VoWLVrEvn37qFatWmpmE0KIDKVGoWx8UjG+hb7vspOERERrnEgI8TaS3efJwsICOzs76tati17/6mP1K1euTLFwaUX6PAkh0srzyBgaTdnNzUdhtCyXk/GtSmsdSQizpdX3d7LHFmjfvr3RZVmEEEKYzsHGkgmtStNq1n6WH71N/WIe1C/uqXUsIYQJZIRxpOVJCJH2Rm04z6yd18iaxZpNvavjnsVG60hCmB2zOttOCCHEu/GvV4jCHo48fBbFoFWnkd+xQpgPKZ6EEEIDNpZ6Jn5cGiu9jk1n77Pq+B2tIwkhkkmKJyGE0EjxHM70qlMQgKH/nOXuU/O7QoMQmZEUT0IIoaHuNfLjm8uF0IgY+i0/RVycHL4TIr2T4kkIITRkqbdgQuvS2FpZsOfKQxYcvKl1JCHEG0jxJIQQGsufLQsD3i8CwMj157n+8LnGiYQQryPFkxBCpAPtK+fFL787EdFx9F58nCfPo7SOJIR4BSmehBAiHbCw0DGuVWkcbS05eTuYRlN2c/DaI61jCSGSIMWTEEKkE94udizqUgmfrA7cC46g7a8HmLz1ErHSiVyIdEWKJyGESEdKeDuz5uuqfFQ2J3EKJm+9TNtfDxAYHKF1NCHE/5PiSQgh0pksNpZMaF2ayR/74mCt59D1x3SYc4jImFitowkhkOJJCCHSrRZlvFnXsxpZs1hz8X4oE7dc0jqSEAIpnoQQIl3Lm9WBkR+UBGD2rmscvvFY40RCCCmehBAinatf3JOW5XKiFHyz9CTPI2O0jiREpibFkxBCmIEhTYvh7WJHwOMwRq4/r3UcITI1KZ6EEMIMONlaMa5lKQD+OhjAzksPNE4kROYlxZMQQpgJvwJZ6eiXF4B+y08SHBatbSAhMikpnoQQwoz0f78I+bI6cD8kkiH/nNE6jhCZkhRPQghhRuys9UxoXRoLHfx94i7rTt3TOpIQmY4UT0IIYWbK5HalR80CAAxefZqgUBl9XIi0JMWTEEKYoZ51ClLMy4knYdEMXHEapeT6d0KkFSmehBDCDFlbWjDpY1+s9Rb8eyGIpUduaR1JiExDiichhDBThT0d8a9fCIARa85x63GYxomEyBykeBJCCDPWpVo+yudx5XlULL2XnOBpWJTWkYTI8KR4EkIIM6a30DGhdWkcrPUcvfmERj/vluvfCZHKpHgSQggzl8fdgcVdK5PX3Z67wRF8PGs/U/+9TGycdCIXIjXolJyiQUhICM7OzgQHB+Pk5KR1HCGEeCvPImP4fvUZVh2/A0ClfG608PU2msfVwZo6RbJjqZffzsL8afX9na6Lp1GjRrFy5UouXLiAnZ0dfn5+jBkzhsKFCxvmUUoxfPhwZs+ezZMnT6hYsSLTpk2jePHiyd6OFE9CiIxkxdHbfP/3GcKiYpN8vEJeNya38SWHi10aJxMiZWn1/Z2uf3rs3LmTL7/8kgMHDrBlyxZiYmKoX78+z58/N8wzduxYJk6cyC+//MLhw4fx9PSkXr16hIaGaphcCCG081G5nKz9uioty+WkblGPF27ZyWJjyaEbj2n48242nQ3UOqoQZildtzy97MGDB2TPnp2dO3dSvXp1lFLkyJGD3r17079/fwAiIyPx8PBgzJgxdOvWLVnrlZYnIURmcfPRc75edJxTt4MB+LRSHr5rXBRbK73GyYQwnbQ8JUNwcPyb3c3NDYDr168TGBhI/fr1DfPY2NhQo0YN9u3b98r1REZGEhISYnQTQojMII+7A8u7+9G1ej4A/jxwk49nHyAyJulDfEKIxMymeFJK4e/vT9WqVSlRogQAgYHxTc4eHh5G83p4eBgeS8qoUaNwdnY23HLlypV6wYUQIp2xtrRgUKOizPvsPZztrDh56ymTtlzWOpYQZsNsiqevvvqKU6dOsWjRokSP6XQ6o/tKqUTTXjRw4ECCg4MNt1u35LIGQojMp2bh7Iz5qBQAs3Zd5YiMDyVEsphF8fT111/zzz//sH37dnLmzGmY7unpCZColSkoKChRa9SLbGxscHJyMroJIURm9H4JTz4s641S8M2ykzyPjNE6khDpXrounpRSfPXVV6xcuZJt27bh4+Nj9LiPjw+enp5s2bLFMC0qKoqdO3fi5+eX1nGFEMIsDW1aHC9nW24+CmPUhvNaxxEi3UvXxdOXX37JggULWLhwIY6OjgQGBhIYGEh4eDgQf7iud+/ejBw5klWrVnHmzBk6duyIvb097dq10zi9EEKYB2c7K8a1LA3AggMB7Lz0QONEQqRv6Xqoglf1W5o7dy4dO3YE/hskc9asWUaDZCZ0Kk8OGapACCFg6N9nmL//Jh5ONmzuXQNneyutIwnxWjLCuIakeBJCCAiPiqXRlN1cf/icFr45mNymjNaRhHgtGedJCCGEpuys9UxoXRoLHaw+cZf1p+9pHUmIdEmKJyGEEAZlc7vyRc38AHy36jRBoREaJxIi/ZHiSQghhJFedQpR1MuJJ2HRDFp5GundIYQxKZ6EEEIYsba0YGLr0ljrLdh6PohlR29rHUmIdEWKJyGEEIkU9XKiT71CAIxYc47bT8I0TiRE+iHFkxBCiCR1rZ6PcnlceRYZw7fLThIbJ4fvhAApnoQQQryC3kLHhFalsbPSc+DaY9r9eoB7weFaxxJCc1I8CSGEeKW8WR2Y3MYXB2s9B68/puHPu9ly7r7WsYTQlBRPQgghXqtBcU/W9qxGSW9nnoZF0+WPIwz75ywR0bFaRxNCE1I8CSGEeCOfrA6s+MKPz6vGX6B93r4bfD7/iMaphNCGFE9CCCGSxdrSgsFNijH3s/ew1luw58pDLgaGah1LiDQnxZMQQgiT1CqcneqFsgGw9tRdjdMIkfakeBJCCGGypqW9AFh76p6MQC4yHSmehBBCmKxuUQ9srSy4/vA5Z++GaB1HiDQlxZMQQgiTOdhYUqeIBwBr5NCdyGSkeBJCCPFWmpT6/0N3J+XQnchcpHgSQgjxVmoVyY6DtZ47T8M5FvBU6zhCpBkpnoQQQrwVWys99YrFH7qTs+5EZiLFkxBCiLfWtHQOANaduicXDhaZhhRPQggh3lq1gtlwsrUkKDSSQ9cfax1HiDQhxZMQQoi3Zm1pwfslPAE5dCcyDymehBBCvJOEQ3cbzgQSHRuncRohUp+l1gGEEEKYt8r53HF3sObR8yhGrj+Pl7PtO68zl6s9DYp7YmGhS4GEQqQsKZ6EEEK8E0u9BQ1LerLgQABz995IsfXWKpyNca1KkzWLTYqtU4iUIMWTEEKId9azdkF06HgeFfPO64qNU2w8E8j2iw9o+PNuJn/sS5UCWVMgpRApQ6dkWFhCQkJwdnYmODgYJycnreMIIUSmdzEwlK8WHuNy0DN0OviiRn66Vc+P7g09dR2sLdHLob5MQ6vvbymekOJJCCHSo/CoWEasPceiQwHJXia7ow1jWpaiVuHsqZhMpBdafX/L2XZCCCHSJTtrPaM+LMm0dmXJmsU6WcsEhUby2dzD/Lj2HFExcuafSB3S8oS0PAkhRHoXF6eIecMI5tGxcYzbdJF5+24AUNLbmalty5A3q0MaJBRakJYnIYQQ4hUsLHRYW1q89uZgY8mwZsWZ/Wk5XOytOH0nmMZTdrP5bKDW8UUGI8WTEEKIDKV+cU829KpGBR83nkfF0nvJCQIehWkdS2QgUjwJIYTIcLyc7VjUpRIVfdwIi4rlm2Un5MLFIsVI8SSEECJD0lvoGN+qNA7Weg7feMLve65pHUlkEFI8CSGEyLByudnzfZNiAIzfdImLgaEaJxIZgRRPQgghMrSP38tF7SLZiYqNw3/pCRnCQLwzKZ6EEEJkaDqdjtEflsTF3oqzd0P4ZdtlrSMJMyfFkxBCiAwvu5MtP7YoAcC0HVfZcPqexomEOZPiSQghRKbQpFQOWvjmIDZO8cVfxxi8+jQR0bFaxxJmSIonIYQQmcbYlqXpVj0fAAsOBNBi2l4u35dO5MI0cnkW5PIsQgiR2ey69AD/pSd4+CwKWysLOlTOSxYbS8PjFhY6Gpf0kku7pHNafX9L8YQUT0IIkRk9CI3Ef+kJdl9+mOTjud3s2dCrGg4vFFUifZHiSUNSPAkhROYUF6dYeuQWJ28/NZq+7UIQ90Mi+aRibn76oKQ24cQbSfGkISmehBBCvGjvlYd88ttBAOZ99h41C2fXOJFIilbf39JhXAghhHhJlQJZ6eiXF4D+K04RHBatbSCRrkjxJIQQQiSh//tFyJfVgfshkQz554zWcUQ6IsWTEEIIkQQ7az0TWpfGQgd/n7jLulMysKaIJ8WTEEII8QplcrvyZa0CAAxefZoHoZEaJxLpgRRPQgghxGt8XbsgxbyceBIWzexdV7WOI9IBKZ6EEEKI17C2tKBvg8IALDp0i5AI6Tye2UnxJIQQQrxBzcLZKOSRhWeRMSw8GKB1HKExKZ6EEEKIN9DpdHSpFn9NvLl7rxMVE6dxIqElKZ6EEEKIZGjmm4PsjjbcD4nkn5N3tY4jNCTFkxBCCJEMNpZ6PqviA8Cvu64hF+jIvKR4EkIIIZKpXcXcOFjruXg/lB2XHmgdR2hEiichhBAimZztrGhbITcAs3de0ziN0IoUT0IIIYQJOlX1wdJCx/5rjzh9O1jrOEIDlloHEEIIIcxJDhc7mpTyYvWJuwz95wxVCmQ1PGZpYUGT0l7kz5ZFw4QitWWYlqfp06fj4+ODra0t5cqVY/fu3VpHEkIIkUF1rZ4fgGMBT5m67YrhNmnrJRpP2c3CgwHSoTwD06kM8OwuWbKETz/9lOnTp1OlShVmzZrFb7/9xrlz58idO/cblw8JCcHZ2Zng4GCcnJzSILEQQghzt+r4bU7eMj5sd/5eCAevPwagcUkvRn5YEmc7Ky3iZQpafX9niOKpYsWKlC1blhkzZhimFS1alBYtWjBq1Kg3Li/FkxBCiJQQF6f4dfc1xm26SEycwtvFjrEtS5HH3V7raJpzsbcmi03K9hbS6vvb7Ps8RUVFcfToUQYMGGA0vX79+uzbty/JZSIjI4mM/O/K2CEhIamaUQghROZgYaGjW438VMrnzteLjhPwOIxPfjuodax0YeQHJWlX8c1Hg8yB2RdPDx8+JDY2Fg8PD6PpHh4eBAYGJrnMqFGjGD58eFrEE0IIkQmVzuXCup5VGb7mHOtP3yM2zuwP8rwzfYbpZZ0BiqcEOp3O6L5SKtG0BAMHDsTf399wPyQkhFy5cqVqPiGEEJmLo60V41uVZnyr0lpHESnM7IunrFmzotfrE7UyBQUFJWqNSmBjY4ONjU1axBNCCCFEBmP2jWjW1taUK1eOLVu2GE3fsmULfn5+GqUSQgghREZl9i1PAP7+/nz66aeUL1+eypUrM3v2bAICAujevbvW0YQQQgiRwWSI4unjjz/m0aNHjBgxgnv37lGiRAnWr19Pnjx5tI4mhBBCiAwmQ4zz9K5knCchhBDC/Gj1/W32fZ6EEEIIIdKSFE9CCCGEECaQ4kkIIYQQwgRSPAkhhBBCmECKJyGEEEIIE0jxJIQQQghhAimehBBCCCFMIMWTEEIIIYQJpHgSQgghhDBBhrg8y7tKGGQ9JCRE4yRCCCGESK6E7+20vliKFE9AaGgoALly5dI4iRBCCCFMFRoairOzc5ptT65tB8TFxXH37l0cHR3R6XRvvZ6QkBBy5crFrVu35Bp5aUT2edqTfZ72ZJ+nPdnnae9t9rlSitDQUHLkyIGFRdr1RJKWJ8DCwoKcOXOm2PqcnJzkzZbGZJ+nPdnnaU/2edqTfZ72TN3nadnilEA6jAshhBBCmECKJyGEEEIIE0jxlIJsbGwYOnQoNjY2WkfJNGSfpz3Z52lP9nnak32e9sxpn0uHcSGEEEIIE0jLkxBCCCGECaR4EkIIIYQwgRRPQgghhBAmkOJJCCGEEMIEUjyZaPr06fj4+GBra0u5cuXYvXv3a+ffuXMn5cqVw9bWlnz58jFz5sw0SppxmLLPV65cSb169ciWLRtOTk5UrlyZTZs2pWHajMHU13mCvXv3Ymlpia+vb+oGzIBM3eeRkZF899135MmTBxsbG/Lnz8+cOXPSKK35M3V///XXX5QuXRp7e3u8vLz47LPPePToURqlNX+7du2iadOm5MiRA51Ox+rVq9+4TLr+/lQi2RYvXqysrKzUr7/+qs6dO6d69eqlHBwc1M2bN5Oc/9q1a8re3l716tVLnTt3Tv3666/KyspKLV++PI2Tmy9T93mvXr3UmDFj1KFDh9SlS5fUwIEDlZWVlTp27FgaJzdfpu7zBE+fPlX58uVT9evXV6VLl06bsBnE2+zzZs2aqYoVK6otW7ao69evq4MHD6q9e/emYWrzZer+3r17t7KwsFA///yzunbtmtq9e7cqXry4atGiRRonN1/r169X3333nVqxYoUC1KpVq147f3r//pTiyQQVKlRQ3bt3N5pWpEgRNWDAgCTn79evnypSpIjRtG7duqlKlSqlWsaMxtR9npRixYqp4cOHp3S0DOtt9/nHH3+sBg8erIYOHSrFk4lM3ecbNmxQzs7O6tGjR2kRL8MxdX+PGzdO5cuXz2jalClTVM6cOVMtY0aWnOIpvX9/ymG7ZIqKiuLo0aPUr1/faHr9+vXZt29fksvs378/0fwNGjTgyJEjREdHp1rWjOJt9vnL4uLiCA0Nxc3NLTUiZjhvu8/nzp3L1atXGTp0aGpHzHDeZp//888/lC9fnrFjx+Lt7U2hQoX49ttvCQ8PT4vIZu1t9refnx+3b99m/fr1KKW4f/8+y5cvp3HjxmkROVNK79+fcmHgZHr48CGxsbF4eHgYTffw8CAwMDDJZQIDA5OcPyYmhocPH+Ll5ZVqeTOCt9nnL5swYQLPnz+ndevWqRExw3mbfX758mUGDBjA7t27sbSUjxRTvc0+v3btGnv27MHW1pZVq1bx8OFDevTowePHj6Xf0xu8zf728/Pjr7/+4uOPPyYiIoKYmBiaNWvG1KlT0yJyppTevz+l5clEOp3O6L5SKtG0N82f1HTxaqbu8wSLFi1i2LBhLFmyhOzZs6dWvAwpufs8NjaWdu3aMXz4cAoVKpRW8TIkU17ncXFx6HQ6/vrrLypUqECjRo2YOHEi8+bNk9anZDJlf587d46ePXsyZMgQjh49ysaNG7l+/Trdu3dPi6iZVnr+/pSficmUNWtW9Hp9ol8mQUFBiarjBJ6enknOb2lpibu7e6plzSjeZp8nWLJkCZ07d2bZsmXUrVs3NWNmKKbu89DQUI4cOcLx48f56quvgPgvdqUUlpaWbN68mdq1a6dJdnP1Nq9zLy8vvL29cXZ2NkwrWrQoSilu375NwYIFUzWzOXub/T1q1CiqVKlC3759+b/27jekqbeNA/j36FzNSVYvQkkpqBwqKauR6AiLgiQqepEvSvJPGQlSWVoUQvlCECmFAjVJmRBIvdGgFNJIDfufbmlulNkUKsE3CaZSZNfz4ofnaY8Wnn7ptp7vBw7M677POfd9MTwX987ZACAuLg5GoxGbN29GcXGx11dB/ka+fv3kytMc6fV6bNy4Ea2trR7x1tZWJCUlzbpPYmLijP4tLS2wWCwICgqat7H+LX4n58A/K06ZmZmor6/nPQkaac35kiVL0NvbC4fDoW45OTkwmUxwOBxISEhYqKH7rd95n1utVnz8+BGfP39WY2/evEFAQAAiIiLmdbz+7nfyPTExgYAAz8tlYGAggP+uhtCf5fPXTy/dqO6Xph9vra2tFafTKXl5eWI0GmVwcFBERM6ePSsHDx5U+08/anny5ElxOp1SW1vrU49a+gOtOa+vrxedTicVFRUyPDysbqOjo96agt/RmvP/xafttNOa87GxMYmIiJB9+/ZJX1+fdHR0yLp16yQ7O9tbU/ArWvNts9lEp9NJZWWlDAwMSGdnp1gsFtm0aZO3puB3xsbGxG63i91uFwBSXl4udrtd/XoIf7t+snjSqKKiQlatWiV6vV42bNggHR0daltGRoYkJyd79G9vbxez2Sx6vV5Wr14tVVVVCzxi/6cl58nJyQJgxpaRkbHwA/djWt/nP2Lx9Hu05tzlcsn27dvFYDBIRESEnDp1SiYmJhZ41P5La76vXLkiMTExYjAYJDw8XNLS0uT9+/cLPGr/1dbW9sv/zf52/VREuOZIRERENFe854mIiIhIAxZPRERERBqweCIiIiLSgMUTERERkQYsnoiIiIg0YPFEREREpAGLJyIiIiINWDwRkVcNDg5CURQ4HI4FPW97ezsURcHo6Oi/Oo6iKLh169ZP2701PyKaPyyeiGjeKIryyy0zM9PbQyQi0kzn7QEQ0d9reHhYfX3z5k2cP38er1+/VmMGgwGfPn3SfNypqSkoijLjx1qJiBYC//MQ0bwJCwtTt9DQUCiKMiM27d27d9i6dSuCg4MRHx+Px48fq211dXVYunQp7ty5g5iYGCxatAhDQ0P4+vUrzpw5g5UrV8JoNCIhIQHt7e3qfkNDQ9i9ezeWLVsGo9GI2NhYNDc3e4yxq6sLFosFwcHBSEpK8ijuAKCqqgpr1qyBXq+HyWTC9evXfznnZ8+ewWw2Y/HixbBYLLDb7f8ig0Tki1g8EZFPKCwsREFBARwOB6KiorB//358+/ZNbZ+YmEBJSQlqamrQ19eHFStWICsrCw8fPsSNGzfQ09OD1NRUpKSkoL+/HwCQm5uLL1++4MGDB+jt7UVpaSlCQkJmnLesrAwvXryATqfDoUOH1LbGxkacOHEC+fn5ePXqFY4ePYqsrCy0tbXNOofx8XHs2rULJpMJXV1dKCoqQkFBwTxki4i8ytu/TExE/x9sNpuEhobOiLvdbgEgNTU1aqyvr08AiMvlUvcFIA6HQ+3z9u1bURRFPnz44HG8bdu2yblz50REZP369VJUVDTreKZ/5f3evXtqrKmpSQDI5OSkiIgkJSXJkSNHPPZLTU2VnTt3qn8DkMbGRhERqa6uluXLl8v4+LjaXlVVJQDEbrf/LDVE5Ge48kREPiEuLk59HR4eDgAYGRlRY3q93qNPd3c3RARRUVEICQlRt46ODgwMDAAAjh8/juLiYlitVly4cAE9PT2azutyuWC1Wj36W61WuFyuWefgcrkQHx+P4OBgNZaYmDi3BBCR3+AN40TkE4KCgtTXiqIAAL5//67GDAaDGp9uCwwMRFdXFwIDAz2ONf3RXHZ2Nnbs2IGmpia0tLSgpKQEZWVlOHbs2JzP++M5AUBEZsR+bCOivx9XnojIL5nNZkxNTWFkZARr16712MLCwtR+kZGRyMnJQUNDA/Lz83Ht2rU5nyM6OhqdnZ0esUePHiE6OnrW/jExMXj58iUmJyfV2JMnTzTOjIh8HYsnIvJLUVFRSEtLQ3p6OhoaGuB2u/H8+XOUlpaqT9Tl5eXh7t27cLvd6O7uxv37939a+Mzm9OnTqKurw9WrV9Hf34/y8nI0NDT89CbwAwcOICAgAIcPH4bT6URzczMuXbr0R+ZLRL6DxRMR+S2bzYb09HTk5+fDZDJhz549ePr0KSIjIwH8831Qubm5iI6ORkpKCkwmEyorK+d8/L179+Ly5cu4ePEiYmNjUV1dDZvNhi1btszaPyQkBLdv34bT6YTZbEZhYSFKS0v/xFSJyIcowg/piYiIiOaMK09EREREGrB4IiIiItKAxRMRERGRBiyeiIiIiDRg8URERESkAYsnIiIiIg1YPBERERFpwOKJiIiISAMWT0REREQasHgiIiIi0oDFExEREZEGLJ6IiIiINPgP1xQ+FKsoyBQAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Plot the number of answers with a semantic similarity score >= a given threshold for each benchmark\n",
    "for benchmark in benchmarks:\n",
    "    thresholds = np.arange(0.01, 0.99, 0.01)\n",
    "    num_rows_above_threshold = []\n",
    "    for threshold in thresholds:\n",
    "        num_rows_above_threshold.append(len(benchmark['data'][benchmark['data']['Similarity'] >= threshold]))\n",
    "    benchmark['num_rows_above_threshold'] = num_rows_above_threshold\n",
    "\n",
    "for benchmark in benchmarks:\n",
    "    plt.plot(thresholds, benchmark['num_rows_above_threshold'], label=benchmark['name'])\n",
    "plt.xlabel('Threshold')\n",
    "plt.ylabel('Number of answers')\n",
    "plt.title('Number of answers with semantic similarity score >= threshold')\n",
    "plt.legend()\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Observations\n",
    "\n",
    "* The `focused` agent outperforms the `succinct` agent by a small margin across most thresholds, until about 0.7, where it clearly outperforms the `succinct` agent.\n",
