File size: 17,494 Bytes
dd5fe55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Load SQuAD data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import json\n",
    "import pandas as pd\n",
    "\n",
    "def display_text_df(df):\n",
    "    display(df.style.set_properties(**{'white-space': 'pre-wrap'}).set_table_styles(\n",
    "        [{'selector': 'th', 'props': [('text-align', 'left')]},\n",
    "         {'selector': 'td', 'props': [('text-align', 'left')]}\n",
    "        ]\n",
    "    ).hide())\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "from data import get_data\n",
    "data = get_data(download=False)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "('To whom did the Virgin Mary allegedly appear in 1858 in Lourdes France?',\n",
       " 'Saint Bernadette Soubirous')"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.question_answer_pairs[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style type=\"text/css\">\n",
       "#T_fc111 th {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_fc111 td {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_fc111_row0_col0, #T_fc111_row0_col1, #T_fc111_row1_col0, #T_fc111_row1_col1, #T_fc111_row2_col0, #T_fc111_row2_col1, #T_fc111_row3_col0, #T_fc111_row3_col1, #T_fc111_row4_col0, #T_fc111_row4_col1, #T_fc111_row5_col0, #T_fc111_row5_col1, #T_fc111_row6_col0, #T_fc111_row6_col1, #T_fc111_row7_col0, #T_fc111_row7_col1, #T_fc111_row8_col0, #T_fc111_row8_col1, #T_fc111_row9_col0, #T_fc111_row9_col1 {\n",
       "  white-space: pre-wrap;\n",
       "}\n",
       "</style>\n",
       "<table id=\"T_fc111\">\n",
       "  <thead>\n",
       "    <tr>\n",
       "      <th id=\"T_fc111_level0_col0\" class=\"col_heading level0 col0\" >Question</th>\n",
       "      <th id=\"T_fc111_level0_col1\" class=\"col_heading level0 col1\" >Answer</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <td id=\"T_fc111_row0_col0\" class=\"data row0 col0\" >What year was the Banská Akadémia founded?</td>\n",
       "      <td id=\"T_fc111_row0_col1\" class=\"data row0 col1\" >1735</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_fc111_row1_col0\" class=\"data row1 col0\" >What is another speed that can also be reported by the camera?</td>\n",
       "      <td id=\"T_fc111_row1_col1\" class=\"data row1 col1\" >SOS-based speed</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_fc111_row2_col0\" class=\"data row2 col0\" >Where were the use of advanced materials and techniques on display in Sumer?</td>\n",
       "      <td id=\"T_fc111_row2_col1\" class=\"data row2 col1\" >Sumerian temples and palaces</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_fc111_row3_col0\" class=\"data row3 col0\" >Who is elected every even numbered year?</td>\n",
       "      <td id=\"T_fc111_row3_col1\" class=\"data row3 col1\" >mayor</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_fc111_row4_col0\" class=\"data row4 col0\" >What was the purpose of top secret ICBM committee?</td>\n",
       "      <td id=\"T_fc111_row4_col1\" class=\"data row4 col1\" >decide on the feasibility of building an ICBM large enough to carry a thermonuclear weapon</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_fc111_row5_col0\" class=\"data row5 col0\" >What conferences became a requirement after Vatican II?</td>\n",
       "      <td id=\"T_fc111_row5_col1\" class=\"data row5 col1\" >National Bishop Conferences</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_fc111_row6_col0\" class=\"data row6 col0\" >Who does M fight with?</td>\n",
       "      <td id=\"T_fc111_row6_col1\" class=\"data row6 col1\" >C</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_fc111_row7_col0\" class=\"data row7 col0\" >How many species of fungi have been found on Antarctica?</td>\n",
       "      <td id=\"T_fc111_row7_col1\" class=\"data row7 col1\" >1150</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_fc111_row8_col0\" class=\"data row8 col0\" >After losing the battle of Guilford Courthouse, Cornawallis moved his troops where?</td>\n",
       "      <td id=\"T_fc111_row8_col1\" class=\"data row8 col1\" >Virginia coastline</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_fc111_row9_col0\" class=\"data row9 col0\" >What is the Olympic Torch made from?</td>\n",
       "      <td id=\"T_fc111_row9_col1\" class=\"data row9 col1\" >aluminum.</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x3afc43c80>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "np.random.seed(42)\n",
    "arr =np.array(data.question_answer_pairs)\n",
    "n_samples = 10\n",
    "indices = np.random.choice(len(arr), n_samples, replace=False)\n",
    "random_sample = arr[indices]\n",
    "# Display the questions and answers in the random sample as a dataframe\n",
    "dfSample = pd.DataFrame(random_sample, columns=[\"Question\", \"Answer\"])\n",
    "display_text_df(dfSample)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Create the agent to be evaluated"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "from agent import get_agent\n",
