abc123 / hack /thematic_word_generator_v0.1.py
vimalk78's picture
feat(crossword): generated crosswords with clues
486eff6
raw
history blame
35.1 kB
#!/usr/bin/env python3
"""
Thematic Word Generator using Sentence Transformers
Generates thematically related words from a set of input words/sentences.
Uses semantic centroids to understand broader themes and find related vocabulary.
"""
import os
import csv
import pickle
import numpy as np
import logging
from typing import List, Tuple, Optional
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
import nltk
from nltk.corpus import words, brown
from datetime import datetime
import time
from collections import Counter
# Optional imports for WordFreq frequency source
try:
from wordfreq import word_frequency, zipf_frequency, top_n_list
HAS_WORDFREQ = True
except ImportError:
HAS_WORDFREQ = False
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s:%(lineno)d - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
def get_timestamp():
return datetime.now().strftime("%H:%M:%S")
def get_datetimestamp():
return datetime.now().strftime("%Y-%m-%d %H:%M:%S")
class ThematicWordGeneranor_v0_1:
def __init__(self, cache_dir: Optional[str] = None, model_name: str = 'all-mpnet-base-v2'):
"""Initialize the thematic word generator.
Args:
cache_dir: Directory to cache the embedding model
model_name: Sentence transformer model to use
"""
if cache_dir is None:
cache_dir = os.path.join(os.path.dirname(__file__), 'model_cache')
self.cache_dir = cache_dir
os.makedirs(cache_dir, exist_ok=True)
# Load embedding model with caching
logger.info("Loading embedding model...")
self.model = SentenceTransformer(
f'sentence-transformers/{model_name}',
cache_folder=cache_dir
)
logger.info("Model loaded successfully.")
# Load vocabulary and embeddings (with caching)
self.vocabulary, self.vocab_embeddings = self._load_or_create_vocab_embeddings()
# Load frequency data
self.word_frequencies = self._load_frequency_data()
self.frequency_tiers = self._create_frequency_tiers()
def _load_or_create_vocab_embeddings(self) -> Tuple[List[str], np.ndarray]:
"""Load vocabulary and embeddings from cache or create them."""
# vocab_cache_path = os.path.join(self.cache_dir, 'vocabulary.pkl')
vocab_cache_path = os.path.join(self.cache_dir, 'dictionary.pkl')
embeddings_cache_path = os.path.join(self.cache_dir, 'vocab_embeddings.npy')
# Check if cache exists and is valid
if os.path.exists(vocab_cache_path) and os.path.exists(embeddings_cache_path):
try:
logger.info("Loading vocabulary and embeddings from cache...")
start_time = time.time()
with open(vocab_cache_path, 'rb') as f:
vocabulary = pickle.load(f)
embeddings = np.load(embeddings_cache_path)
load_time = time.time() - start_time
logger.info(f"✓ Loaded {len(vocabulary):,} words and embeddings from cache in {load_time:.2f}s")
return vocabulary, embeddings
except Exception as e:
logger.error(f"Error loading from cache: {e}")
logger.info("Rebuilding vocabulary and embeddings...")
# Create new vocabulary and embeddings
logger.info("Creating new vocabulary and embeddings...")
vocabulary = self._load_vocabulary()
# vocabulary = self._load_dictionary()
embeddings = self._create_vocab_embeddings(vocabulary)
# Save to cache
try:
logger.info("Saving vocabulary and embeddings to cache...")
with open(vocab_cache_path, 'wb') as f:
pickle.dump(vocabulary, f)
np.save(embeddings_cache_path, embeddings)
logger.info("✓ Cache saved successfully")
except Exception as e:
logger.warning(f"Could not save cache: {e}")
return vocabulary, embeddings
def _load_dictionary(self) -> List[str]:
"""Load words from the dictionary CSV file."""
dict_path = os.path.join(os.path.dirname(__file__), 'dict-words', 'dict.csv')
words = []
try:
with open(dict_path, 'r', encoding='utf-8') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
word = row['word'].strip().lower()
if word and len(word) > 1: # Include words with 2+ characters
words.append(word)
except FileNotFoundError:
raise Exception(f"Dictionary file not found: {dict_path}")
except Exception as e:
raise Exception(f"Error reading dictionary: {e}")
return words
def _load_frequency_data(self) -> Counter:
"""Load word frequency data from WordFreq or Brown corpus fallback."""