    "* Given this, I will deliver the `focused` agent as the best performing agent."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Exactly correct answers"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 224,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGHCAYAAAC06oixAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDJElEQVR4nO3deVhUZf8/8PcRZB9WQTCRRQFFBU306w4IiEq55WMupUhppiaKW6glLolSpuaaWmJWYiVaaZkLm+WGIEruO67xRCqIiTDcvz/8cR5H0GAYHTy9X9c118XcZ/vMOQPz5j73OSMJIQSIiIiIFKyWvgsgIiIietoYeIiIiEjxGHiIiIhI8Rh4iIiISPEYeIiIiEjxGHiIiIhI8Rh4iIiISPEYeIiIiEjxGHiIiIhI8Rh46JmJj4+HJEkwMTHBpUuXyk0PCAhAs2bN9FAZkJKSAkmS8N133+ll+1V18eJFhIWFwdbWFpIkYdy4cfou6V9LkiTExMTIz48fP46YmBhcvHix3LzVfY8XFhZi/vz58PX1haWlJVQqFRo2bIj+/fsjNTVVnq/s/ZySkqL1th5V0TpjYmIgSZLOtlEmPDwcrq6uGm1z587Fli1bdL6tmmDRokXo27cv3NzcIEkSAgICqrR8cXExZs6cCVdXVxgbG6Nx48ZYsmTJ0yn2OWao7wLo36eoqAjTp0/H+vXr9V3Kc2v8+PE4cOAAPv/8czg6OsLJyUnfJf1r7du3D/Xr15efHz9+HDNnzkRAQEC5D+3qUKvV6Nq1K7KzszFp0iS0adMGAHDmzBn8+OOP2LNnD/z9/QEAL774Ivbt2wdvb2+dbf9prPNx3nvvPURGRmq0zZ07F/369UPv3r2f+vaftZUrV8Lc3BxdunTBjz/+WOXlR40ahfXr12P27Nlo3bo1fvnlF0RGRqKgoABTp059ChU/nxh46Jnr1q0bvv76a0ycOBG+vr76LueZ+vvvv2FiYlLt/4p///13tGnTRpF//LV19+5dmJmZPfPttm3b9plsJy0tDXv37sXnn3+OYcOGye2hoaEYM2YMSktL5TZLS0ud1/U01vmosmPYsGHDp7qdmub48eOoVevBCZeq9gAeO3YMn332GT744ANMmjQJwIOexLy8PMyZMwcjR46Era2tzmt+HvGUFj1zkydPhp2dHaZMmfLE+S5evAhJkhAfH19u2qOnEcq61o8ePYr//Oc/sLKygq2tLaKiolBSUoJTp06hW7duUKlUcHV1RVxcXIXbvHfvHqKiouDo6AhTU1P4+/vj8OHD5eY7dOgQevbsCVtbW5iYmKBly5b45ptvNOYpO4W3Y8cOREREwN7eHmZmZigqKnrsa87JycFrr70GBwcHGBsbo0mTJliwYIH8YVZ2WuHs2bP4+eefIUkSJEmq8PRJmWXLlqFz585wcHCAubk5mjdvjri4OBQXF2vMV3a6JT09HZ06dYKZmRnc3d0xb948jQ/T0tJSzJkzB15eXjA1NYW1tTV8fHywePFiAA/+AEuShG+//VZeJiMjA5IkoWnTphrb7NmzJ1q1aqXRtnHjRrRr1w7m5uawsLBAaGhouWMQHh4OCwsLZGdno2vXrlCpVAgKCgIAHD58GC+99JK8D+vVq4ewsDBcuXLlifuoVq1ayM3NldsWLFgASZIwevRojdduY2ODCRMmyG0Pvxfj4+Pxn//8BwAQGBgoH59H38P/tI8rkpeXBwCP7c0r+8AEKj79VLbPTp48idDQUJibm8PJyQnz5s0DAOzfvx8dO3aEubk5PD09sW7dOo31V/Y02caNG9G1a1c4OTnB1NQUTZo0wbvvvovCwkKN+Z50DB89pSVJEgoLC7Fu3Tp5nwYEBODixYswNDREbGxsuTrS0tLKvQ9rqoePXVVt2bIFQgiNEAwAw4YNw99//43t27dXtzzFYOChZ06lUmH69On45ZdfkJSUpNN19+/fH76+vti0aROGDx+OhQsXYvz48ejduzfCwsKwefNmdOnSBVOmTEFiYmK55adOnYrz589jzZo1WLNmDa5du4aAgACcP39enic5ORkdOnTArVu3sHLlSnz//fdo0aIFXn311QrDWUREBGrXro3169fju+++Q+3atSus/b///S/at2+PHTt2YPbs2fjhhx8QHByMiRMnYsyYMQD+d1rB0dERHTp0wL59+7Bv374nntI6d+4cBg0ahPXr12Pr1q1444038OGHH+Ktt94qN++NGzcwePBgvPbaa/jhhx/QvXt3REdH48svv5TniYuLQ0xMDAYOHIht27Zh48aNeOONN3Dr1i0AQNOmTeHk5IRdu3bJy+zatQumpqY4fvw4rl27BgAoKSlBamoqgoOD5fnmzp2LgQMHwtvbG9988w3Wr1+PgoICdOrUCcePH9eo9f79++jZsye6dOmC77//HjNnzkRhYSFCQkLwxx9/YNmyZdi5cycWLVqEBg0aoKCg4LH7KDg4GEII7N69u1zNO3fulNsOHTqEW7duadT8sLCwMMydOxfAgxBVdnzCwsKqtI8r4ufnh9q1ayMyMhJfffUVrl+//sT5K1JcXIy+ffsiLCwM33//vbztqVOnYujQoYiIiMDmzZvh5eWF8PBwZGRkVHkbZ86cQY8ePfDZZ59h+/btGDduHL755hu8/PLL5eat6BhWZN++fTA1NUWPHj3kfbp8+XK4urqiZ8+eWLlyJdRqtcYyS5cuRb169dCnT58n1ltSUlKphxBCJ8vp2u+//w57e3s4OjpqtPv4+MjT6f8TRM/I2rVrBQCRnp4uioqKhLu7u/Dz8xOlpaVCCCH8/f1F06ZN5fkvXLggAIi1a9eWWxcAMWPGDPn5jBkzBACxYMECjflatGghAIjExES5rbi4WNjb24u+ffvKbcnJyQKAePHFF+V6hBDi4sWLonbt2uLNN9+U2xo3bixatmwpiouLNbb10ksvCScnJ6FWqzVe75AhQyq1f959910BQBw4cECj/e233xaSJIlTp07JbS4uLiIsLKxS632YWq0WxcXF4osvvhAGBgbir7/+kqf5+/tXuH1vb28RGhqq8TpbtGjxxO289tprwt3dXX4eHBwshg8fLmxsbMS6deuEEEL89ttvAoDYsWOHEEKInJwcYWhoKN555x2NdRUUFAhHR0fRv39/uW3o0KECgPj888815j106JAAILZs2VKZ3aGhfv36IiIiQgghRFFRkTA3NxdTpkwRAMSlS5eEEEJ88MEHonbt2uLOnTvyco++F7/99lsBQCQnJ5fbRmX38eN89tlnwsLCQgAQAISTk5MYMmSISEtL05iv7P38cA1l+2zTpk1yW9nvAgCRmZkpt+fl5QkDAwMRFRX1xHWW/d49TmlpqSguLhapqakCgDhy5Ei5eh49hmXTXFxcNNrMzc3F0KFDy81bVtfmzZvltqtXrwpDQ0Mxc+bMx9ZWpmxf/tPj4b9DZX+bKvOo6H3wJE2bNhX+/v6Vnj8kJER4eXlVOM3IyEiMGDGiSttXMvbwkF4YGRlhzpw5OHToULlTQdXx0ksvaTxv0qQJJElC9+7d5TZDQ0M0atSowivFBg0apDG+xsXFBe3bt0dycjIA4OzZszh58iQGDx4MQPO/vB49euD69es4deqUxjpfeeWVStWelJQEb29veTBqmfDwcAghtO4NO3z4MHr27Ak7OzsYGBigdu3aGDJkCNRqNU6fPq0xr6OjY7nt+/j4aOyrNm3a4MiRIxg1ahR++eUX5Ofnl9tmUFAQzp8/jwsXLuDevXv49ddf0a1bNwQGBso9Jrt27YKxsTE6duwIAPjll19QUlKCIUOGaOxXExMT+Pv7V3gq5dF926hRI9jY2GDKlClYuXJluV6hJwkKCpJ7pfbu3Yu7d+8iKioKderU0ai57HSbtiqzjx8nIiICV65cwddff42xY8fC2dkZX375Jfz9/fHhhx/+4/KSJKFHjx7y87LfBScnJ7Rs2VJut7W1hYODQ6VqetT58+cxaNAgODo6yu+3ssHUJ06cKDd/ZX8/HicgIAC+vr5YtmyZ3LZy5UpIkoQRI0b84/Lp6emVejzcQ1WvXr1KL/foKdun4UljAp/GVXTPKw5aJr0ZMGAAPvroI0ybNg19+/bVyTofHZxnZGQEMzMzmJiYlGuv6IP60W7hsrYjR44AAP744w8AwMSJEzFx4sQKa/jzzz81nlf2Cqq8vLwKr+qpV6+ePL2qcnJy0KlTJ3h5eWHx4sVwdXWFiYkJDh48iNGjR+Pvv//WmN/Ozq7cOoyNjTXmi46Ohrm5Ob788kusXLkSBgYG6Ny5M+bPnw8/Pz8AkE/57Nq1C25ubiguLkaXLl3wxx9/YPbs2fK0Dh06wNTUFMD/9m3r1q0rfC2PjnMwMzODpaWlRpuVlRVSU1PxwQcfYOrUqbh58yacnJwwfPhwTJ8+/bGnE8tqXrduHc6cOYNdu3ahZcuWcHBwQJcuXbBr1y4MGjQIe/fuxbRp0x67jsqozD5+EisrKwwcOBADBw4E8GDMVHBwMKZNm4bhw4fD2tr6scs+7nehokGtRkZGuHfvXqVqKnPnzh106tQJJiYmmDNnDjw9PWFmZobLly+jb9++5V5jRcdQG2PHjsWbb76JU6dOwd3dHatXr0a/fv0q/H1+VIsWLSq1DQMDA/lnIyMjrZZ7Guzs7JCVlVWuvbCwEPfv3+eA5Ycw8JDeSJKE+fPnIyQkBKtWrSo3vewP86ODfLX54K+sGzduVNhW9iFVp04dAA8+9B8X0ry8vDSeV/Y/LDs7uwrHZZSNeSnbdlVs2bIFhYWFSExMhIuLi9xe0R/IyjI0NERUVBSioqJw69Yt7Nq1C1OnTkVoaCguX74MMzMz1K9fH56enti1axdcXV3h5+cHa2trBAUFYdSoUThw4AD279+vMWaj7PV99913GrU+zuP2a/PmzZGQkAAhBI4ePYr4+HjMmjULpqamePfddx+7vrIBs7t27cLOnTsREhIit0+fPh1paWkoKip67PgdfWnatCkGDBiARYsW4fTp0+V6j56lpKQkXLt2DSkpKXKvDgB5fNejdNX7MGjQIEyZMgXLli1D27ZtcePGDY3B5k/ypBD8sLVr1yI8PBzAgwsq3NzcKrVccnJyle+rUxVl7/cbN25oBLzs7GwAVb/qS8kYeEivgoODERISglmzZsHZ2VljWt26dWFiYoKjR49qtH///fdPrZ4NGzYgKipK/kN86dIl7N27F0OGDAHwIMx4eHjgyJEj8uBUXQkKCkJsbCwyMzPx4osvyu1ffPEFJElCYGBglddZ9jqMjY3lNiEEVq9eXf2CAVhbW6Nfv364evUqxo0bh4sXL8r3aQkODsY333wDZ2dnedCup6cnGjRogPfffx/FxcUa4SE0NBSGhoY4d+5ctU9zAA9eu6+vLxYuXIj4+HhkZmY+cX4nJyd4e3tj06ZNyMjIkI9vSEgI3nrrLXz88cewtLR8bA9UmbJ9Xdkem8rKy8uDSqWCkZFRuWknT54E8L/eQH2p6P0GAJ9++mm11/2kXjATExOMGDECS5cuxd69e9GiRQt06NChUutNT0+v1HwPB5yyU1qV8eg/QLrWq1cvTJ8+HevWrdO48jU+Ph6mpqbo1q3bU93+84SBh/Ru/vz5aNWqFXJzczUuW5YkCa+99ho+//xzNGzYEL6+vjh48CC+/vrrp1ZLbm4u+vTpg+HDh+P27duYMWMGTExMEB0dLc/z6aefonv37ggNDUV4eDheeOEF/PXXXzhx4gQyMzO1vgx2/Pjx+OKLLxAWFoZZs2bBxcUF27Ztw/Lly/H222/D09OzyusMCQmBkZERBg4ciMmTJ+PevXtYsWIFbt68qVWNAPDyyy+jWbNm8PPzg729PS5duoRFixbBxcUFHh4e8nxBQUFYvnw5/vzzTyxatEijfe3atbCxsdEY3+Dq6opZs2Zh2rRpOH/+PLp16wYbGxv88ccfOHjwIMzNzR97FU+ZrVu3Yvny5ejduzfc3d0hhEBiYiJu3bol99g8SVBQEJYsWQJTU1P5A9PNzQ1ubm7YsWMHevbsCUPDJ//ZLPuPetWqVVCpVDAxMYGbm1uFp7KqIjk5GZGRkRg8eDDat28POzs75ObmYsOGDdi+fTuGDBmicQNEfWjfvj1sbGwwcuRIzJgxA7Vr18ZXX30lnxKujubNmyMlJQU//vgjnJycoFKpNMLEqFGjEBcXh4yMDKxZs6bS6y07DVsVRkZGWi33OIcOHZJvLZGfnw8hhHzX99atW8s9nl988QUiIiLw+eefy/+ENW3aFG+88QZmzJgBAwMDtG7dGjt27MCqVaswZ84cntJ6CAMP6V3Lli0xcODACoPMggULADy4FPrOnTvo0qULtm7dqtM72D5s7ty5SE9Px7Bhw5Cfn482bdogISFB40ZogYGBOHjwID744AOMGzcON2/ehJ2dHby9vdG/f3+tt21vb4+9e/ciOjoa0dHRyM/Ph7u7O+Li4hAVFaXVOhs3boxNmzZh+vTp6Nu3L+zs7DBo0CBERUVpDOSuisDAQGzatAlr1qxBfn4+HB0dERISgvfee0/j9ECXLl1Qq1YtmJqaol27dnJ7cHAw1q5di8DAwHLjcqKjo+Ht7Y3Fixdjw4YNKCoqgqOjI1q3bo2RI0f+Y20eHh6wtrZGXFwcrl27BiMjI3h5eSE+Ph5Dhw79x+WDg4OxZMkSdOzYUWOsS3BwMFavXl2p01lubm5YtGgRFi9ejICAAKjVao3TIdpq27YtIiIikJycjPXr1+PPP/+EqakpvL29sWTJErz99tvVWr8u2NnZYdu2bZgwYQJee+01mJubo1evXti4caNGr6U2Fi9ejNGjR2PAgAG4e/duuYHsL7zwAjp27IijR49i0KBB1Xwlz9bSpUvL3feo7H5OD793SktLoVary92zafny5XjhhRewZMkS3LhxA66urli8eDHeeeedZ1L/80IS4infJICIiOgpy83NhYuLC955553H3liU/t3Yw0NERM+tK1eu4Pz58/jwww9Rq1atct/BRVSG9+EhIqLn1po1axAQEIBjx47hq6++wgsvvKDvkqiG4iktIiIiUjz28BAREZHiMfAQERGR4jHwEBERkeLxKi09Ky0txbVr16BSqfglb0RERFUghEBBQQHq1atX7r5ej2Lg0bNr166V+0oFIiIiqrzLly//453GGXj0TKVSAXhwsHTxrcFERET/Fvn5+XB2dpY/S5+EgUfPyk5jWVpaMvAQERFpoTJDQjhomYiIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj9+lVUO0/botDEwN9F0GERHRU5E9NFuv22cPDxERESkeAw8REREpHgMPERERKR4DDxERESkeAw8REREpHgMPERERKR4DDxERESkeAw8REREpHgMPERERKR4DDxERESkeAw8REREpHgMPERERKR4DDxERESkeAw8REREpHgMPERERKR4DDxERESkeAw8REREpHgMPERERKR4DDxERESkeAw8REREpHgMPERERKR4DDxERESkeAw8REREpHgMPERERKR4DDxERESkeAw8REREpHgMPERERKR4DDxERESkeAw8REREpHgMPERERKR4DDxERESkeAw8REREpHgMPERERKR4DDxEREelFbGwsJEnCuHHj5Lbw8HBIkqTxaNu2bbW3VaMCjxACI0aMgK2tLSRJQlZWlr5LqrKUlBRIkoRbt27puxQiIqIaKz09HatWrYKPj0+5ad26dcP169flx08//VTt7dWowLN9+3bEx8dj69atuH79Opo1a6bvkoiIiEjH7ty5g8GDB2P16tWwsbEpN93Y2BiOjo7yw9bWttrbrFGB59y5c3ByckL79u3h6OgIQ0NDfZdEREREOjZ69GiEhYUhODi4wukpKSlwcHCAp6cnhg8fjtzc3Gpvs8YEnvDwcLzzzjvIycmBJElwdXVFUVERxo4dCwcHB5iYmKBjx45IT0/XWO7YsWMICwuDpaUlVCoVOnXqhHPnzgEAAgICNM4LAkDv3r0RHh4uP1++fDk8PDxgYmKCunXrol+/fvI0IQTi4uLg7u4OU1NT+Pr64rvvvtNY308//QRPT0+YmpoiMDAQFy9e1Ol+ISIiUpKEhARkZmYiNja2wundu3fHV199haSkJCxYsADp6eno0qULioqKqrXdGtOFsnjxYjRs2BCrVq1Ceno6DAwMMHnyZGzatAnr1q2Di4sL4uLiEBoairNnz8LW1hZXr15F586dERAQgKSkJFhaWuK3335DSUlJpbZ56NAhjB07FuvXr0f79u3x119/Yc+ePfL06dOnIzExEStWrICHhwfS0tLw2muvwd7eHv7+/rh8+TL69u2LkSNH4u2338ahQ4cwYcKEJ26zqKhI46Dl5+drt8OIiIieM5cvX0ZkZCR27NgBExOTCud59dVX5Z+bNWsGPz8/uLi4YNu2bejbt6/W264xgcfKygoqlQoGBgZwdHREYWEhVqxYgfj4eHTv3h0AsHr1auzcuROfffYZJk2ahGXLlsHKygoJCQmoXbs2AMDT07PS28zJyYG5uTleeuklqFQquLi4oGXLlgCAwsJCfPzxx0hKSkK7du0AAO7u7vj111/x6aefwt/fHytWrIC7uzsWLlwISZLg5eWF7OxszJ8//7HbjI2NxcyZM7XdTURERM+tjIwM5ObmolWrVnKbWq1GWloali5diqKiIhgYGGgs4+TkBBcXF5w5c6Za264xgedR586dQ3FxMTp06CC31a5dG23atMGJEycAAFlZWejUqZMcdqoqJCQELi4ucHd3R7du3dCtWzf06dMHZmZmOH78OO7du4eQkBCNZe7fvy+HohMnTqBt27aQJEmeXhaOHic6OhpRUVHy8/z8fDg7O2tVPxER0fMkKCgI2dnZGm3Dhg1D48aNMWXKlHJhBwDy8vJw+fJlODk5VWvbNTbwCCEAQCNMlLWXtZmamj5xHbVq1ZLXU6a4uFj+WaVSITMzEykpKdixYwfef/99xMTEID09HaWlpQCAbdu24YUXXtBYh7GxsUaNVWFsbCwvT0RE9G+iUqnKXYFtbm4OOzs7NGvWDHfu3EFMTAxeeeUVODk54eLFi5g6dSrq1KmDPn36VGvbNWbQ8qMaNWoEIyMj/Prrr3JbcXExDh06hCZNmgAAfHx8sGfPHo0Q8zB7e3tcv35dfq5Wq/H7779rzGNoaIjg4GDExcXh6NGjuHjxIpKSkuDt7Q1jY2Pk5OSgUaNGGo+yHhlvb2/s379fY32PPiciIqLKMTAwQHZ2Nnr16gVPT08MHToUnp6e2LdvH1QqVbXWXWN7eMzNzfH2229j0qRJsLW1RYMGDRAXF4e7d+/ijTfeAACMGTMGS5YswYABAxAdHQ0rKyvs378fbdq0gZeXF7p06YKoqChs27YNDRs2xMKFCzVuCLh161acP38enTt3ho2NDX766SeUlpbCy8sLKpUKEydOxPjx41FaWoqOHTsiPz8fe/fuhYWFBYYOHYqRI0diwYIFiIqKwltvvYWMjAzEx8frZ4cRERE9h1JSUuSfTU1N8csvvzyV7dTYwAMA8+bNQ2lpKV5//XUUFBTAz88Pv/zyi3yTIjs7OyQlJWHSpEnw9/eHgYEBWrRoIY/7iYiIwJEjRzBkyBAYGhpi/PjxCAwMlNdvbW2NxMRExMTE4N69e/Dw8MCGDRvQtGlTAMDs2bPh4OCA2NhYnD9/HtbW1njxxRcxdepUAECDBg2wadMmjB8/HsuXL0ebNm0wd+5cREREPOM9RURERE8iCW0GopDO5Ofnw8rKCk1WNIGBafnBWkREREqQPTT7n2eqorLP0Nu3b8PS0vKJ89bYMTxEREREusLAQ0RERIrHwENERESKx8BDREREisfAQ0RERIrHwENERESKx8BDREREisfAQ0RERIrHwENERESKx8BDREREisfAQ0RERIrHwENERESKx8BDREREisfAQ0RERIrHwENERESKx8BDREREisfAQ0RERIrHwENERESKx8BDREREisfAQ0RERIrHwENERESKx8BDREREisfAQ0RERIrHwENERESKx8BDREREisfAQ0RERIrHwENERESKx8BDREREisfAQ0RERIrHwENERESKx8BDREREisfAQ0RERIrHwENERESKZ6jvAuiB/YP2w9LSUt9lEBERKRJ7eIiIiEjxGHiIiIhI8Rh4iIiISPEYeIiIiEjxGHiIiIhI8Rh4iIiISPEYeIiIiEjxGHiIiIhI8Rh4iIiISPEYeIiIiEjxGHiIiIhI8Rh4iIiISPEYeIiIiEjxGHiIiIhI8Rh4iIiISPEYeIiIiEjxGHiIiIhI8Rh4iIiISPEYeIiIiEjxDPVdAP1/sfUBY0nfVRAR0b9BzG19V/DMsYeHiIiIFI+Bh4iIiBRP54FHCKHrVRIRERFVi1aBJzY2tsJ2tVqNQYMGVasgIiIiIl3TKvAsWrQIq1at0mhTq9UYMGAAsrKydFEXERERkc5odZXWTz/9hODgYFhbW6N///4oLi7Gq6++ipMnTyI5OVnXNRIRERFVi1aBp1WrVti8eTN69eoFY2NjfPbZZzh37hySk5NRt25dXddIREREVC1aD1oOCAjA+vXr0a9fP1y8eBGpqakMO0RERFQjVbqHp2/fvhW229vbw9raGiNGjJDbEhMTq18ZERERkY5UOvBYWVlV2B4aGqqzYoiIiIiehkoHnrVr1wJ4cJ+dnJwc2Nvbw8zM7KkVRkRERKQrVR7DI4SAh4cHrl69+jTqISIiItK5KgeeWrVqwcPDA3l5eU+jHiIiIiKd0+oqrbi4OEyaNAm///67rushIiIi0jmt7sPz2muv4e7du/D19YWRkRFMTU01pv/11186KY6IiIhIF7QKPIsWLdJxGURERERPj1aBZ+jQobqug4iIiOip0SrwPOzvv/9GcXGxRpulpWV1V0tERESkM1oNWi4sLMSYMWPg4OAACwsL2NjYaDyIiIiIahKtAs/kyZORlJSE5cuXw9jYGGvWrMHMmTNRr149fPHFF7qukYiIiKhatDql9eOPP+KLL75AQEAAIiIi0KlTJzRq1AguLi746quvMHjwYF3XSURERKQ1rXp4/vrrL7i5uQF4MF6n7DL0jh07Ii0tTXfVEREREemAVoHH3d0dFy9eBAB4e3vjm2++AfCg58fa2lpXtRERERHphFaBZ9iwYThy5AgAIDo6Wh7LM378eEyaNEmnBRIRERFVl1ZjeMaPHy//HBgYiJMnT+LQoUNo2LAhfH19dVYcERERkS5U+z48ANCgQQM0aNBAF6siIiIi0jmtA8/BgweRkpKC3NxclJaWakz7+OOPq10YERERka5oFXjmzp2L6dOnw8vLC3Xr1oUkSfK0h38mIiIiqgm0CjyLFy/G559/jvDwcB2XQ0RERKR7Wl2lVatWLXTo0EHXtRARERE9FVoFnvHjx2PZsmW6roWIiIjoqdDqlNbEiRMRFhaGhg0bwtvbG7Vr19aYnpiYqJPiiIiIiHRBq8DzzjvvIDk5GYGBgbCzs+NAZSIiIqrRtAo8X3zxBTZt2oSwsDBd10NERETPWGxsLKZOnYrIyEgsWrQIxcXFmD59On766SecP38eVlZWCA4Oxrx581CvXj19l6sVrcbw2NraomHDhrqu5ZkLDw9H79699V0GERGR3qSnp2PVqlXw8fGR2+7evYvMzEy89957yMzMRGJiIk6fPo2ePXvqsdLq0SrwxMTEYMaMGbh7966u63mmFi9ejPj4eJ2tLz4+nl+eSkREz407d+5g8ODBWL16NWxsbOR2Kysr7Ny5E/3794eXlxfatm2LJUuWICMjAzk5OXqsWHtandL65JNPcO7cOdStWxeurq7lBi1nZmbqpLinzcrKSt8lEBER6c3o0aMRFhaG4OBgzJkz54nz3r59G5IkPbf/2GvVw9O7d29MmDABEydORL9+/dCrVy+NR1V99913aN68OUxNTWFnZ4fg4GAUFhYiICAA48aNK7fth294WFRUhMmTJ8PZ2RnGxsbw8PDAZ599Jk8/duwYwsLCYGlpCZVKhU6dOuHcuXMAyp/SCggIwNixYzF58mTY2trC0dERMTExGtu/desWRowYgbp168LExATNmjXD1q1bkZKSgmHDhslvCEmSyi1LRERUUyQkJCAzMxOxsbH/OO+9e/fw7rvvYtCgQbC0tHwG1emeVj08M2bM0FkB169fx8CBAxEXF4c+ffqgoKAAe/bsgRCiUssPGTIE+/btwyeffAJfX19cuHABf/75JwDg6tWr6Ny5MwICApCUlARLS0v89ttvKCkpeez61q1bh6ioKBw4cAD79u1DeHg4OnTogJCQEJSWlqJ79+4oKCjAl19+iYYNG+L48eMwMDBA+/btsWjRIrz//vs4deoUAMDCwqLc+ouKilBUVCQ/z8/Pr8ruIiIiqrbLly8jMjISO3bsgImJyRPnLS4uxoABA1BaWorly5c/owp1r1rfln7//v0Kvzy0Kt+cfv36dZSUlKBv375wcXEBADRv3rxSy54+fRrffPMNdu7cieDgYACAu7u7PH3ZsmWwsrJCQkKCfNrN09Pziev08fGRA52HhweWLl2K3bt3IyQkBLt27cLBgwdx4sQJeT0Pb8/KygqSJMHR0fGx64+NjcXMmTMr9fqIiIiehoyMDOTm5qJVq1Zym1qtRlpaGpYuXYqioiIYGBiguLgY/fv3x4ULF+SOg+eVVoHn9OnTeOONN7B3716NdiEEJEmCWq2u9Lp8fX0RFBSE5s2bIzQ0FF27dkW/fv00Bk89TlZWFgwMDODv7//Y6Z06dSo3xuhJHh6lDgBOTk7Izc2V11e/fv1/DE1PEh0djaioKPl5fn4+nJ2dtV4fERFRVQUFBSE7O1ujbdiwYWjcuDGmTJmiEXbOnDmD5ORk2NnZ6ala3dAq8AwbNgyGhobYunUrnJycqnXjQQMDA+zcuRN79+7Fjh07sGTJEkybNg0HDhxArVq1yp3aKi4uln82NTV94rr/aXpFHg1HkiTJPVjarO9RxsbGMDY2rvZ6iIiItKVSqdCsWTONNnNzc9jZ2aFZs2YoKSlBv379kJmZia1bt0KtVuPGjRsAHtyaxsjISB9lV4tWgScrKwsZGRlo3LixToqQJAkdOnRAhw4d8P7778PFxQWbN2+Gvb09rl+/Ls+nVqvx+++/IzAwEMCDU1+lpaVITU2VT2k9zMfHB+vWrUNxcXGVenkex8fHB1euXMHp06cr7OUxMjKqUu8WERFRTXTlyhX88MMPAIAWLVpoTEtOTkZAQMCzL6qatAo83t7e8sDg6jpw4AB2796Nrl27wsHBAQcOHMB///tfNGnSBObm5oiKisK2bdvQsGFDLFy4ELdu3ZKXdXV1xdChQxERESEPWr506RJyc3PRv39/jBkzBkuWLMGAAQMQHR0NKysr7N+/H23atIGXl1eVa/X390fnzp3xyiuv4OOPP0ajRo1w8uRJSJKEbt26wdXVFXfu3MHu3bvh6+sLMzMzmJmZ6WQ/ERERPU0pKSnyz66urpW+eOh5UenL0vPz8+XH/PnzMXnyZKSkpCAvL09jWlWvOrK0tERaWhp69OgBT09PTJ8+HQsWLED37t0RERGBoUOHYsiQIfD394ebm5vcu1NmxYoV6NevH0aNGoXGjRtj+PDhKCwsBADY2dkhKSkJd+7cgb+/P1q1aoXVq1dXq7dn06ZNaN26NQYOHAhvb29MnjxZ7tVp3749Ro4ciVdffRX29vaIi4vTejtERESkO5KoZISrVauWxlidsgHKD9Nm0PK/XX5+PqysrHD7XRUsjfklrERE9AzE3NZ3BTohf4bevv2PV5BV+pRWcnJytQsjIiIi0odKB57HXfpNREREVNNp9dUSa9euxbfffluu/dtvv8W6deuqXRQRERGRLmkVeObNm4c6deqUa3dwcMDcuXOrXRQRERGRLmkVeC5dugQ3N7dy7S4uLs/t18YTERGRcmkVeBwcHHD06NFy7UeOHHnubz1NREREyqNV4BkwYADGjh2L5ORkqNVqqNVqJCUlITIyEgMGDNB1jURERETVotWdlufMmYNLly4hKCgIhoYPVlFaWoohQ4ZwDA8RERHVOFoFHiMjI2zcuBGzZ8/GkSNHYGpqiubNm8PFxUXX9RERERFVm1aBp4ynp2eFX6JJREREVJNoFXjUajXi4+Oxe/du5ObmorS0VGN6UlKSToojIiIi0gWtAk9kZCTi4+MRFhaGZs2alftOLSIiIqKaRKvAk5CQgG+++QY9evTQdT1EREREOqfVZelGRkZo1KiRrmshIiIieiq0CjwTJkzA4sWLIYTQdT1EREREOqfVKa1ff/0VycnJ+Pnnn9G0aVPUrl1bY3piYqJOiiMiIiLSBa0Cj7W1Nfr06aPrWoiIiIieCq0Cz9q1a3VdBxEREdFTo9UYHgAoKSnBrl278Omnn6KgoAAAcO3aNdy5c0dnxRERERHpglY9PJcuXUK3bt2Qk5ODoqIihISEQKVSIS4uDvfu3cPKlSt1XScRERGR1rTq4YmMjISfnx9u3rwJU1NTub1Pnz7YvXu3zoojIiIi0gWtr9L67bffYGRkpNHu4uKCq1ev6qQwIiIiIl3RqoentLQUarW6XPuVK1egUqmqXRQRERGRLmkVeEJCQrBo0SL5uSRJuHPnDmbMmMGvmyAiIqIaR6tTWgsXLkRgYCC8vb1x7949DBo0CGfOnIGdnR02bNig6xqJiIiIqkWrwFOvXj1kZWVhw4YNyMzMRGlpKd544w0MHjxYYxAzERERUU2g1SmtvLw8mJqaIiIiApMnT0adOnVw6tQpHDp0SNf1EREREVVblQJPdnY2XF1d4eDggMaNGyMrKwtt2rTBwoULsWrVKgQGBmLLli1PqVQiIiIi7VQp8EyePBnNmzdHamoqAgIC8NJLL6FHjx64ffs2bt68ibfeegvz5s17WrUSERERaUUSQojKzlynTh0kJSXBx8cHd+7cgaWlJQ4ePAg/Pz8AwMmTJ9G2bVvcunXradWrOPn5+bCyssLtd1WwNJb0XQ4REf0bxNzWdwU6IX+G3r4NS0vLJ85bpR6ev/76C46OjgAACwsLmJubw9bWVp5uY2Mjf68WERERUU1R5UHLkiQ98TkRERFRTVPly9LDw8NhbGwMALh37x5GjhwJc3NzAEBRUZFuqyMiIiLSgSqN4Rk2bFil5lu7dq3WBf3bVOX8IxEREf1PVT5Dq9TDwyBDREREzyOtbjxIRERE9Dxh4CEiIiLFY+AhIiIixWPgISIiIsVj4CEiIiLFY+AhIiIixWPgISIiIsVj4CEiIiLFY+AhIiIixWPgISIiIsVj4CEiIiLFY+AhIiIixWPgISIiIsVj4CEiIiLFY+AhIiIixWPgISIiIsVj4CEiIiLFY+AhIiIixWPgISIiIsVj4CEiIiLFY+AhIiIixWPgISIiIsVj4CEiIiLFY+AhIiIixWPgISIiIsVj4CEiIiLFY+AhIiIixWPgISIiIsVj4CEiIiLFY+AhIiIixWPgISIiIsVj4CEiIiLFY+AhIiIixWPgISIiIsVj4CEiIiLFY+AhIiIixWPgISIiIsVj4CEiIiLFY+AhIiIixWPgISIiIsVj4CEiIiLFY+AhIiIixWPgISIiIsVj4CEiIiLFY+AhIiIixWPgISIiIsVj4CEiIiLFY+AhIiIixWPgISIiIsVj4CEiIiLFY+AhIiIixWPgISIiIsVj4Klhli9fDjc3N5iYmKBVq1bYs2ePvksiIiJ67uk18AQEBGDcuHF62354eDh69+5dY+rZuHEjxo0bh2nTpuHw4cPo1KkTunfvjpycHL3VREREpATs4XlIYmIiZs+erbftf/zxx3jjjTfw5ptvokmTJli0aBGcnZ2xYsUKvdVERESkBAw8D7G1tYVKpdLLtu/fv4+MjAx07dpVo71r167Yu3evXmoiIiJSCr0HnpKSEowZMwbW1taws7PD9OnTIYQAAHz55Zfw8/ODSqWCo6MjBg0ahNzcXHnZmzdvYvDgwbC3t4epqSk8PDywdu1aefrVq1fx6quvwsbGBnZ2dujVqxcuXrz42FoePaXl6uqKuXPnIiIiAiqVCg0aNMCqVas0lqnqNh4nLy8ParUadevW1WivW7cubty4UeX1ERER0f/oPfCsW7cOhoaGOHDgAD755BMsXLgQa9asAfCg12P27Nk4cuQItmzZggsXLiA8PFxe9r333sPx48fx888/48SJE1ixYgXq1KkDALh79y4CAwNhYWGBtLQ0/Prrr7CwsEC3bt1w//79Ste3YMEC+Pn54fDhwxg1ahTefvttnDx5UuttFBUVIT8/X+PxMEmSNJ4LIcq1ERERUdUY6rsAZ2dnLFy4EJIkwcvLC9nZ2Vi4cCGGDx+OiIgIeT53d3d88sknaNOmDe7cuQMLCwvk5OSgZcuW8PPzA/CgR6ZMQkICatWqhTVr1siBYe3atbC2tkZKSkq5U0eP06NHD4waNQoAMGXKFCxcuBApKSlo3LixVtuIjY3FzJkzy7Xb2dnBwMCgXG9Obm5uuV4fIiIiqhq99/C0bdtWowejXbt2OHPmDNRqNQ4fPoxevXrBxcUFKpUKAQEBACBftfT2228jISEBLVq0wOTJkzXGumRkZODs2bNQqVSwsLCAhYUFbG1tce/ePZw7d67S9fn4+Mg/S5IER0dH+bSaNtuIjo7G7du35cfly5cBAEZGRmjVqhV27typMf/OnTvRvn37StdLRERE5em9h+dx7t27h65du6Jr16748ssvYW9vj5ycHISGhsqni7p3745Lly5h27Zt2LVrF4KCgjB69Gh89NFHKC0tRatWrfDVV1+VW7e9vX2l66hdu7bGc0mSUFpaCgBabcPY2BjGxsYVTouKisLrr78OPz8/tGvXDqtWrUJOTg5GjhxZ6XqJiIioPL0Hnv3795d77uHhgZMnT+LPP//EvHnz4OzsDAA4dOhQueXt7e0RHh6O8PBwdOrUCZMmTcJHH32EF198ERs3boSDgwMsLS2fSu263sarr76KvLw8zJo1C9evX0ezZs3w008/wcXFRQfVEhER/Xvp/ZTW5cuXERUVhVOnTmHDhg1YsmQJIiMj0aBBAxgZGWHJkiU4f/48fvjhh3L3yHn//ffx/fff4+zZszh27Bi2bt2KJk2aAAAGDx6MOnXqoFevXtizZw8uXLiA1NRUREZG4sqVKzqp/WlsY9SoUbh48SKKioqQkZGBzp0766RWIiKifzO9B54hQ4bg77//Rps2bTB69Gi88847GDFiBOzt7REfH49vv/0W3t7emDdvHj766CONZY2MjBAdHQ0fHx907twZBgYGSEhIAACYmZkhLS0NDRo0QN++fdGkSRNERETg77//1lmPz7PYBhEREVWfJMpuekN6kZ+fDysrK9y+fZshiYiIqAqq8hmq9x4eIiIioqeNgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBTPUN8F/NsJIQAA+fn5eq6EiIjo+VL22Vn2WfokDDx6lpeXBwBwdnbWcyVERETPp4KCAlhZWT1xHgYePbO1tQUA5OTk/OPBoqcrPz8fzs7OuHz5MiwtLfVdzr8Wj0PNwWNRM/A4PJ4QAgUFBahXr94/zsvAo2e1aj0YRmVlZcU3cg1haWnJY1ED8DjUHDwWNQOPQ8Uq21nAQctERESkeAw8REREpHgMPHpmbGyMGTNmwNjYWN+l/OvxWNQMPA41B49FzcDjoBuSqMy1XERERETPMfbwEBERkeIx8BAREZHiMfAQERGR4jHwEBERkeIx8OjZ8uXL4ebmBhMTE7Rq1Qp79uzRd0mKl5aWhpdffhn16tWDJEnYsmWLxnQhBGJiYlCvXj2YmpoiICAAx44d00+xChUbG4vWrVtDpVLBwcEBvXv3xqlTpzTm4XF4NlasWAEfHx/5pnbt2rXDzz//LE/ncdCP2NhYSJKEcePGyW08FtXDwKNHGzduxLhx4zBt2jQcPnwYnTp1Qvfu3ZGTk6Pv0hStsLAQvr6+WLp0aYXT4+Li8PHHH2Pp0qVIT0+Ho6MjQkJCUFBQ8IwrVa7U1FSMHj0a+/fvx86dO1FSUoKuXbuisLBQnofH4dmoX78+5s2bh0OHDuHQoUPo0qULevXqJX+Q8jg8e+np6Vi1ahV8fHw02nksqkmQ3rRp00aMHDlSo61x48bi3Xff1VNF/z4AxObNm+XnpaWlwtHRUcybN09uu3fvnrCyshIrV67UQ4X/Drm5uQKASE1NFULwOOibjY2NWLNmDY+DHhQUFAgPDw+xc+dO4e/vLyIjI4UQ/J3QBfbw6Mn9+/eRkZGBrl27arR37doVe/fu1VNVdOHCBdy4cUPjuBgbG8Pf35/H5Sm6ffs2gP99mS6Pg36o1WokJCSgsLAQ7dq143HQg9GjRyMsLAzBwcEa7TwW1ccvD9WTP//8E2q1GnXr1tVor1u3Lm7cuKGnqqhs31d0XC5duqSPkhRPCIGoqCh07NgRzZo1A8Dj8KxlZ2ejXbt2uHfvHiwsLLB582Z4e3vLH6Q8Ds9GQkICMjMzkZ6eXm4afyeqj4FHzyRJ0nguhCjXRs8ej8uzM2bMGBw9ehS//vpruWk8Ds+Gl5cXsrKycOvWLWzatAlDhw5FamqqPJ3H4em7fPkyIiMjsWPHDpiYmDx2Ph4L7fGUlp7UqVMHBgYG5XpzcnNzyyV4enYcHR0BgMflGXnnnXfwww8/IDk5GfXr15fbeRyeLSMjIzRq1Ah+fn6IjY2Fr68vFi9ezOPwDGVkZCA3NxetWrWCoaEhDA0NkZqaik8++QSGhoby/uax0B4Dj54YGRmhVatW2Llzp0b7zp070b59ez1VRW5ubnB0dNQ4Lvfv30dqaiqPiw4JITBmzBgkJiYiKSkJbm5uGtN5HPRLCIGioiIeh2coKCgI2dnZyMrKkh9+fn4YPHgwsrKy4O7uzmNRTTylpUdRUVF4/fXX4efnh3bt2mHVqlXIycnByJEj9V2aot25cwdnz56Vn1+4cAFZWVmwtbVFgwYNMG7cOMydOxceHh7w8PDA3LlzYWZmhkGDBumxamUZPXo0vv76a3z//fdQqVTyf61WVlYwNTWV7z/C4/D0TZ06Fd27d4ezszMKCgqQkJCAlJQUbN++ncfhGVKpVPIYtjLm5uaws7OT23ksqkl/F4iREEIsW7ZMuLi4CCMjI/Hiiy/Kl+XS05OcnCwAlHsMHTpUCPHg8s8ZM2YIR0dHYWxsLDp37iyys7P1W7TCVLT/AYi1a9fK8/A4PBsRERHy3yB7e3sRFBQkduzYIU/ncdCfhy9LF4LHorokIYTQU9YiIiIieiY4hoeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4iIiBSPgYeIiIgUj4GHiIiIFI+Bh4hqpIsXL0KSJGRlZem7FNnJkyfRtm1bmJiYoEWLFvouh4iqgIGHiCoUHh4OSZIwb948jfYtW7ZAkiQ9VaVfM2bMgLm5OU6dOoXdu3fruxwiqgIGHiJ6LBMTE8yfPx83b97Udyk6c//+fa2XPXfuHDp27AgXFxfY2dnpsKqaQ61Wo7S0VN9lEOkcAw8RPVZwcDAcHR0RGxv72HliYmLKnd5ZtGgRXF1d5efh4eHo3bs35s6di7p168La2hozZ85ESUkJJk2aBFtbW9SvXx+ff/55ufWfPHkS7du3h4mJCZo2bYqUlBSN6cePH0ePHj1gYWGBunXr4vXXX8eff/4pTw8ICMCYMWMQFRWFOnXqICQkpMLXUVpailmzZqF+/fowNjZGixYtsH37dnm6JEnIyMjArFmzIEkSYmJiKlzP9u3b0bFjR1hbW8POzg4vvfQSzp07J08vO1WXmJiIwMBAmJmZwdfXF/v27ZPnuXTpEl5++WXY2NjA3NwcTZs2xU8//QQAaNWqFRYsWCDP27t3bxgaGiI/Px8AcOPGDUiShFOnTgF4EPAmT56MF154Aebm5vi///s/jX0YHx8Pa2trbN26Fd7e3jA2NsalS5eQkpKCNm3awNzcHNbW1ujQoQMuXbpU4Wsmeh4w8BDRYxkYGGDu3LlYsmQJrly5Uq11JSUl4dq1a0hLS8PHH3+MmJgYvPTSS7CxscGBAwcwcuRIjBw5EpcvX9ZYbtKkSZgwYQIOHz6M9u3bo2fPnsjLywMAXL9+Hf7+/mjRogUOHTqE7du3448//kD//v011rFu3ToYGhrit99+w6efflphfYsXL8aCBQvw0Ucf4ejRowgNDUXPnj1x5swZeVtNmzbFhAkTcP36dUycOLHC9RQWFiIqKgrp6enYvXs3atWqhT59+pTrNZk2bRomTpyIrKwseHp6YuDAgSgpKQEAjB49GkVFRUhLS0N2djbmz58PCwsLAA8CXFlgEUJgz549sLGxwa+//goASE5OhqOjI7y8vAAAw4YNw2+//YaEhAQcPXoU//nPf9CtWzf5dQHA3bt3ERsbizVr1uDYsWOwtbVF79694e/vj6NHj2Lfvn0YMWLEv/ZUJimEnr+tnYhqqKFDh4pevXoJIYRo27atiIiIEEIIsXnzZvHwn44ZM2YIX19fjWUXLlwoXFxcNNbl4uIi1Gq13Obl5SU6deokPy8pKRHm5uZiw4YNQgghLly4IACIefPmyfMUFxeL+vXri/nz5wshhHjvvfdE165dNbZ9+fJlAUCcOnVKCCGEv7+/aNGixT++3nr16okPPvhAo61169Zi1KhR8nNfX18xY8aMf1zXw3JzcwUAkZ2drfG61qxZI89z7NgxAUCcOHFCCCFE8+bNRUxMTIXr++GHH4SVlZVQq9UiKytL2Nvbi/Hjx4tJkyYJIYQYMWKEePXVV4UQQpw9e1ZIkiSuXr2qsY6goCARHR0thBBi7dq1AoDIysqSp+fl5QkAIiUlpUqvlagmYw8PEf2j+fPnY926dTh+/LjW62jatClq1frfn5y6deuiefPm8nMDAwPY2dkhNzdXY7l27drJPxsaGsLPzw8nTpwAAGRkZCA5ORkWFhbyo3HjxgCgcRrJz8/vibXl5+fj2rVr6NChg0Z7hw4d5G1V1rlz5zBo0CC4u7vD0tISbm5uAICcnByN+Xx8fOSfnZycAEB+7WPHjsWcOXPQoUMHzJgxA0ePHpXn7dy5MwoKCnD48GGkpqbC398fgYGBSE1NBQCkpKTA398fAJCZmQkhBDw9PTX2UWpqqsb+MTIy0qjH1tYW4eHhCA0Nxcsvv4zFixfj+vXrVdoPRDUNAw8R/aPOnTsjNDQUU6dOLTetVq1aEEJotBUXF5ebr3bt2hrPJUmqsK0yA2bLTq2Ulpbi5ZdfRlZWlsbjzJkz6Ny5szy/ubn5P67z4fWWEUJU+TTOyy+/jLy8PKxevRoHDhzAgQMHAJQfLP3wa3/49QDAm2++ifPnz+P1119HdnY2/Pz8sGTJEgCAlZUVWrRogZSUFKSmpiIgIACdOnWSX/fp06cREBAgr8/AwAAZGRka++fEiRNYvHixvH1TU9Nyr3Pt2rXYt28f2rdvj40bN8LT0xP79++v0r4gqkkYeIioUubNm4cff/wRe/fu1Wi3t7fHjRs3NEKPLu+d8/CHbElJCTIyMuRenBdffBHHjh2Dq6srGjVqpPGobMgBAEtLS9SrV08eB1Nm7969aNKkSaXXk5eXhxMnTmD69OkICgpCkyZNtL7CzdnZGSNHjkRiYiImTJiA1atXy9MCAgKQnJyMtLQ0BAQEwNraGt7e3pgzZw4cHBzkmlu2bAm1Wo3c3Nxy+8fR0fEfa2jZsiWio6Oxd+9eNGvWDF9//bVWr4WoJmDgIaJKad68OQYPHiz3NJQJCAjAf//7X8TFxeHcuXNYtmwZfv75Z51td9myZdi8eTNOnjyJ0aNH4+bNm4iIiADwYHDvX3/9hYEDB+LgwYM4f/48duzYgYiICKjV6iptZ9KkSZg/fz42btyIU6dO4d1330VWVhYiIyMrvQ4bGxvY2dlh1apVOHv2LJKSkhAVFVWlOgBg3Lhx+OWXX3DhwgVkZmYiKSlJI3gFBARg+/btkCQJ3t7ecttXX30ln84CAE9PTwwePBhDhgxBYmIiLly4gPT0dMyfP1++6qsiFy5cQHR0NPbt24dLly5hx44dOH36dJXCH1FNw8BDRJU2e/bscqevmjRpguXLl2PZsmXw9fXFwYMHH3sFkzbmzZuH+fPnw9fXF3v27MH333+POnXqAADq1auH3377DWq1GqGhoWjWrBkiIyNhZWWlMV6oMsaOHYsJEyZgwoQJaN68ObZv344ffvgBHh4elV5HrVq1kJCQgIyMDDRr1gzjx4/Hhx9+WKU6gAf3whk9ejSaNGmCbt26wcvLC8uXL5enl52u8/f3l09F+fv7Q61WawQe4MGpqSFDhmDChAnw8vJCz549ceDAATg7Oz92+2ZmZjh58iReeeUVeHp6YsSIERgzZgzeeuutKr8WoppCEo/+9SIiIiJSGPbwEBERkeIx8BAREZHiMfAQERGR4jHwEBERkeIx8BAREZHiMfAQERGR4jHwEBERkeIx8BAREZHiMfAQERGR4jHwEBERkeIx8BAREZHi/T/YkJ1cir1ueAAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 600x400 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Show how many answers have Similarity == 1.0 exactly\n",
