abc123 / docs /crossword-app-plan.md
vimalk78's picture
update status and plan
68ed8a8
|
raw
history blame
13.5 kB

Crossword Puzzle Webapp - Implementation Status & Roadmap

🎯 Project Status: Phase 5 Complete - LLM Enhancement In Progress

Architecture Overview βœ… COMPLETED

Frontend (React + Vite) βœ…

  • βœ… Topic selection with multi-select buttons
  • βœ… Generate puzzle button with loading states
  • βœ… Interactive crossword grid display
  • βœ… Clue lists (across/down) with click navigation

Backend (Node.js + Express) βœ…

  • βœ… REST API endpoints for puzzle generation
  • βœ… Advanced crossword algorithm with backtracking
  • βœ… JSON-based word/clue management
  • βœ… Rate limiting and CORS configuration

Data Storage βœ… (JSON files - simple & effective)

  • βœ… Word collections organized by topics (164+ animals, science, geography, technology)
  • βœ… Pre-written clue-answer pairs
  • βœ… In-memory caching for performance

Core Components βœ… ALL IMPLEMENTED

  1. βœ… Topic Management: 4 categories with 164+ words each
  2. βœ… Word Selection: Smart scoring algorithm for crossword suitability
  3. βœ… Grid Generation: Advanced placement with intersection optimization
  4. βœ… Clue Generation: Quality pre-written clues for all words
  5. βœ… UI Rendering: Fully interactive puzzle with real-time validation

Key Algorithms βœ… COMPLETED

  • βœ… Grid placement: Sophisticated intersection finding with quality scoring
  • βœ… Backtracking: Robust conflict resolution with timeout handling
  • βœ… Difficulty scaling: Word length filtering and grid size optimization
  • βœ… Grid optimization: Automatic trimming and compact layouts

Current Tech Stack βœ… IMPLEMENTED

  • βœ… Frontend: React + Vite, CSS Grid, responsive design
  • βœ… Backend: Node.js + Express with comprehensive middleware
  • βœ… Database: JSON files (simple, fast, version-controlled)
  • βœ… Deployment: HuggingFace Spaces with Docker containerization

Frontend Components & UI βœ… COMPLETED

Main Page Layout βœ…

βœ… Header: "Crossword Puzzle Generator"
βœ… Topic Selector: Multi-select buttons with visual feedback
βœ… Generate Button: "Create Puzzle" with loading states
βœ… Loading State: Spinner with generation messages
βœ… Puzzle Display: Interactive grid + clue lists
βœ… Actions: Reset, Show Solution, New Puzzle

Components: βœ… ALL IMPLEMENTED

  • βœ… TopicSelector: Multi-select topics with selection count
  • βœ… PuzzleGrid: Fully interactive crossword grid with validation
  • βœ… ClueList: Numbered clues (Across/Down) with click navigation
  • βœ… LoadingSpinner: Generation feedback with progress messages
  • βœ… PuzzleControls: Reset/Reveal/Generate buttons

UI Flow: βœ… WORKING

  1. βœ… User selects topic(s) - visual feedback on selection
  2. βœ… Clicks generate β†’ Loading state with spinner
  3. βœ… Puzzle renders with empty grid and numbered clues
  4. βœ… User fills in answers with keyboard navigation
  5. βœ… Real-time validation feedback and completion detection

Backend API & Crossword Generation βœ… COMPLETED

API Endpoints: βœ… ALL IMPLEMENTED

βœ… GET /api/topics - List available topics
βœ… POST /api/generate - Generate puzzle
  Body: { topics: string[], difficulty: 'easy'|'medium'|'hard' }
  Response: { grid: Cell[][], clues: Clue[], metadata: {} }

βœ… GET /api/words/:topic - Get words for topic 
βœ… POST /api/validate - Validate user answers
βœ… GET /api/health - Health check endpoint