    "agent = get_agent()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Run the agent on the random sample of questions"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "4bce5a5c2449435dbd058ed938db2a91",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/10 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from gradio import ChatMessage\n",
    "from transformers.agents import agent_types\n",
    "from tqdm.notebook import tqdm\n",
    "import logging\n",
    "\n",
    "answers_ref, answers_pred = [], []        \n",
    "\n",
    "# Suppress logging from the agent, which can be quite verbose\n",
    "agent.logger.setLevel(logging.CRITICAL)\n",
    "\n",
    "for question, answer in tqdm(random_sample):\n",
    "    class Output:\n",
    "        output: agent_types.AgentType | str = None\n",
    "\n",
    "    prompt = question\n",
    "    answers_ref.append(answer)\n",
    "    final_answer = agent.run(prompt, stream=False, reset=True)\n",
    "    answers_pred.append(final_answer)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Use semantic similarity to evaluate the agent's answers against the reference answers\n",
    "\n",
    "* One flaw of this approach is that it does not take into account the existence of multiple acceptable answers.\n",
    "* It also does not benefit from having the context of the question. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [],
   "source": [
    "from semscore import EmbeddingModelWrapper\n",
    "from statistics import mean\n",
    "\n",
    "answers_ref = [str(answer) for answer in answers_ref]\n",
    "answers_pred = [str(answer) for answer in answers_pred]\n",
    "\n",
    "em = EmbeddingModelWrapper()\n",
    "similarities = em.get_similarities(\n",
    "    em.get_embeddings( answers_pred ),\n",
    "    em.get_embeddings( answers_ref ),\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style type=\"text/css\">\n",
       "#T_67704 th {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_67704 td {\n",
       "  text-align: left;\n",
       "}\n",
       "#T_67704_row0_col0, #T_67704_row0_col1, #T_67704_row0_col2, #T_67704_row0_col3, #T_67704_row1_col0, #T_67704_row1_col1, #T_67704_row1_col2, #T_67704_row1_col3, #T_67704_row2_col0, #T_67704_row2_col1, #T_67704_row2_col2, #T_67704_row2_col3, #T_67704_row3_col0, #T_67704_row3_col1, #T_67704_row3_col2, #T_67704_row3_col3, #T_67704_row4_col0, #T_67704_row4_col1, #T_67704_row4_col2, #T_67704_row4_col3, #T_67704_row5_col0, #T_67704_row5_col1, #T_67704_row5_col2, #T_67704_row5_col3, #T_67704_row6_col0, #T_67704_row6_col1, #T_67704_row6_col2, #T_67704_row6_col3, #T_67704_row7_col0, #T_67704_row7_col1, #T_67704_row7_col2, #T_67704_row7_col3, #T_67704_row8_col0, #T_67704_row8_col1, #T_67704_row8_col2, #T_67704_row8_col3, #T_67704_row9_col0, #T_67704_row9_col1, #T_67704_row9_col2, #T_67704_row9_col3 {\n",
       "  white-space: pre-wrap;\n",
       "}\n",
       "</style>\n",
       "<table id=\"T_67704\">\n",
       "  <thead>\n",
       "    <tr>\n",
       "      <th id=\"T_67704_level0_col0\" class=\"col_heading level0 col0\" >Question</th>\n",
       "      <th id=\"T_67704_level0_col1\" class=\"col_heading level0 col1\" >Reference Answer</th>\n",
       "      <th id=\"T_67704_level0_col2\" class=\"col_heading level0 col2\" >Predicted Answer</th>\n",
       "      <th id=\"T_67704_level0_col3\" class=\"col_heading level0 col3\" >Similarity</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <td id=\"T_67704_row0_col0\" class=\"data row0 col0\" >What year was the Banská Akadémia founded?</td>\n",
       "      <td id=\"T_67704_row0_col1\" class=\"data row0 col1\" >1735</td>\n",
       "      <td id=\"T_67704_row0_col2\" class=\"data row0 col2\" >1735</td>\n",
       "      <td id=\"T_67704_row0_col3\" class=\"data row0 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_67704_row1_col0\" class=\"data row1 col0\" >What is another speed that can also be reported by the camera?</td>\n",
       "      <td id=\"T_67704_row1_col1\" class=\"data row1 col1\" >SOS-based speed</td>\n",
       "      <td id=\"T_67704_row1_col2\" class=\"data row1 col2\" >Average speed</td>\n",
       "      <td id=\"T_67704_row1_col3\" class=\"data row1 col3\" >0.433297</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_67704_row2_col0\" class=\"data row2 col0\" >Where were the use of advanced materials and techniques on display in Sumer?</td>\n",
       "      <td id=\"T_67704_row2_col1\" class=\"data row2 col1\" >Sumerian temples and palaces</td>\n",
       "      <td id=\"T_67704_row2_col2\" class=\"data row2 col2\" >Based on the information provided, it appears that the Sumerians developed and displayed advanced materials and techniques such as metrology, writing, and astronomy throughout their city-states. The specific locations where these advanced materials and techniques were on display are not explicitly mentioned.\n",
       "\n",