    "# Plot the number of answers with Similarity == 1.0 for each benchmark on a horizontal bar chart with seaborn\n",
    "fig, ax = plt.subplots(figsize=(6, 4))\n",
    "for benchmark in benchmarks:\n",
    "    ax.barh(benchmark['name'], benchmark['data'][benchmark['data']['Similarity'] == 1.0].shape[0])\n",
    "ax.set_xlabel('Number of answers')\n",
    "ax.set_ylabel('Benchmark')\n",
    "ax.set_title('Number of answers with Similarity == 1.0')\n",
    "for container in ax.containers:\n",
    "    ax.bar_label(container, label_type='edge')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Observations\n",
    "\n",
    "* It's impressive that the `focused` and `succinct` agents both got nearly 50% of the answers exactly correct."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 214,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/markdown": [
       "#### Worse scoring answers for baseline"
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<style type=\"text/css\">\n",
       "#T_63b9f th {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_63b9f td {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_63b9f_row0_col0, #T_63b9f_row0_col1, #T_63b9f_row0_col2, #T_63b9f_row0_col3, #T_63b9f_row1_col0, #T_63b9f_row1_col1, #T_63b9f_row1_col2, #T_63b9f_row1_col3, #T_63b9f_row2_col0, #T_63b9f_row2_col1, #T_63b9f_row2_col2, #T_63b9f_row2_col3, #T_63b9f_row3_col0, #T_63b9f_row3_col1, #T_63b9f_row3_col2, #T_63b9f_row3_col3, #T_63b9f_row4_col0, #T_63b9f_row4_col1, #T_63b9f_row4_col2, #T_63b9f_row4_col3, #T_63b9f_row5_col0, #T_63b9f_row5_col1, #T_63b9f_row5_col2, #T_63b9f_row5_col3, #T_63b9f_row6_col0, #T_63b9f_row6_col1, #T_63b9f_row6_col2, #T_63b9f_row6_col3, #T_63b9f_row7_col0, #T_63b9f_row7_col1, #T_63b9f_row7_col2, #T_63b9f_row7_col3, #T_63b9f_row8_col0, #T_63b9f_row8_col1, #T_63b9f_row8_col2, #T_63b9f_row8_col3, #T_63b9f_row9_col0, #T_63b9f_row9_col1, #T_63b9f_row9_col2, #T_63b9f_row9_col3 {\n",
       "  white-space: pre-wrap;\n",
       "}\n",
       "</style>\n",
       "<table id=\"T_63b9f\">\n",
       "  <thead>\n",
       "    <tr>\n",
       "      <th class=\"blank level0\" >&nbsp;</th>\n",
       "      <th id=\"T_63b9f_level0_col0\" class=\"col_heading level0 col0\" >Synthesized Question</th>\n",
       "      <th id=\"T_63b9f_level0_col1\" class=\"col_heading level0 col1\" >Answer</th>\n",
       "      <th id=\"T_63b9f_level0_col2\" class=\"col_heading level0 col2\" >Predicted Answer</th>\n",
       "      <th id=\"T_63b9f_level0_col3\" class=\"col_heading level0 col3\" >Similarity</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th id=\"T_63b9f_level0_row0\" class=\"row_heading level0 row0\" >31138</th>\n",
       "      <td id=\"T_63b9f_row0_col0\" class=\"data row0 col0\" >How many species of fungi, both non-lichen-forming and lichen-forming, have been recorded in Antarctica?</td>\n",
       "      <td id=\"T_63b9f_row0_col1\" class=\"data row0 col1\" >1150</td>\n",
       "      <td id=\"T_63b9f_row0_col2\" class=\"data row0 col2\" >About 1150 species of fungi have been recorded in Antarctica, including approximately 750 non-lichen-forming and 400 lichen-forming species.</td>\n",
       "      <td id=\"T_63b9f_row0_col3\" class=\"data row0 col3\" >-0.037171</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_63b9f_level0_row1\" class=\"row_heading level0 row1\" >56941</th>\n",
       "      <td id=\"T_63b9f_row1_col0\" class=\"data row1 col0\" >What fraction of the South Florida population lives in the city of Miami, given that it is home to less than one-thirteenth of the population of South Florida?</td>\n",
       "      <td id=\"T_63b9f_row1_col1\" class=\"data row1 col1\" >one-thirteenth</td>\n",
       "      <td id=\"T_63b9f_row1_col2\" class=\"data row1 col2\" >Approximately 7.69% of the South Florida population lives in the city of Miami.</td>\n",
       "      <td id=\"T_63b9f_row1_col3\" class=\"data row1 col3\" >0.011993</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_63b9f_level0_row2\" class=\"row_heading level0 row2\" >31553</th>\n",
       "      <td id=\"T_63b9f_row2_col0\" class=\"data row2 col0\" >In how many scenarios projected by the ABS will Sydney remain higher than Melbourne in population beyond 2056?</td>\n",
       "      <td id=\"T_63b9f_row2_col1\" class=\"data row2 col1\" >two</td>\n",
       "      <td id=\"T_63b9f_row2_col2\" class=\"data row2 col2\" >In two scenarios projected by the ABS, Sydney will remain higher than Melbourne in population beyond 2056.</td>\n",
       "      <td id=\"T_63b9f_row2_col3\" class=\"data row2 col3\" >0.075540</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_63b9f_level0_row3\" class=\"row_heading level0 row3\" >59122</th>\n",
       "      <td id=\"T_63b9f_row3_col0\" class=\"data row3 col0\" >How many companies were involved in the development of USB in 1994?</td>\n",
       "      <td id=\"T_63b9f_row3_col1\" class=\"data row3 col1\" >seven</td>\n",
       "      <td id=\"T_63b9f_row3_col2\" class=\"data row3 col2\" >Seven companies were involved in the development of USB in 1994: Compaq, DEC, IBM, Intel, Microsoft, NEC, and Nortel.</td>\n",
       "      <td id=\"T_63b9f_row3_col3\" class=\"data row3 col3\" >0.107220</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_63b9f_level0_row4\" class=\"row_heading level0 row4\" >41377</th>\n",
       "      <td id=\"T_63b9f_row4_col0\" class=\"data row4 col0\" >How many Freistaaten (Free States) are there in Germany according to the current political structure?</td>\n",
       "      <td id=\"T_63b9f_row4_col1\" class=\"data row4 col1\" >three</td>\n",
       "      <td id=\"T_63b9f_row4_col2\" class=\"data row4 col2\" >There are 16 Freistaaten in Germany according to the current political structure.</td>\n",
       "      <td id=\"T_63b9f_row4_col3\" class=\"data row4 col3\" >0.131161</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_63b9f_level0_row5\" class=\"row_heading level0 row5\" >20149</th>\n",
       "      <td id=\"T_63b9f_row5_col0\" class=\"data row5 col0\" >How large is the Marshall Islands shark sanctuary in square miles, specifically referring to the nearly 2,000,000 square kilometers designated by the government?</td>\n",
       "      <td id=\"T_63b9f_row5_col1\" class=\"data row5 col1\" >772,000</td>\n",
       "      <td id=\"T_63b9f_row5_col2\" class=\"data row5 col2\" >The Marshall Islands shark sanctuary is approximately 772,204 square miles in size.</td>\n",
       "      <td id=\"T_63b9f_row5_col3\" class=\"data row5 col3\" >0.135708</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_63b9f_level0_row6\" class=\"row_heading level0 row6\" >51916</th>\n",
       "      <td id=\"T_63b9f_row6_col0\" class=\"data row6 col0\" >What kind of nutritional value do processed foods have in comparison to their fresh variants, considering the impact of processing techniques on nutrient content as described in the context of nutrition?</td>\n",
       "      <td id=\"T_63b9f_row6_col1\" class=\"data row6 col1\" >reduced</td>\n",
       "      <td id=\"T_63b9f_row6_col2\" class=\"data row6 col2\" >Processed foods generally have a reduced nutritional value compared to fresh foods, which are nutritionally superior. Processing techniques can lead to the loss of essential nutrients and may introduce harmful substances.</td>\n",
       "      <td id=\"T_63b9f_row6_col3\" class=\"data row6 col3\" >0.140512</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_63b9f_level0_row7\" class=\"row_heading level0 row7\" >83184</th>\n",
       "      <td id=\"T_63b9f_row7_col0\" class=\"data row7 col0\" >In March 2014, what was the number of people sentenced to death during the single hearing by the Minya Criminal Court in Egypt?</td>\n",
       "      <td id=\"T_63b9f_row7_col1\" class=\"data row7 col1\" >529</td>\n",
       "      <td id=\"T_63b9f_row7_col2\" class=\"data row7 col2\" >I could not find the number of people sentenced to death during the single hearing by the Minya Criminal Court in Egypt in March 2014.</td>\n",
       "      <td id=\"T_63b9f_row7_col3\" class=\"data row7 col3\" >0.140897</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_63b9f_level0_row8\" class=\"row_heading level0 row8\" >16329</th>\n",
       "      <td id=\"T_63b9f_row8_col0\" class=\"data row8 col0\" >On what date did ESPN announce the purchase of a minority stake in the Arena Football League (AFL)?</td>\n",
       "      <td id=\"T_63b9f_row8_col1\" class=\"data row8 col1\" >December 19, 2006</td>\n",
       "      <td id=\"T_63b9f_row8_col2\" class=\"data row8 col2\" >ESPN announced the purchase of a minority stake in the Arena Football League (AFL) on December 19, 2006.</td>\n",
       "      <td id=\"T_63b9f_row8_col3\" class=\"data row8 col3\" >0.144917</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_63b9f_level0_row9\" class=\"row_heading level0 row9\" >6468</th>\n",
       "      <td id=\"T_63b9f_row9_col0\" class=\"data row9 col0\" >What does the Sanskrit term \"Karma,\" which translates to \"action\" or \"work,\" refer to in the context of Buddhism?</td>\n",
       "      <td id=\"T_63b9f_row9_col1\" class=\"data row9 col1\" >action, work</td>\n",
       "      <td id=\"T_63b9f_row9_col2\" class=\"data row9 col2\" >In Buddhism, the Sanskrit term 'Karma' refers to the force that drives saṃsāra, the cycle of suffering and rebirth. It encompasses actions of body, speech, or mind that arise from mental intent and produce consequences, with good actions leading to positive outcomes and bad actions leading to negative consequences.</td>\n",
       "      <td id=\"T_63b9f_row9_col3\" class=\"data row9 col3\" >0.168453</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x43c757170>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/markdown": [
       "#### Worse scoring answers for succinct"
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<style type=\"text/css\">\n",