Core Algorithm: βœ… ADVANCED IMPLEMENTATION

  1. βœ… Word Selection: Smart scoring with crossword suitability metrics
  2. βœ… Grid Placement:
    • βœ… Longest word placed centrally first
    • βœ… Advanced intersection finding with quality scoring
    • βœ… Sophisticated backtracking with timeout handling
    • βœ… Multiple fallback strategies for difficult placements
  3. βœ… Grid Optimization: Automatic trimming, compact layouts
  4. βœ… Clue Matching: Pre-written quality clues for all words

Generation Logic: βœ… PRODUCTION-READY

βœ… CrosswordGenerator class with:
  - Advanced word scoring algorithm
  - Backtracking placement with timeout
  - Grid size optimization
  - Intersection quality scoring
  - Fallback strategies for difficult cases
  - Comprehensive error handling

Data Storage & Word Management βœ… CURRENT + πŸ”„ FUTURE

Current Implementation (JSON Files) βœ…

βœ… topics: [
  { "id": "animals", "name": "Animals" },
  { "id": "science", "name": "Science" },
  { "id": "geography", "name": "Geography" },
  { "id": "technology", "name": "Technology" }
]

βœ… word-lists/animals.json: 164+ words with clues
βœ… word-lists/science.json: 100+ words with clues
βœ… word-lists/geography.json: 80+ words with clues
βœ… word-lists/technology.json: 90+ words with clues

Word Collections by Topic: βœ… EXTENSIVE COLLECTIONS

  • βœ… Animals: 164 words (DOG, ELEPHANT, TIGER, WHALE, BUTTERFLY, etc.)
  • βœ… Science: 100+ words (ATOM, GRAVITY, MOLECULE, PHOTON, CHEMISTRY, etc.)
  • βœ… Geography: 80+ words (MOUNTAIN, OCEAN, DESERT, CONTINENT, RIVER, etc.)
  • βœ… Technology: 90+ words (COMPUTER, INTERNET, ALGORITHM, DATABASE, SOFTWARE, etc.)

Current Data Sources: βœ… IMPLEMENTED

  • βœ… Curated word lists with quality clues
  • βœ… Manual curation for puzzle quality
  • βœ… Version-controlled JSON format

Current Storage Strategy: βœ… WORKING

  • βœ… JSON files for simplicity and version control
  • βœ… In-memory caching with Map-based storage
  • βœ… Fast file-based lookups
  • βœ… No database overhead for current scale

Future Enhancement (PostgreSQL) πŸ”„ OPTIONAL

  • πŸ”„ PostgreSQL for advanced querying (if needed at scale)
  • πŸ”„ Redis caching layer for high-traffic scenarios
  • πŸ”„ Indexing on topic_id and word_length for complex queries

