Spaces:
Paused
Paused
# TRL - Transformer Reinforcement Learning | |
<div style="text-align: center"> | |
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl_banner_dark.png" alt="TRL Banner"> | |
</div> | |
<hr> <br> | |
<h3 align="center"> | |
<p>A comprehensive library to post-train foundation models</p> | |
</h3> | |
<p align="center"> | |
<a href="https://github.com/huggingface/trl/blob/main/LICENSE"><img alt="License" src="https://img.shields.io/github/license/huggingface/trl.svg?color=blue"></a> | |
<a href="https://huggingface.co/docs/trl/index"><img alt="Documentation" src="https://img.shields.io/website?label=documentation&url=https%3A%2F%2Fhuggingface.co%2Fdocs%2Ftrl%2Findex&down_color=red&down_message=offline&up_color=blue&up_message=online"></a> | |
<a href="https://github.com/huggingface/trl/releases"><img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/trl.svg"></a> | |
<a href="https://huggingface.co/trl-lib"><img alt="Hugging Face Hub" src="https://img.shields.io/badge/🤗%20Hub-trl--lib-yellow"></a> | |
</p> | |
## 🎉 What's New | |
> **✨ Open AI GPT OSS Support**: TRL now fully supports fine-tuning the latest [OpenAI GPT OSS models](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4)! Check out the | |
> | |
> - [OpenAI Cookbook](https://cookbook.openai.com/articles/gpt-oss/fine-tune-transfomers) | |
> - [GPT OSS receipes](https://github.com/huggingface/gpt-oss-recipes) | |
> - [Our example script](https://github.com/huggingface/trl/blob/main/examples/scripts/sft_gpt_oss.py) | |
## Overview | |
TRL is a cutting-edge library designed for post-training foundation models using advanced techniques like Supervised Fine-Tuning (SFT), Proximal Policy Optimization (PPO), and Direct Preference Optimization (DPO). Built on top of the [🤗 Transformers](https://github.com/huggingface/transformers) ecosystem, TRL supports a variety of model architectures and modalities, and can be scaled-up across various hardware setups. | |
## Highlights | |
- **Trainers**: Various fine-tuning methods are easily accessible via trainers like [`SFTTrainer`](https://huggingface.co/docs/trl/sft_trainer), [`GRPOTrainer`](https://huggingface.co/docs/trl/grpo_trainer), [`DPOTrainer`](https://huggingface.co/docs/trl/dpo_trainer), [`RewardTrainer`](https://huggingface.co/docs/trl/reward_trainer) and more. | |
- **Efficient and scalable**: | |
- Leverages [🤗 Accelerate](https://github.com/huggingface/accelerate) to scale from single GPU to multi-node clusters using methods like [DDP](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html) and [DeepSpeed](https://github.com/deepspeedai/DeepSpeed). | |
- Full integration with [🤗 PEFT](https://github.com/huggingface/peft) enables training on large models with modest hardware via quantization and LoRA/QLoRA. | |
- Integrates [🦥 Unsloth](https://github.com/unslothai/unsloth) for accelerating training using optimized kernels. | |
- **Command Line Interface (CLI)**: A simple interface lets you fine-tune with models without needing to write code. | |
## Installation | |
### Python Package | |
Install the library using `pip`: | |
```bash | |
pip install trl | |
``` | |
### From source | |
If you want to use the latest features before an official release, you can install TRL from source: | |
```bash | |
pip install git+https://github.com/huggingface/trl.git | |
``` | |
### Repository | |
If you want to use the examples you can clone the repository with the following command: | |
```bash | |
git clone https://github.com/huggingface/trl.git | |
``` | |
## Quick Start | |
For more flexibility and control over training, TRL provides dedicated trainer classes to post-train language models or PEFT adapters on a custom dataset. Each trainer in TRL is a light wrapper around the 🤗 Transformers trainer and natively supports distributed training methods like DDP, DeepSpeed ZeRO, and FSDP. | |
### `SFTTrainer` | |
Here is a basic example of how to use the [`SFTTrainer`](https://huggingface.co/docs/trl/sft_trainer): | |
```python | |
from trl import SFTTrainer | |
from datasets import load_dataset | |