       "#T_512f6 th {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_512f6 td {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_512f6_row0_col0, #T_512f6_row0_col1, #T_512f6_row0_col2, #T_512f6_row0_col3, #T_512f6_row1_col0, #T_512f6_row1_col1, #T_512f6_row1_col2, #T_512f6_row1_col3, #T_512f6_row2_col0, #T_512f6_row2_col1, #T_512f6_row2_col2, #T_512f6_row2_col3, #T_512f6_row3_col0, #T_512f6_row3_col1, #T_512f6_row3_col2, #T_512f6_row3_col3, #T_512f6_row4_col0, #T_512f6_row4_col1, #T_512f6_row4_col2, #T_512f6_row4_col3, #T_512f6_row5_col0, #T_512f6_row5_col1, #T_512f6_row5_col2, #T_512f6_row5_col3, #T_512f6_row6_col0, #T_512f6_row6_col1, #T_512f6_row6_col2, #T_512f6_row6_col3, #T_512f6_row7_col0, #T_512f6_row7_col1, #T_512f6_row7_col2, #T_512f6_row7_col3, #T_512f6_row8_col0, #T_512f6_row8_col1, #T_512f6_row8_col2, #T_512f6_row8_col3, #T_512f6_row9_col0, #T_512f6_row9_col1, #T_512f6_row9_col2, #T_512f6_row9_col3 {\n",
       "  white-space: pre-wrap;\n",
       "}\n",
       "</style>\n",
       "<table id=\"T_512f6\">\n",
       "  <thead>\n",
       "    <tr>\n",
       "      <th class=\"blank level0\" >&nbsp;</th>\n",
       "      <th id=\"T_512f6_level0_col0\" class=\"col_heading level0 col0\" >Synthesized Question</th>\n",
       "      <th id=\"T_512f6_level0_col1\" class=\"col_heading level0 col1\" >Answer</th>\n",
       "      <th id=\"T_512f6_level0_col2\" class=\"col_heading level0 col2\" >Predicted Answer</th>\n",
       "      <th id=\"T_512f6_level0_col3\" class=\"col_heading level0 col3\" >Similarity</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th id=\"T_512f6_level0_row0\" class=\"row_heading level0 row0\" >31138</th>\n",
       "      <td id=\"T_512f6_row0_col0\" class=\"data row0 col0\" >How many species of fungi, both non-lichen-forming and lichen-forming, have been recorded in Antarctica?</td>\n",
       "      <td id=\"T_512f6_row0_col1\" class=\"data row0 col1\" >1150</td>\n",
       "      <td id=\"T_512f6_row0_col2\" class=\"data row0 col2\" >1150 species of fungi have been recorded in Antarctica.</td>\n",
       "      <td id=\"T_512f6_row0_col3\" class=\"data row0 col3\" >-0.002039</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_512f6_level0_row1\" class=\"row_heading level0 row1\" >79931</th>\n",
       "      <td id=\"T_512f6_row1_col0\" class=\"data row1 col0\" >Where was very expensive wallpaper imported from during the Georgian architectural period?</td>\n",
       "      <td id=\"T_512f6_row1_col1\" class=\"data row1 col1\" >China</td>\n",
       "      <td id=\"T_512f6_row1_col2\" class=\"data row1 col2\" >The information about the origin of very expensive wallpaper during the Georgian architectural period is not available in the dataset.</td>\n",
       "      <td id=\"T_512f6_row1_col3\" class=\"data row1 col3\" >0.165669</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_512f6_level0_row2\" class=\"row_heading level0 row2\" >60191</th>\n",
       "      <td id=\"T_512f6_row2_col0\" class=\"data row2 col0\" >According to Hayek, limited government power through the Rule of Law does not stultify individual efforts by ad hoc action. What does this mean for people's ability to make investments and future plans?</td>\n",
       "      <td id=\"T_512f6_row2_col1\" class=\"data row2 col1\" >frustrate his efforts</td>\n",
       "      <td id=\"T_512f6_row2_col2\" class=\"data row2 col2\" >According to Hayek, limited government power through the Rule of Law enables individuals to confidently make investments and future plans without fear of arbitrary government interference.</td>\n",
       "      <td id=\"T_512f6_row2_col3\" class=\"data row2 col3\" >0.172209</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_512f6_level0_row3\" class=\"row_heading level0 row3\" >51916</th>\n",
       "      <td id=\"T_512f6_row3_col0\" class=\"data row3 col0\" >What kind of nutritional value do processed foods have in comparison to their fresh variants, considering the impact of processing techniques on nutrient content as described in the context of nutrition?</td>\n",
       "      <td id=\"T_512f6_row3_col1\" class=\"data row3 col1\" >reduced</td>\n",
       "      <td id=\"T_512f6_row3_col2\" class=\"data row3 col2\" >Processed foods have a reduced nutritional value compared to fresh foods.</td>\n",
       "      <td id=\"T_512f6_row3_col3\" class=\"data row3 col3\" >0.174138</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_512f6_level0_row4\" class=\"row_heading level0 row4\" >6468</th>\n",
       "      <td id=\"T_512f6_row4_col0\" class=\"data row4 col0\" >What does the Sanskrit term \"Karma,\" which translates to \"action\" or \"work,\" refer to in the context of Buddhism?</td>\n",
       "      <td id=\"T_512f6_row4_col1\" class=\"data row4 col1\" >action, work</td>\n",
       "      <td id=\"T_512f6_row4_col2\" class=\"data row4 col2\" >In Buddhism, Karma refers to the force that drives saṃsāra, encompassing actions of body, speech, or mind that stem from mental intent and produce consequences.</td>\n",
       "      <td id=\"T_512f6_row4_col3\" class=\"data row4 col3\" >0.266618</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_512f6_level0_row5\" class=\"row_heading level0 row5\" >49374</th>\n",
       "      <td id=\"T_512f6_row5_col0\" class=\"data row5 col0\" >Who is elected as mayor every even-numbered year in Ann Arbor, Michigan?</td>\n",
       "      <td id=\"T_512f6_row5_col1\" class=\"data row5 col1\" >mayor</td>\n",
       "      <td id=\"T_512f6_row5_col2\" class=\"data row5 col2\" >Christopher Taylor</td>\n",
       "      <td id=\"T_512f6_row5_col3\" class=\"data row5 col3\" >0.288215</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_512f6_level0_row6\" class=\"row_heading level0 row6\" >69135</th>\n",
       "      <td id=\"T_512f6_row6_col0\" class=\"data row6 col0\" >How many engineering colleges are there in Rajasthan, as mentioned in the context provided?</td>\n",
       "      <td id=\"T_512f6_row6_col1\" class=\"data row6 col1\" >41 engineering colleges</td>\n",
       "      <td id=\"T_512f6_row6_col2\" class=\"data row6 col2\" >41</td>\n",
       "      <td id=\"T_512f6_row6_col3\" class=\"data row6 col3\" >0.322794</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_512f6_level0_row7\" class=\"row_heading level0 row7\" >5111</th>\n",
       "      <td id=\"T_512f6_row7_col0\" class=\"data row7 col0\" >When did Tajiks begin to be conscripted into the Soviet Army, particularly during the lead-up to and including World War II?</td>\n",
       "      <td id=\"T_512f6_row7_col1\" class=\"data row7 col1\" >1939</td>\n",
       "      <td id=\"T_512f6_row7_col2\" class=\"data row7 col2\" >Tajiks began to be conscripted into the Soviet Army in 1939.</td>\n",
       "      <td id=\"T_512f6_row7_col3\" class=\"data row7 col3\" >0.329918</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_512f6_level0_row8\" class=\"row_heading level0 row8\" >13080</th>\n",
       "      <td id=\"T_512f6_row8_col0\" class=\"data row8 col0\" >What impact does temperature have on the variability of hunter-gatherer tool kits?</td>\n",
       "      <td id=\"T_512f6_row8_col1\" class=\"data row8 col1\" >increased variability of tools</td>\n",
       "      <td id=\"T_512f6_row8_col2\" class=\"data row8 col2\" >Temperature increases the variability of hunter-gatherer tool kits.</td>\n",
       "      <td id=\"T_512f6_row8_col3\" class=\"data row8 col3\" >0.341771</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_512f6_level0_row9\" class=\"row_heading level0 row9\" >69990</th>\n",
       "      <td id=\"T_512f6_row9_col0\" class=\"data row9 col0\" >When was ZE Records, the no wave-affiliated label mentioned in the context of post-punk, founded?</td>\n",
       "      <td id=\"T_512f6_row9_col1\" class=\"data row9 col1\" >1978</td>\n",
       "      <td id=\"T_512f6_row9_col2\" class=\"data row9 col2\" >ZE Records was founded in 1978. It is known for its association with the no wave movement and its influence on the post-punk music scene.</td>\n",
       "      <td id=\"T_512f6_row9_col3\" class=\"data row9 col3\" >0.343213</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x43d860e30>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/markdown": [
       "#### Worse scoring answers for focused"
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<style type=\"text/css\">\n",
       "#T_310bb th {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_310bb td {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_310bb_row0_col0, #T_310bb_row0_col1, #T_310bb_row0_col2, #T_310bb_row0_col3, #T_310bb_row1_col0, #T_310bb_row1_col1, #T_310bb_row1_col2, #T_310bb_row1_col3, #T_310bb_row2_col0, #T_310bb_row2_col1, #T_310bb_row2_col2, #T_310bb_row2_col3, #T_310bb_row3_col0, #T_310bb_row3_col1, #T_310bb_row3_col2, #T_310bb_row3_col3, #T_310bb_row4_col0, #T_310bb_row4_col1, #T_310bb_row4_col2, #T_310bb_row4_col3, #T_310bb_row5_col0, #T_310bb_row5_col1, #T_310bb_row5_col2, #T_310bb_row5_col3, #T_310bb_row6_col0, #T_310bb_row6_col1, #T_310bb_row6_col2, #T_310bb_row6_col3, #T_310bb_row7_col0, #T_310bb_row7_col1, #T_310bb_row7_col2, #T_310bb_row7_col3, #T_310bb_row8_col0, #T_310bb_row8_col1, #T_310bb_row8_col2, #T_310bb_row8_col3, #T_310bb_row9_col0, #T_310bb_row9_col1, #T_310bb_row9_col2, #T_310bb_row9_col3 {\n",
       "  white-space: pre-wrap;\n",
       "}\n",
       "</style>\n",
       "<table id=\"T_310bb\">\n",
       "  <thead>\n",
       "    <tr>\n",
       "      <th class=\"blank level0\" >&nbsp;</th>\n",
       "      <th id=\"T_310bb_level0_col0\" class=\"col_heading level0 col0\" >Synthesized Question</th>\n",
       "      <th id=\"T_310bb_level0_col1\" class=\"col_heading level0 col1\" >Answer</th>\n",
       "      <th id=\"T_310bb_level0_col2\" class=\"col_heading level0 col2\" >Predicted Answer</th>\n",
       "      <th id=\"T_310bb_level0_col3\" class=\"col_heading level0 col3\" >Similarity</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th id=\"T_310bb_level0_row0\" class=\"row_heading level0 row0\" >31138</th>\n",
       "      <td id=\"T_310bb_row0_col0\" class=\"data row0 col0\" >How many species of fungi, both non-lichen-forming and lichen-forming, have been recorded in Antarctica?</td>\n",
       "      <td id=\"T_310bb_row0_col1\" class=\"data row0 col1\" >1150</td>\n",
       "      <td id=\"T_310bb_row0_col2\" class=\"data row0 col2\" >1150 species of fungi have been recorded in Antarctica, including 750 non-lichen-forming and 400 lichen-forming species.</td>\n",
       "      <td id=\"T_310bb_row0_col3\" class=\"data row0 col3\" >-0.034279</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_310bb_level0_row1\" class=\"row_heading level0 row1\" >51916</th>\n",
       "      <td id=\"T_310bb_row1_col0\" class=\"data row1 col0\" >What kind of nutritional value do processed foods have in comparison to their fresh variants, considering the impact of processing techniques on nutrient content as described in the context of nutrition?</td>\n",
       "      <td id=\"T_310bb_row1_col1\" class=\"data row1 col1\" >reduced</td>\n",