# Try WordFreq first (comprehensive modern data)
if HAS_WORDFREQ:
wordfreq_cache_path = os.path.join(self.cache_dir, 'wordfreq_frequencies.pkl')
# Check if WordFreq data is cached
if os.path.exists(wordfreq_cache_path):
try:
logger.info("Loading WordFreq data from cache...")
with open(wordfreq_cache_path, 'rb') as f:
word_freq = pickle.load(f)
logger.info(f"✓ Loaded WordFreq data for {len(word_freq):,} words")
return word_freq
except Exception as e:
logger.warning(f"Error loading WordFreq cache: {e}")
# Generate WordFreq data
logger.info("Generating frequency data from WordFreq (comprehensive multi-source)...")
try:
word_freq = self._generate_wordfreq_data()
# Cache the frequency data
try:
with open(wordfreq_cache_path, 'wb') as f:
pickle.dump(word_freq, f)
logger.info("✓ Cached WordFreq data")
except Exception as e:
logger.warning(f"Could not cache WordFreq data: {e}")
return word_freq
except Exception as e:
logger.error(f"Error loading WordFreq data: {e}")
logger.info("Falling back to Brown corpus...")
# Fallback to Brown corpus
return self._load_brown_frequency_data()
def _generate_wordfreq_data(self) -> Counter:
"""Generate frequency data from WordFreq's comprehensive vocabulary."""
logger.info("Fetching comprehensive vocabulary from WordFreq...")
try:
# Get comprehensive word list from WordFreq
top_words = top_n_list('en', 500000, wordlist='large')
logger.info(f"Retrieved {len(top_words):,} words from WordFreq")
frequency_data = Counter()
processed_count = 0
# Process words in batches for better performance
batch_size = 5000
total_batches = (len(top_words) + batch_size - 1) // batch_size
for batch_num in range(total_batches):
start_idx = batch_num * batch_size
end_idx = min(start_idx + batch_size, len(top_words))
batch_words = top_words[start_idx:end_idx]
for word in batch_words:
try:
# Get actual frequency from WordFreq
freq = word_frequency(word, 'en', wordlist='large')
if freq > 0:
# Scale by billions to preserve tiny frequencies
count = int(freq * 1_000_000_000)
if count > 0:
frequency_data[word] = count
processed_count += 1
else:
# For extremely rare words, use minimum count of 1
frequency_data[word] = 1
processed_count += 1
except Exception:
continue # Skip problematic words
# Progress update
if batch_num % 20 == 0 or batch_num == total_batches - 1:
logger.info(f" Batch {batch_num + 1:3d}/{total_batches} | "
f"Processed {end_idx:6,}/{len(top_words):,} words | "
f"Found {processed_count:,} with frequencies")
logger.info(f"✓ Generated WordFreq data: {len(frequency_data):,} words with frequencies")
return frequency_data
except Exception as e:
logger.error(f"Error generating WordFreq data: {e}")
raise
def _load_brown_frequency_data(self) -> Counter:
"""Load frequency data from Brown corpus (fallback)."""
freq_cache_path = os.path.join(self.cache_dir, 'brown_frequencies.pkl')
# Check if frequency data is cached
if os.path.exists(freq_cache_path):
try:
logger.info("Loading Brown corpus frequency data from cache...")
with open(freq_cache_path, 'rb') as f:
word_freq = pickle.load(f)
logger.info(f"✓ Loaded Brown corpus data for {len(word_freq):,} words")
return word_freq
except Exception as e:
logger.warning(f"Error loading Brown corpus cache: {e}")
# Generate frequency data from Brown corpus
logger.info("Generating frequency data from Brown corpus (1960s academic fallback)...")