Project Structure βœ… IMPLEMENTED

βœ… crossword-app/
β”œβ”€β”€ βœ… frontend/
β”‚   β”œβ”€β”€ βœ… src/
β”‚   β”‚   β”œβ”€β”€ βœ… components/
β”‚   β”‚   β”‚   β”œβ”€β”€ βœ… TopicSelector.jsx
β”‚   β”‚   β”‚   β”œβ”€β”€ βœ… PuzzleGrid.jsx  
β”‚   β”‚   β”‚   β”œβ”€β”€ βœ… ClueList.jsx
β”‚   β”‚   β”‚   └── βœ… LoadingSpinner.jsx
β”‚   β”‚   β”œβ”€β”€ βœ… hooks/
β”‚   β”‚   β”‚   └── βœ… useCrossword.js
β”‚   β”‚   β”œβ”€β”€ βœ… utils/
β”‚   β”‚   β”‚   └── βœ… gridHelpers.js
β”‚   β”‚   β”œβ”€β”€ βœ… styles/
β”‚   β”‚   β”‚   └── βœ… puzzle.css
β”‚   β”‚   └── βœ… App.jsx
β”‚   β”œβ”€β”€ βœ… package.json
β”‚   └── βœ… vite.config.js
β”œβ”€β”€ βœ… backend/
β”‚   β”œβ”€β”€ βœ… src/
β”‚   β”‚   β”œβ”€β”€ βœ… controllers/
β”‚   β”‚   β”‚   └── βœ… puzzleController.js
β”‚   β”‚   β”œβ”€β”€ βœ… services/
β”‚   β”‚   β”‚   β”œβ”€β”€ βœ… crosswordGenerator.js
β”‚   β”‚   β”‚   └── βœ… wordService.js
β”‚   β”‚   β”œβ”€β”€ βœ… routes/
β”‚   β”‚   β”‚   └── βœ… api.js
β”‚   β”‚   └── βœ… app.js
β”‚   β”œβ”€β”€ βœ… data/
β”‚   β”‚   └── βœ… word-lists/ (animals.json, science.json, etc.)
β”‚   β”œβ”€β”€ βœ… package.json
β”‚   └── βœ… .env
β”œβ”€β”€ βœ… docs/
β”‚   └── βœ… crossword-app-plan.md
β”œβ”€β”€ βœ… Dockerfile (HuggingFace Spaces deployment)
└── βœ… README.md (with HF metadata)

Current Tech Stack: βœ… PRODUCTION-READY

  • βœ… Frontend: React + Vite, CSS Grid, Axios
  • βœ… Backend: Node.js + Express, CORS, rate limiting, helmet
  • βœ… Data: JSON files with in-memory caching
  • βœ… Development: Nodemon, modern ES modules
  • βœ… Deployment: Docker + HuggingFace Spaces

Deployment & Hosting Strategy βœ… COMPLETED

Development Environment: βœ… WORKING

  • βœ… JSON file-based data (no database setup needed)
  • βœ… Frontend: npm run dev (Vite dev server)
  • βœ… Backend: npm run dev (Nodemon with auto-reload)
  • βœ… Environment variables in .env

Production Deployment: βœ… LIVE ON HUGGINGFACE SPACES

  • βœ… Platform: HuggingFace Spaces with Docker
  • βœ… Frontend: Built and served from backend (single container)
  • βœ… Backend: Node.js Express server on port 7860
  • βœ… Data: JSON files bundled in container
  • βœ… Domain: https://vimalk78-abc123.hf.space/ (public access)
  • βœ… HTTPS: Automatic via HF Spaces infrastructure

Container Setup: βœ… DOCKERIZED

βœ… Multi-stage build (frontend build β†’ backend runtime)
βœ… Node.js 18 Alpine base image
βœ… Production optimizations
βœ… Port 7860 (HF Spaces standard)
βœ… Environment: NODE_ENV=production

Environment Variables: βœ… CONFIGURED

βœ… NODE_ENV=production
βœ… PORT=7860
βœ… Trust proxy configuration for HF infrastructure
βœ… CORS enabled for same-origin requests

Performance Features: βœ… IMPLEMENTED

  • βœ… Static asset serving for built frontend
  • βœ… API rate limiting (100 req/15min, 50 puzzle gen/5min)
  • βœ… In-memory caching for word lists
  • βœ… Gzip compression via Express
  • βœ… Security headers via Helmet

Implementation Progress

βœ… COMPLETED PHASES

  1. βœ… Phase 1: Basic word placement algorithm and simple UI
  2. βœ… Phase 2: Topic selection and word database
  3. βœ… Phase 3: Interactive grid with validation
  4. βœ… Phase 4: Polish UI/UX and deployment
  5. βœ… Phase 5: Advanced features (difficulty levels, mobile responsive)

πŸš€ NEXT PHASE: LLM-Enhanced Dynamic Word Generation

Phase 6: AI-Powered Crossword Generation πŸ€–

Transform the static word lists into a dynamic, AI-powered system using embeddings and LLMs for unlimited content generation.