       "      <td id=\"T_310bb_row1_col2\" class=\"data row1 col2\" >Processed foods have reduced nutritional value compared to fresh foods.</td>\n",
       "      <td id=\"T_310bb_row1_col3\" class=\"data row1 col3\" >0.174138</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_310bb_level0_row2\" class=\"row_heading level0 row2\" >56941</th>\n",
       "      <td id=\"T_310bb_row2_col0\" class=\"data row2 col0\" >What fraction of the South Florida population lives in the city of Miami, given that it is home to less than one-thirteenth of the population of South Florida?</td>\n",
       "      <td id=\"T_310bb_row2_col1\" class=\"data row2 col1\" >one-thirteenth</td>\n",
       "      <td id=\"T_310bb_row2_col2\" class=\"data row2 col2\" >less than 1/13</td>\n",
       "      <td id=\"T_310bb_row2_col3\" class=\"data row2 col3\" >0.192653</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_310bb_level0_row3\" class=\"row_heading level0 row3\" >6468</th>\n",
       "      <td id=\"T_310bb_row3_col0\" class=\"data row3 col0\" >What does the Sanskrit term \"Karma,\" which translates to \"action\" or \"work,\" refer to in the context of Buddhism?</td>\n",
       "      <td id=\"T_310bb_row3_col1\" class=\"data row3 col1\" >action, work</td>\n",
       "      <td id=\"T_310bb_row3_col2\" class=\"data row3 col2\" >In Buddhism, 'Karma' refers to the actions of body, speech, or mind that spring from mental intent and drive the cycle of suffering and rebirth (saṃsāra).</td>\n",
       "      <td id=\"T_310bb_row3_col3\" class=\"data row3 col3\" >0.245145</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_310bb_level0_row4\" class=\"row_heading level0 row4\" >60191</th>\n",
       "      <td id=\"T_310bb_row4_col0\" class=\"data row4 col0\" >According to Hayek, limited government power through the Rule of Law does not stultify individual efforts by ad hoc action. What does this mean for people's ability to make investments and future plans?</td>\n",
       "      <td id=\"T_310bb_row4_col1\" class=\"data row4 col1\" >frustrate his efforts</td>\n",
       "      <td id=\"T_310bb_row4_col2\" class=\"data row4 col2\" >Hayek believes that limited government power through the Rule of Law allows individuals to make wise investments and future plans with confidence, as it prevents the government from frustrating their efforts.</td>\n",
       "      <td id=\"T_310bb_row4_col3\" class=\"data row4 col3\" >0.251189</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_310bb_level0_row5\" class=\"row_heading level0 row5\" >79931</th>\n",
       "      <td id=\"T_310bb_row5_col0\" class=\"data row5 col0\" >Where was very expensive wallpaper imported from during the Georgian architectural period?</td>\n",
       "      <td id=\"T_310bb_row5_col1\" class=\"data row5 col1\" >China</td>\n",
       "      <td id=\"T_310bb_row5_col2\" class=\"data row5 col2\" >Very expensive wallpaper during the Georgian architectural period was primarily imported from France and China.</td>\n",
       "      <td id=\"T_310bb_row5_col3\" class=\"data row5 col3\" >0.277804</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_310bb_level0_row6\" class=\"row_heading level0 row6\" >49374</th>\n",
       "      <td id=\"T_310bb_row6_col0\" class=\"data row6 col0\" >Who is elected as mayor every even-numbered year in Ann Arbor, Michigan?</td>\n",
       "      <td id=\"T_310bb_row6_col1\" class=\"data row6 col1\" >mayor</td>\n",
       "      <td id=\"T_310bb_row6_col2\" class=\"data row6 col2\" >Christopher Taylor</td>\n",
       "      <td id=\"T_310bb_row6_col3\" class=\"data row6 col3\" >0.288215</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_310bb_level0_row7\" class=\"row_heading level0 row7\" >5111</th>\n",
       "      <td id=\"T_310bb_row7_col0\" class=\"data row7 col0\" >When did Tajiks begin to be conscripted into the Soviet Army, particularly during the lead-up to and including World War II?</td>\n",
       "      <td id=\"T_310bb_row7_col1\" class=\"data row7 col1\" >1939</td>\n",
       "      <td id=\"T_310bb_row7_col2\" class=\"data row7 col2\" >Tajiks began to be conscripted into the Soviet Army in 1939.</td>\n",
       "      <td id=\"T_310bb_row7_col3\" class=\"data row7 col3\" >0.329918</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_310bb_level0_row8\" class=\"row_heading level0 row8\" >13080</th>\n",
       "      <td id=\"T_310bb_row8_col0\" class=\"data row8 col0\" >What impact does temperature have on the variability of hunter-gatherer tool kits?</td>\n",
       "      <td id=\"T_310bb_row8_col1\" class=\"data row8 col1\" >increased variability of tools</td>\n",
       "      <td id=\"T_310bb_row8_col2\" class=\"data row8 col2\" >Temperature increases the variability of hunter-gatherer tool kits.</td>\n",
       "      <td id=\"T_310bb_row8_col3\" class=\"data row8 col3\" >0.341771</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_310bb_level0_row9\" class=\"row_heading level0 row9\" >45263</th>\n",
       "      <td id=\"T_310bb_row9_col0\" class=\"data row9 col0\" >How many copies has Queen's Greatest Hits II sold worldwide?</td>\n",
       "      <td id=\"T_310bb_row9_col1\" class=\"data row9 col1\" >16 million</td>\n",
       "      <td id=\"T_310bb_row9_col2\" class=\"data row9 col2\" >The specific sales figures for Queen's Greatest Hits II are not available, but Queen has sold over 150 million records worldwide in total.</td>\n",
       "      <td id=\"T_310bb_row9_col3\" class=\"data row9 col3\" >0.345838</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x43c7551c0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Show the worst 10 answers for each benchmark\n",
    "for benchmark in benchmarks:\n",
    "    display(Markdown(f\"#### Worse scoring answers for {benchmark['name']}\"))\n",
    "    display_text_df(\n",
    "        benchmark[\"data\"][\n",
    "            [\"Synthesized Question\", \"Answer\", \"Predicted Answer\", \"Similarity\"]\n",
    "        ]\n",
    "        .sort_values(by=\"Similarity\", ascending=True)\n",
    "        .head(10)\n",
    "    )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Observations\n",
    "\n",
    "* All of the agents are unfairly penalized for elaborating on answers when the reference answer is brief. \n",
    "  * For example, in the worst-ranking answer when all 3 agents are correct (id=31138), but ranked the worst in semantic similarity due to the extra context they provided.\n",
    "* Of the `baseline` agent's worst answers by semantic similarity, 3 are unquestionably incorrect, while the rest look correct from a human evaluator's perspective.\n",
    "* Of the `succinct` agent's worst answers by semantic similarity, 2 are unquestionably incorrect, while the rest look correct from a human evaluator's perspective.\n",
    "* Of the `focused` agent's worst answers by semantic similarity, 2 are unquestionably incorrect, while the rest look correct from a human evaluator's perspective."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 215,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/markdown": [
       "#### Best scoring answers for baseline"
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<style type=\"text/css\">\n",
       "#T_3c767 th {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_3c767 td {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_3c767_row0_col0, #T_3c767_row0_col1, #T_3c767_row0_col2, #T_3c767_row0_col3, #T_3c767_row1_col0, #T_3c767_row1_col1, #T_3c767_row1_col2, #T_3c767_row1_col3, #T_3c767_row2_col0, #T_3c767_row2_col1, #T_3c767_row2_col2, #T_3c767_row2_col3, #T_3c767_row3_col0, #T_3c767_row3_col1, #T_3c767_row3_col2, #T_3c767_row3_col3, #T_3c767_row4_col0, #T_3c767_row4_col1, #T_3c767_row4_col2, #T_3c767_row4_col3, #T_3c767_row5_col0, #T_3c767_row5_col1, #T_3c767_row5_col2, #T_3c767_row5_col3, #T_3c767_row6_col0, #T_3c767_row6_col1, #T_3c767_row6_col2, #T_3c767_row6_col3, #T_3c767_row7_col0, #T_3c767_row7_col1, #T_3c767_row7_col2, #T_3c767_row7_col3, #T_3c767_row8_col0, #T_3c767_row8_col1, #T_3c767_row8_col2, #T_3c767_row8_col3, #T_3c767_row9_col0, #T_3c767_row9_col1, #T_3c767_row9_col2, #T_3c767_row9_col3 {\n",
       "  white-space: pre-wrap;\n",
       "}\n",
       "</style>\n",
       "<table id=\"T_3c767\">\n",
       "  <thead>\n",
       "    <tr>\n",
       "      <th class=\"blank level0\" >&nbsp;</th>\n",
       "      <th id=\"T_3c767_level0_col0\" class=\"col_heading level0 col0\" >Synthesized Question</th>\n",
       "      <th id=\"T_3c767_level0_col1\" class=\"col_heading level0 col1\" >Answer</th>\n",
       "      <th id=\"T_3c767_level0_col2\" class=\"col_heading level0 col2\" >Predicted Answer</th>\n",
       "      <th id=\"T_3c767_level0_col3\" class=\"col_heading level0 col3\" >Similarity</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th id=\"T_3c767_level0_row0\" class=\"row_heading level0 row0\" >56283</th>\n",
       "      <td id=\"T_3c767_row0_col0\" class=\"data row0 col0\" >While Darwin wasn't sure about blending inherited traits, what was his opinion on the usefulness of inherited variation in relation to his concept of selection as discussed in \"On the Origin of Species\"?</td>\n",
       "      <td id=\"T_3c767_row0_col1\" class=\"data row0 col1\" >Darwin's concept of selection working on a population with a range of small variations was workable</td>\n",
       "      <td id=\"T_3c767_row0_col2\" class=\"data row0 col2\" >Darwin believed that inherited variation was useful because his concept of selection could work on a population with a range of small variations.</td>\n",
       "      <td id=\"T_3c767_row0_col3\" class=\"data row0 col3\" >0.830038</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_3c767_level0_row1\" class=\"row_heading level0 row1\" >15471</th>\n",
       "      <td id=\"T_3c767_row1_col0\" class=\"data row1 col0\" >What is the name of the main public service broadcaster in Somalia, as mentioned in the context of Communications in Somalia?</td>\n",
       "      <td id=\"T_3c767_row1_col1\" class=\"data row1 col1\" >Somali National Television</td>\n",
       "      <td id=\"T_3c767_row1_col2\" class=\"data row1 col2\" >The main public service broadcaster in Somalia is Somali National Television (SNTV).</td>\n",
       "      <td id=\"T_3c767_row1_col3\" class=\"data row1 col3\" >0.816376</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_3c767_level0_row2\" class=\"row_heading level0 row2\" >39287</th>\n",
       "      <td id=\"T_3c767_row2_col0\" class=\"data row2 col0\" >What specific educational reforms implemented by Napoleon contributed to the establishment of a modernized education system in France and influenced education across Europe?</td>\n",
       "      <td id=\"T_3c767_row2_col1\" class=\"data row2 col1\" >Napoleon's educational reforms</td>\n",