       "However, considering the context of the question, I would argue that the city-states of Sumer itself is the most relevant answer. The city-states of Sumer were the hub of Sumerian civilization, culture, and innovation, and it was likely there that these advanced materials and techniques were developed, displayed, and showcased.\n",
       "\n",
       "Therefore, my final answer to the user request is:\n",
       "\n",
       "The city-states of Sumer</td>\n",
       "      <td id=\"T_67704_row2_col3\" class=\"data row2 col3\" >0.545807</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_67704_row3_col0\" class=\"data row3 col0\" >Who is elected every even numbered year?</td>\n",
       "      <td id=\"T_67704_row3_col1\" class=\"data row3 col1\" >mayor</td>\n",
       "      <td id=\"T_67704_row3_col2\" class=\"data row3 col2\" >mayor</td>\n",
       "      <td id=\"T_67704_row3_col3\" class=\"data row3 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_67704_row4_col0\" class=\"data row4 col0\" >What was the purpose of top secret ICBM committee?</td>\n",
       "      <td id=\"T_67704_row4_col1\" class=\"data row4 col1\" >decide on the feasibility of building an ICBM large enough to carry a thermonuclear weapon</td>\n",
       "      <td id=\"T_67704_row4_col2\" class=\"data row4 col2\" >decide on the feasibility of building an ICBM large enough to carry a thermonuclear weapon</td>\n",
       "      <td id=\"T_67704_row4_col3\" class=\"data row4 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_67704_row5_col0\" class=\"data row5 col0\" >What conferences became a requirement after Vatican II?</td>\n",
       "      <td id=\"T_67704_row5_col1\" class=\"data row5 col1\" >National Bishop Conferences</td>\n",
       "      <td id=\"T_67704_row5_col2\" class=\"data row5 col2\" >['National Bishop Conferences']</td>\n",
       "      <td id=\"T_67704_row5_col3\" class=\"data row5 col3\" >0.937632</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_67704_row6_col0\" class=\"data row6 col0\" >Who does M fight with?</td>\n",
       "      <td id=\"T_67704_row6_col1\" class=\"data row6 col1\" >C</td>\n",
       "      <td id=\"T_67704_row6_col2\" class=\"data row6 col2\" >C</td>\n",
       "      <td id=\"T_67704_row6_col3\" class=\"data row6 col3\" >1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_67704_row7_col0\" class=\"data row7 col0\" >How many species of fungi have been found on Antarctica?</td>\n",
       "      <td id=\"T_67704_row7_col1\" class=\"data row7 col1\" >1150</td>\n",
       "      <td id=\"T_67704_row7_col2\" class=\"data row7 col2\" >Based on the output from the `squad_retriever` tool, I can see that there are two documents in the SQuAD dataset that answer the question \"How many species of fungi have been found on Antarctica?\".\n",
       "\n",
       "The first document states that about 1150 species of fungi have been recorded from Antarctica. The second document does not provide a different answer to this question.\n",
       "\n",
       "Therefore, my final answer is:\n",
       "\n",
       "There are approximately 1150 species of fungi that have been found on Antarctica.</td>\n",
       "      <td id=\"T_67704_row7_col3\" class=\"data row7 col3\" >-0.020657</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_67704_row8_col0\" class=\"data row8 col0\" >After losing the battle of Guilford Courthouse, Cornawallis moved his troops where?</td>\n",
       "      <td id=\"T_67704_row8_col1\" class=\"data row8 col1\" >Virginia coastline</td>\n",
       "      <td id=\"T_67704_row8_col2\" class=\"data row8 col2\" >The Virginia coastline</td>\n",
       "      <td id=\"T_67704_row8_col3\" class=\"data row8 col3\" >0.948570</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td id=\"T_67704_row9_col0\" class=\"data row9 col0\" >What is the Olympic Torch made from?</td>\n",
       "      <td id=\"T_67704_row9_col1\" class=\"data row9 col1\" >aluminum.</td>\n",
       "      <td id=\"T_67704_row9_col2\" class=\"data row9 col2\" >aluminum</td>\n",
       "      <td id=\"T_67704_row9_col3\" class=\"data row9 col3\" >0.973508</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n"
      ],
      "text/plain": [
       "<pandas.io.formats.style.Styler at 0x3b0db7320>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mean similarity: 0.78\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "questions = [question for question, _ in random_sample]\n",
    "dfAnswers = pd.DataFrame(list(zip(questions, answers_ref, answers_pred)), columns=[\"Question\", \"Reference Answer\", \"Predicted Answer\"])\n",
    "dfAnswers[\"Similarity\"] = similarities\n",
    "display(dfAnswers.style.set_properties(**{'white-space': 'pre-wrap'}).set_table_styles(\n",
    "    [{'selector': 'th', 'props': [('text-align', 'left')]},\n",
    "     {'selector': 'td', 'props': [('text-align', 'left')]}\n",
    "    ]\n",
    ").hide())\n",
    "print(f\"Mean similarity: {round(mean(similarities), 2)}\")\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "aai520",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}