6.1 Core LLM Integration πŸ”§

  • HuggingFace Embedding Setup

    • Integrate @huggingface/inference package
    • Deploy sentence-transformers/all-MiniLM-L6-v2 model
    • Create EmbeddingWordService class
    • Implement semantic similarity search
  • Dynamic Word Generation

    • Topic-aware word generation using embeddings
    • Quality filtering for crossword suitability
    • Word difficulty scoring and classification
    • Content validation (no proper nouns, inappropriate content)

6.2 Intelligent Clue Generation πŸ“

  • LLM-Powered Clues

    • Use small language model for clue generation
    • Template-based clue creation with topic context
    • Ensure crossword-appropriate formatting
    • Quality scoring and validation
  • Clue Enhancement

    • Context-aware clue generation
    • Difficulty-matched clue complexity
    • Multiple clue variations per word
    • User preference learning

6.3 Advanced Caching Strategy ⚑

  • Multi-Tier Cache Architecture

    L1: In-Memory (current session) - No TTL
    L2: Redis (cross-session) - 24h TTL + LRU
    L3: Database (long-term) - 7d TTL
    
  • Smart Cache Policies

    • Hybrid TTL + LRU: Popular topics get longer cache life
    • Usage-based scoring: (frequency Γ— 0.4) + (recency Γ— 0.3) + (cost Γ— 0.3)
    • Adaptive TTL: Adjust based on API response times and error rates
    • Topic-aware eviction: Different TTL for popular vs niche topics

6.4 Performance & Reliability πŸ”„

  • Fallback Strategies

    • Keep existing JSON word lists as backup
    • Graceful degradation when APIs fail
    • Offline mode with cached content
    • Error recovery and retry logic
  • Optimization Features

    • Batch word generation requests
    • Precompute popular topic combinations
    • Async generation with progress indicators
    • Request deduplication and coalescence

6.5 Quality Control ✨

  • Content Validation

    • Word appropriateness filtering
    • Crossword intersection analysis
    • Difficulty consistency checking
    • User feedback collection
  • Continuous Improvement

    • A/B testing for different models
    • User rating system for generated content
    • Analytics for content quality metrics
    • Model performance monitoring

6.6 Enhanced Features 🎯

  • Custom Topic Support

    • User-defined topic combinations
    • Real-time topic similarity recommendations
    • Trending topic suggestions
    • Personal topic history
  • Advanced Difficulty

    • AI-driven difficulty assessment
    • Personalized difficulty scaling
    • Learning curve adaptation
    • Challenge progression system

Technical Specifications

Recommended Models:

  • Embeddings: sentence-transformers/all-MiniLM-L6-v2 (free, fast, 384 dimensions)
  • Text Generation: microsoft/DialoGPT-small or gpt2 for clues
  • Backup: Keep existing 400+ static words as fallback

API Integration:

class EmbeddingWordService {
  async generateWords(topics, difficulty, count = 12) {
    // Semantic word generation with embeddings
    // Quality filtering and crossword optimization
    // Cache with smart eviction policies
  }
  
  async generateClues(words, context) {
    // LLM-powered clue generation
    // Template-based formatting
    // Quality validation
  }
}

Cache Architecture:

CacheStrategy {
  L1: Map() // Session cache
  L2: Redis // Cross-session with TTL
  L3: JSON // Fallback storage
  
  evictionPolicy: "TTL + LRU + Usage-Score"
  adaptiveTTL: true
  fallbackEnabled: true
}

Implementation Roadmap

Week 1-2: Core infrastructure and embedding integration Week 3: Dynamic word generation with basic caching Week 4: LLM clue generation and quality controls
Week 5: Advanced caching and performance optimization Week 6: Testing, fallback systems, and deployment

Benefits:

  • 🎯 Unlimited fresh content every time
  • 🧠 Intelligent topic understanding
  • ⚑ Smart caching for performance
  • πŸ›‘οΈ Robust fallback systems
  • πŸ“ˆ Continuous quality improvement