       "      <td id=\"T_3c767_row2_col2\" class=\"data row2 col2\" >Napoleon implemented several educational reforms that contributed to a modernized education system in France and influenced Europe. These reforms included the establishment of state secondary schools (lycées) to provide standardized education, the emphasis on teaching sciences and languages, and the development of a secular public education system. He aimed to synthesize the best elements from the Ancien Régime, the Enlightenment, and the Revolution, and his system featured scholarships and strict discipline, resulting in France's educational system outperforming its European counterparts.</td>\n",
       "      <td id=\"T_3c767_row2_col3\" class=\"data row2 col3\" >0.810252</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_3c767_level0_row3\" class=\"row_heading level0 row3\" >36802</th>\n",
       "      <td id=\"T_3c767_row3_col0\" class=\"data row3 col0\" >Who is responsible for approving drugs for use in the United Kingdom, according to the context of the pharmaceutical industry?</td>\n",
       "      <td id=\"T_3c767_row3_col1\" class=\"data row3 col1\" >Medicines and Healthcare Products Regulatory Agency</td>\n",
       "      <td id=\"T_3c767_row3_col2\" class=\"data row3 col2\" >The Medicines and Healthcare Products Regulatory Agency (MHRA) is responsible for approving drugs for use in the United Kingdom.</td>\n",
       "      <td id=\"T_3c767_row3_col3\" class=\"data row3 col3\" >0.810035</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_3c767_level0_row4\" class=\"row_heading level0 row4\" >56292</th>\n",
       "      <td id=\"T_3c767_row4_col0\" class=\"data row4 col0\" >How does Darwin theorize that instincts have evolved in slave-making ants in Chapter VII of \"On the Origin of Species\"?</td>\n",
       "      <td id=\"T_3c767_row4_col1\" class=\"data row4 col1\" >He thought it reasonable that species with an extreme dependency on slave workers had evolved in incremental steps.</td>\n",
       "      <td id=\"T_3c767_row4_col2\" class=\"data row4 col2\" >Darwin theorized that instincts in slave-making ants evolved in incremental steps, particularly in species that exhibit extreme dependency on slave workers.</td>\n",
       "      <td id=\"T_3c767_row4_col3\" class=\"data row4 col3\" >0.809778</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_3c767_level0_row5\" class=\"row_heading level0 row5\" >74315</th>\n",
       "      <td id=\"T_3c767_row5_col0\" class=\"data row5 col0\" >What is the name of the famous valley located in Oregon, specifically mentioned in the context of the Geography of the United States?</td>\n",
       "      <td id=\"T_3c767_row5_col1\" class=\"data row5 col1\" >Willamette Valley</td>\n",
       "      <td id=\"T_3c767_row5_col2\" class=\"data row5 col2\" >The famous valley located in Oregon is the Willamette Valley.</td>\n",
       "      <td id=\"T_3c767_row5_col3\" class=\"data row5 col3\" >0.800726</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_3c767_level0_row6\" class=\"row_heading level0 row6\" >32186</th>\n",
       "      <td id=\"T_3c767_row6_col0\" class=\"data row6 col0\" >What did the Observer Corps in Britain observe and report on regarding hostile aircraft flying over Britain?</td>\n",
       "      <td id=\"T_3c767_row6_col1\" class=\"data row6 col1\" >hostile aircraft flying over Britain</td>\n",
       "      <td id=\"T_3c767_row6_col2\" class=\"data row6 col2\" >The Observer Corps in Britain observed and reported on hostile aircraft flying over Britain.</td>\n",
       "      <td id=\"T_3c767_row6_col3\" class=\"data row6 col3\" >0.787479</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_3c767_level0_row7\" class=\"row_heading level0 row7\" >69135</th>\n",
       "      <td id=\"T_3c767_row7_col0\" class=\"data row7 col0\" >How many engineering colleges are there in Rajasthan, as mentioned in the context provided?</td>\n",
       "      <td id=\"T_3c767_row7_col1\" class=\"data row7 col1\" >41 engineering colleges</td>\n",
       "      <td id=\"T_3c767_row7_col2\" class=\"data row7 col2\" >There are 41 engineering colleges in Rajasthan.</td>\n",
       "      <td id=\"T_3c767_row7_col3\" class=\"data row7 col3\" >0.774651</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_3c767_level0_row8\" class=\"row_heading level0 row8\" >70472</th>\n",
       "      <td id=\"T_3c767_row8_col0\" class=\"data row8 col0\" >What factors contributed to Prussia's decision not to renew its alliance with Britain after the Seven Years' War?</td>\n",
       "      <td id=\"T_3c767_row8_col1\" class=\"data row8 col1\" >Prussians were angered by what they considered a British betrayal in 1762</td>\n",
       "      <td id=\"T_3c767_row8_col2\" class=\"data row8 col2\" >Prussia decided not to renew its alliance with Britain after the Seven Years' War primarily due to their anger over what they considered a British betrayal in 1762.</td>\n",
       "      <td id=\"T_3c767_row8_col3\" class=\"data row8 col3\" >0.772004</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_3c767_level0_row9\" class=\"row_heading level0 row9\" >81021</th>\n",
       "      <td id=\"T_3c767_row9_col0\" class=\"data row9 col0\" >Where were the advanced materials and techniques, such as buttresses and arches, used in Sumerian temples and palaces on display?</td>\n",
       "      <td id=\"T_3c767_row9_col1\" class=\"data row9 col1\" >Sumerian temples and palaces</td>\n",
       "      <td id=\"T_3c767_row9_col2\" class=\"data row9 col2\" >The advanced materials and techniques, such as buttresses and arches, used in Sumerian temples and palaces are on display in Sumerian temples and palaces.</td>\n",
       "      <td id=\"T_3c767_row9_col3\" class=\"data row9 col3\" >0.766647</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x43d4c7170>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/markdown": [
       "#### Best scoring answers for succinct"
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<style type=\"text/css\">\n",
       "#T_23984 th {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_23984 td {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_23984_row0_col0, #T_23984_row0_col1, #T_23984_row0_col2, #T_23984_row0_col3, #T_23984_row1_col0, #T_23984_row1_col1, #T_23984_row1_col2, #T_23984_row1_col3, #T_23984_row2_col0, #T_23984_row2_col1, #T_23984_row2_col2, #T_23984_row2_col3, #T_23984_row3_col0, #T_23984_row3_col1, #T_23984_row3_col2, #T_23984_row3_col3, #T_23984_row4_col0, #T_23984_row4_col1, #T_23984_row4_col2, #T_23984_row4_col3, #T_23984_row5_col0, #T_23984_row5_col1, #T_23984_row5_col2, #T_23984_row5_col3, #T_23984_row6_col0, #T_23984_row6_col1, #T_23984_row6_col2, #T_23984_row6_col3, #T_23984_row7_col0, #T_23984_row7_col1, #T_23984_row7_col2, #T_23984_row7_col3, #T_23984_row8_col0, #T_23984_row8_col1, #T_23984_row8_col2, #T_23984_row8_col3, #T_23984_row9_col0, #T_23984_row9_col1, #T_23984_row9_col2, #T_23984_row9_col3 {\n",
       "  white-space: pre-wrap;\n",
       "}\n",
       "</style>\n",
       "<table id=\"T_23984\">\n",
       "  <thead>\n",
       "    <tr>\n",
       "      <th class=\"blank level0\" >&nbsp;</th>\n",
       "      <th id=\"T_23984_level0_col0\" class=\"col_heading level0 col0\" >Synthesized Question</th>\n",
       "      <th id=\"T_23984_level0_col1\" class=\"col_heading level0 col1\" >Answer</th>\n",
       "      <th id=\"T_23984_level0_col2\" class=\"col_heading level0 col2\" >Predicted Answer</th>\n",
       "      <th id=\"T_23984_level0_col3\" class=\"col_heading level0 col3\" >Similarity</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th id=\"T_23984_level0_row0\" class=\"row_heading level0 row0\" >55901</th>\n",
       "      <td id=\"T_23984_row0_col0\" class=\"data row0 col0\" >In 1849, what railroad was created by the North Carolina legislature to extend west from the Wilmington and Raleigh Railroad?</td>\n",
       "      <td id=\"T_23984_row0_col1\" class=\"data row0 col1\" >North Carolina Railroad</td>\n",
       "      <td id=\"T_23984_row0_col2\" class=\"data row0 col2\" >North Carolina Railroad</td>\n",
       "      <td id=\"T_23984_row0_col3\" class=\"data row0 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_23984_level0_row1\" class=\"row_heading level0 row1\" >34182</th>\n",
       "      <td id=\"T_23984_row1_col0\" class=\"data row1 col0\" >What ordering scheme did readers prefer during the Age of Enlightenment?</td>\n",
       "      <td id=\"T_23984_row1_col1\" class=\"data row1 col1\" >alphabetical</td>\n",
       "      <td id=\"T_23984_row1_col2\" class=\"data row1 col2\" >alphabetical</td>\n",
       "      <td id=\"T_23984_row1_col3\" class=\"data row1 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_23984_level0_row2\" class=\"row_heading level0 row2\" >9983</th>\n",
       "      <td id=\"T_23984_row2_col0\" class=\"data row2 col0\" >What year was the Banská Akadémia, the world's first institution of technology, founded in Banská Štiavnica, Slovakia?</td>\n",
       "      <td id=\"T_23984_row2_col1\" class=\"data row2 col1\" >1735</td>\n",
       "      <td id=\"T_23984_row2_col2\" class=\"data row2 col2\" >1735</td>\n",
       "      <td id=\"T_23984_row2_col3\" class=\"data row2 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_23984_level0_row3\" class=\"row_heading level0 row3\" >17172</th>\n",
       "      <td id=\"T_23984_row3_col0\" class=\"data row3 col0\" >What year did Bern join the Swiss Confederacy, according to the historical context provided?</td>\n",
       "      <td id=\"T_23984_row3_col1\" class=\"data row3 col1\" >1353</td>\n",
       "      <td id=\"T_23984_row3_col2\" class=\"data row3 col2\" >1353</td>\n",
       "      <td id=\"T_23984_row3_col3\" class=\"data row3 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_23984_level0_row4\" class=\"row_heading level0 row4\" >87251</th>\n",
       "      <td id=\"T_23984_row4_col0\" class=\"data row4 col0\" >Where can safari hunters go that are considered uninviting to typical ecotourists, particularly in the context of hunting in Tanzania?</td>\n",
       "      <td id=\"T_23984_row4_col1\" class=\"data row4 col1\" >remote areas</td>\n",
       "      <td id=\"T_23984_row4_col2\" class=\"data row4 col2\" >remote areas</td>\n",
       "      <td id=\"T_23984_row4_col3\" class=\"data row4 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_23984_level0_row5\" class=\"row_heading level0 row5\" >65484</th>\n",
       "      <td id=\"T_23984_row5_col0\" class=\"data row5 col0\" >What field did the majority of the 144,600 employees at La Défense work in as of 2010?</td>\n",
       "      <td id=\"T_23984_row5_col1\" class=\"data row5 col1\" >finance and insurance</td>\n",
       "      <td id=\"T_23984_row5_col2\" class=\"data row5 col2\" >finance and insurance</td>\n",
       "      <td id=\"T_23984_row5_col3\" class=\"data row5 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_23984_level0_row6\" class=\"row_heading level0 row6\" >74315</th>\n",