dataset = load_dataset("trl-lib/Capybara", split="train") | |
trainer = SFTTrainer( | |
model="Qwen/Qwen2.5-0.5B", | |
train_dataset=dataset, | |
) | |
trainer.train() | |
``` | |
### `GRPOTrainer` | |
[`GRPOTrainer`](https://huggingface.co/docs/trl/grpo_trainer) implements the [Group Relative Policy Optimization (GRPO) algorithm](https://huggingface.co/papers/2402.03300) that is more memory-efficient than PPO and was used to train [Deepseek AI's R1](https://huggingface.co/deepseek-ai/DeepSeek-R1). | |
```python | |
from datasets import load_dataset | |
from trl import GRPOTrainer | |
dataset = load_dataset("trl-lib/tldr", split="train") | |
# Dummy reward function: count the number of unique characters in the completions | |
def reward_num_unique_chars(completions, **kwargs): | |
return [len(set(c)) for c in completions] | |
trainer = GRPOTrainer( | |
model="Qwen/Qwen2-0.5B-Instruct", | |
reward_funcs=reward_num_unique_chars, | |
train_dataset=dataset, | |
) | |
trainer.train() | |
``` | |
### `DPOTrainer` | |
[`DPOTrainer`](https://huggingface.co/docs/trl/dpo_trainer) implements the popular [Direct Preference Optimization (DPO) algorithm](https://huggingface.co/papers/2305.18290) that was used to post-train [Llama 3](https://huggingface.co/papers/2407.21783) and many other models. Here is a basic example of how to use the `DPOTrainer`: | |
```python | |
from datasets import load_dataset | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from trl import DPOConfig, DPOTrainer | |
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") | |
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train") | |
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO") | |
trainer = DPOTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset, | |
processing_class=tokenizer | |
) | |
trainer.train() | |
``` | |
### `RewardTrainer` | |
Here is a basic example of how to use the [`RewardTrainer`](https://huggingface.co/docs/trl/reward_trainer): | |
```python | |
from trl import RewardConfig, RewardTrainer | |
from datasets import load_dataset | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") | |
model = AutoModelForSequenceClassification.from_pretrained( | |
"Qwen/Qwen2.5-0.5B-Instruct", num_labels=1 | |
) | |
model.config.pad_token_id = tokenizer.pad_token_id | |
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train") | |
training_args = RewardConfig(output_dir="Qwen2.5-0.5B-Reward", per_device_train_batch_size=2) | |
trainer = RewardTrainer( | |
args=training_args, | |
model=model, | |
processing_class=tokenizer, | |
train_dataset=dataset, | |
) | |
trainer.train() | |
``` | |
## Command Line Interface (CLI) | |
You can use the TRL Command Line Interface (CLI) to quickly get started with post-training methods like Supervised Fine-Tuning (SFT) or Direct Preference Optimization (DPO): | |
**SFT:** | |
```bash | |
trl sft --model_name_or_path Qwen/Qwen2.5-0.5B \ | |
--dataset_name trl-lib/Capybara \ | |
--output_dir Qwen2.5-0.5B-SFT | |
``` | |
**DPO:** | |
```bash | |
trl dpo --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \ | |
--dataset_name argilla/Capybara-Preferences \ | |
--output_dir Qwen2.5-0.5B-DPO | |
``` | |
Read more about CLI in the [relevant documentation section](https://huggingface.co/docs/trl/main/en/clis) or use `--help` for more details. | |
## Development | |
If you want to contribute to `trl` or customize it to your needs make sure to read the [contribution guide](https://github.com/huggingface/trl/blob/main/CONTRIBUTING.md) and make sure you make a dev install: | |
```bash | |
git clone https://github.com/huggingface/trl.git | |
cd trl/ | |
pip install -e .[dev] | |
``` | |
## Citation | |
```bibtex | |
@misc{vonwerra2022trl, | |
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, | |
title = {TRL: Transformer Reinforcement Learning}, | |
year = {2020}, | |
publisher = {GitHub}, | |
journal = {GitHub repository}, | |
howpublished = {\url{https://github.com/huggingface/trl}} | |
} | |
``` | |
## License | |
This repository's source code is available under the [Apache-2.0 License](LICENSE). | |