       "      <td id=\"T_23984_row6_col0\" class=\"data row6 col0\" >What is the name of the famous valley located in Oregon, specifically mentioned in the context of the Geography of the United States?</td>\n",
       "      <td id=\"T_23984_row6_col1\" class=\"data row6 col1\" >Willamette Valley</td>\n",
       "      <td id=\"T_23984_row6_col2\" class=\"data row6 col2\" >Willamette Valley</td>\n",
       "      <td id=\"T_23984_row6_col3\" class=\"data row6 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_23984_level0_row7\" class=\"row_heading level0 row7\" >43267</th>\n",
       "      <td id=\"T_23984_row7_col0\" class=\"data row7 col0\" >What is another speed rating that can also be reported by the camera in addition to the noise-based and saturation-based speeds?</td>\n",
       "      <td id=\"T_23984_row7_col1\" class=\"data row7 col1\" >SOS-based speed</td>\n",
       "      <td id=\"T_23984_row7_col2\" class=\"data row7 col2\" >SOS-based speed</td>\n",
       "      <td id=\"T_23984_row7_col3\" class=\"data row7 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_23984_level0_row8\" class=\"row_heading level0 row8\" >16329</th>\n",
       "      <td id=\"T_23984_row8_col0\" class=\"data row8 col0\" >On what date did ESPN announce the purchase of a minority stake in the Arena Football League (AFL)?</td>\n",
       "      <td id=\"T_23984_row8_col1\" class=\"data row8 col1\" >December 19, 2006</td>\n",
       "      <td id=\"T_23984_row8_col2\" class=\"data row8 col2\" >December 19, 2006</td>\n",
       "      <td id=\"T_23984_row8_col3\" class=\"data row8 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_23984_level0_row9\" class=\"row_heading level0 row9\" >58193</th>\n",
       "      <td id=\"T_23984_row9_col0\" class=\"data row9 col0\" >At around what age, specifically twenty-four or twenty-five, was Dominic ordained as a Priest in the context of the Dominican Order?</td>\n",
       "      <td id=\"T_23984_row9_col1\" class=\"data row9 col1\" >twenty-five</td>\n",
       "      <td id=\"T_23984_row9_col2\" class=\"data row9 col2\" >twenty-five</td>\n",
       "      <td id=\"T_23984_row9_col3\" class=\"data row9 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x43d5ec950>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/markdown": [
       "#### Best scoring answers for focused"
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<style type=\"text/css\">\n",
       "#T_be7b7 th {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_be7b7 td {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_be7b7_row0_col0, #T_be7b7_row0_col1, #T_be7b7_row0_col2, #T_be7b7_row0_col3, #T_be7b7_row1_col0, #T_be7b7_row1_col1, #T_be7b7_row1_col2, #T_be7b7_row1_col3, #T_be7b7_row2_col0, #T_be7b7_row2_col1, #T_be7b7_row2_col2, #T_be7b7_row2_col3, #T_be7b7_row3_col0, #T_be7b7_row3_col1, #T_be7b7_row3_col2, #T_be7b7_row3_col3, #T_be7b7_row4_col0, #T_be7b7_row4_col1, #T_be7b7_row4_col2, #T_be7b7_row4_col3, #T_be7b7_row5_col0, #T_be7b7_row5_col1, #T_be7b7_row5_col2, #T_be7b7_row5_col3, #T_be7b7_row6_col0, #T_be7b7_row6_col1, #T_be7b7_row6_col2, #T_be7b7_row6_col3, #T_be7b7_row7_col0, #T_be7b7_row7_col1, #T_be7b7_row7_col2, #T_be7b7_row7_col3, #T_be7b7_row8_col0, #T_be7b7_row8_col1, #T_be7b7_row8_col2, #T_be7b7_row8_col3, #T_be7b7_row9_col0, #T_be7b7_row9_col1, #T_be7b7_row9_col2, #T_be7b7_row9_col3 {\n",
       "  white-space: pre-wrap;\n",
       "}\n",
       "</style>\n",
       "<table id=\"T_be7b7\">\n",
       "  <thead>\n",
       "    <tr>\n",
       "      <th class=\"blank level0\" >&nbsp;</th>\n",
       "      <th id=\"T_be7b7_level0_col0\" class=\"col_heading level0 col0\" >Synthesized Question</th>\n",
       "      <th id=\"T_be7b7_level0_col1\" class=\"col_heading level0 col1\" >Answer</th>\n",
       "      <th id=\"T_be7b7_level0_col2\" class=\"col_heading level0 col2\" >Predicted Answer</th>\n",
       "      <th id=\"T_be7b7_level0_col3\" class=\"col_heading level0 col3\" >Similarity</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th id=\"T_be7b7_level0_row0\" class=\"row_heading level0 row0\" >34182</th>\n",
       "      <td id=\"T_be7b7_row0_col0\" class=\"data row0 col0\" >What ordering scheme did readers prefer during the Age of Enlightenment?</td>\n",
       "      <td id=\"T_be7b7_row0_col1\" class=\"data row0 col1\" >alphabetical</td>\n",
       "      <td id=\"T_be7b7_row0_col2\" class=\"data row0 col2\" >alphabetical</td>\n",
       "      <td id=\"T_be7b7_row0_col3\" class=\"data row0 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_be7b7_level0_row1\" class=\"row_heading level0 row1\" >3951</th>\n",
       "      <td id=\"T_be7b7_row1_col0\" class=\"data row1 col0\" >In 1860, approximately how many Irish immigrants were living in New York City?</td>\n",
       "      <td id=\"T_be7b7_row1_col1\" class=\"data row1 col1\" >200,000</td>\n",
       "      <td id=\"T_be7b7_row1_col2\" class=\"data row1 col2\" >Over 200,000</td>\n",
       "      <td id=\"T_be7b7_row1_col3\" class=\"data row1 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_be7b7_level0_row2\" class=\"row_heading level0 row2\" >55901</th>\n",
       "      <td id=\"T_be7b7_row2_col0\" class=\"data row2 col0\" >In 1849, what railroad was created by the North Carolina legislature to extend west from the Wilmington and Raleigh Railroad?</td>\n",
       "      <td id=\"T_be7b7_row2_col1\" class=\"data row2 col1\" >North Carolina Railroad</td>\n",
       "      <td id=\"T_be7b7_row2_col2\" class=\"data row2 col2\" >North Carolina Railroad</td>\n",
       "      <td id=\"T_be7b7_row2_col3\" class=\"data row2 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_be7b7_level0_row3\" class=\"row_heading level0 row3\" >81694</th>\n",
       "      <td id=\"T_be7b7_row3_col0\" class=\"data row3 col0\" >When did the United States purchase Alaska from Russia?</td>\n",
       "      <td id=\"T_be7b7_row3_col1\" class=\"data row3 col1\" >1867</td>\n",
       "      <td id=\"T_be7b7_row3_col2\" class=\"data row3 col2\" >1867</td>\n",
       "      <td id=\"T_be7b7_row3_col3\" class=\"data row3 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_be7b7_level0_row4\" class=\"row_heading level0 row4\" >6266</th>\n",
       "      <td id=\"T_be7b7_row4_col0\" class=\"data row4 col0\" >Where was Donda West's funeral held on November 20, 2007?</td>\n",
       "      <td id=\"T_be7b7_row4_col1\" class=\"data row4 col1\" >Oklahoma City</td>\n",
       "      <td id=\"T_be7b7_row4_col2\" class=\"data row4 col2\" >Oklahoma City</td>\n",
       "      <td id=\"T_be7b7_row4_col3\" class=\"data row4 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_be7b7_level0_row5\" class=\"row_heading level0 row5\" >2267</th>\n",
       "      <td id=\"T_be7b7_row5_col0\" class=\"data row5 col0\" >How many households were the offices of Qianhu in charge of during the Ming dynasty as described in the context of Sino-Tibetan relations?</td>\n",
       "      <td id=\"T_be7b7_row5_col1\" class=\"data row5 col1\" >1,000 households</td>\n",
       "      <td id=\"T_be7b7_row5_col2\" class=\"data row5 col2\" >1,000 households</td>\n",
       "      <td id=\"T_be7b7_row5_col3\" class=\"data row5 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_be7b7_level0_row6\" class=\"row_heading level0 row6\" >72912</th>\n",
       "      <td id=\"T_be7b7_row6_col0\" class=\"data row6 col0\" >What year did the government start distributing Morrison shelters during The Blitz?</td>\n",
       "      <td id=\"T_be7b7_row6_col1\" class=\"data row6 col1\" >1941</td>\n",
       "      <td id=\"T_be7b7_row6_col2\" class=\"data row6 col2\" >1941</td>\n",
       "      <td id=\"T_be7b7_row6_col3\" class=\"data row6 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_be7b7_level0_row7\" class=\"row_heading level0 row7\" >40855</th>\n",
       "      <td id=\"T_be7b7_row7_col0\" class=\"data row7 col0\" >Who was the chief engineer at the United States Electric Lighting Company, as mentioned in the context of the development of the incandescent light bulb?</td>\n",
       "      <td id=\"T_be7b7_row7_col1\" class=\"data row7 col1\" >Hiram S. Maxim</td>\n",
       "      <td id=\"T_be7b7_row7_col2\" class=\"data row7 col2\" >Hiram S. Maxim</td>\n",
       "      <td id=\"T_be7b7_row7_col3\" class=\"data row7 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_be7b7_level0_row8\" class=\"row_heading level0 row8\" >8786</th>\n",
       "      <td id=\"T_be7b7_row8_col0\" class=\"data row8 col0\" >What was Alfred North Whitehead's final area of study before developing his comprehensive metaphysical system?</td>\n",
       "      <td id=\"T_be7b7_row8_col1\" class=\"data row8 col1\" >metaphysics</td>\n",
       "      <td id=\"T_be7b7_row8_col2\" class=\"data row8 col2\" >metaphysics</td>\n",
       "      <td id=\"T_be7b7_row8_col3\" class=\"data row8 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th id=\"T_be7b7_level0_row9\" class=\"row_heading level0 row9\" >58193</th>\n",
       "      <td id=\"T_be7b7_row9_col0\" class=\"data row9 col0\" >At around what age, specifically twenty-four or twenty-five, was Dominic ordained as a Priest in the context of the Dominican Order?</td>\n",
       "      <td id=\"T_be7b7_row9_col1\" class=\"data row9 col1\" >twenty-five</td>\n",
       "      <td id=\"T_be7b7_row9_col2\" class=\"data row9 col2\" >twenty-five</td>\n",
       "      <td id=\"T_be7b7_row9_col3\" class=\"data row9 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x43d863380>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Show the best 10 answers for each benchmark\n",
    "for benchmark in benchmarks:\n",
    "    display(Markdown(f\"#### Best scoring answers for {benchmark['name']}\"))\n",
    "    display_text_df(benchmark['data'][['Synthesized Question', 'Answer', 'Predicted Answer', 'Similarity']].sort_values(by='Similarity', ascending=False).head(10))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Observations\n",
    "\n",
    "* Here we can see `focused` and `succeinct` agents are producing exactly correct answers, while even at its best, the `baseline` agent is producing factually relevant and correct answers, but being penalized for elaborating and providing more context. "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Conclusion\n",
    "\n",
    "Overall, the semantic similarity metric differentiates between good and bad answers, but is prone to penalizing agents for elaborating on answers when the reference answer is brief.  \n",
    "\n",
    "## Future Work\n",
    "\n",
    "* It may be interesting to have human-generated, contextualized acceptable answers to go with the concise answers, and then take the max sementic similarity score between the predicted answer and the acceptable answers, to avoid penalizing agents for providing relevant context.\n",
    "* It would also be interesting to look for and include the other acceptable answers found in the SQuAD dataset. "
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "aai520",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}