try:
nltk.download('brown', quiet=True)
brown_words = [word.lower() for word in brown.words() if word.isalpha()]
word_freq = Counter(brown_words)
logger.info(f"✓ Generated Brown corpus data for {len(word_freq):,} unique words")
# Cache the frequency data
try:
with open(freq_cache_path, 'wb') as f:
pickle.dump(word_freq, f)
logger.info("✓ Cached Brown corpus data")
except Exception as e:
logger.warning(f"Could not cache Brown corpus data: {e}")
return word_freq
except Exception as e:
logger.error(f"Error loading Brown corpus: {e}")
# Return empty counter as fallback
return Counter()
def _create_frequency_tiers(self) -> dict:
"""Create detailed frequency tier classifications with 10 tiers."""
if not self.word_frequencies:
return {}
tiers = {}
# Calculate percentile-based thresholds for more even distribution
all_counts = list(self.word_frequencies.values())
all_counts.sort(reverse=True)
# Define 10 tiers with percentile-based thresholds
tier_definitions = [
("tier_1_ultra_common", 0.999, "Ultra Common (Top 0.1%)"),
("tier_2_extremely_common", 0.995, "Extremely Common (Top 0.5%)"),
("tier_3_very_common", 0.99, "Very Common (Top 1%)"),
("tier_4_highly_common", 0.97, "Highly Common (Top 3%)"),
("tier_5_common", 0.92, "Common (Top 8%)"),
("tier_6_moderately_common", 0.85, "Moderately Common (Top 15%)"),
("tier_7_somewhat_uncommon", 0.70, "Somewhat Uncommon (Top 30%)"),
("tier_8_uncommon", 0.50, "Uncommon (Top 50%)"),
("tier_9_rare", 0.25, "Rare (Top 75%)"),
("tier_10_very_rare", 0.0, "Very Rare (Bottom 25%)")
]
# Calculate actual count thresholds based on percentiles
thresholds = []
for tier_name, percentile, description in tier_definitions:
if percentile > 0:
idx = int((1 - percentile) * len(all_counts))
threshold = all_counts[min(idx, len(all_counts) - 1)]
else:
threshold = 0
thresholds.append((tier_name, threshold, description))
# Store tier descriptions for lookup
self.tier_descriptions = {name: desc for name, _, desc in thresholds}
# Assign tiers based on thresholds
for word, count in self.word_frequencies.items():
assigned = False
for tier_name, threshold, description in thresholds:
if count >= threshold:
tiers[word] = tier_name
assigned = True
break
if not assigned:
tiers[word] = "tier_10_very_rare"
# Words not in frequency data are considered "very rare"
for word in self.vocabulary:
if word not in tiers:
tiers[word] = "tier_10_very_rare"
# Log tier distribution
tier_counts = Counter(tiers.values())
logger.info(f"✓ Created 10-tier frequency system for {len(tiers):,} words:")
tier_order = [f"tier_{i}_{name}" for i, name in enumerate([
"ultra_common", "extremely_common", "very_common", "highly_common",
"common", "moderately_common", "somewhat_uncommon", "uncommon",
"rare", "very_rare"
], 1)]
for tier_key in tier_order:
if tier_key in tier_counts:
count = tier_counts[tier_key]
percentage = (count / len(tiers)) * 100 if tiers else 0
description = self.tier_descriptions.get(tier_key, tier_key)
logger.info(f" - {description}: {count:,} words ({percentage:.1f}%)")
return tiers
def get_word_frequency_info(self, word: str) -> Tuple[float, str]:
"""Get relative frequency and tier for a word."""
count = self.word_frequencies.get(word, 0)
total_words = sum(self.word_frequencies.values()) if self.word_frequencies else 1
relative_freq = count / total_words if total_words > 0 else 0.0
tier = self.frequency_tiers.get(word, "tier_10_very_rare")
return relative_freq, tier
def get_tier_description(self, tier: str) -> str:
"""Get human-readable description for a tier."""
return getattr(self, 'tier_descriptions', {}).get(tier, tier)
def get_tier_number(self, tier: str) -> int:
"""Extract tier number from tier string."""
if tier.startswith("tier_"):
try:
return int(tier.split("_")[1])
except (IndexError, ValueError):
return 10
return 10 # Default to tier 10 for unknown formats
def _load_vocabulary(self) -> List[str]:
"""Load vocabulary from NLTK words corpus with frequency filtering."""
try:
logger.info("Downloading NLTK data...")
# Download NLTK words if not already present
nltk.download('words', quiet=True)
word_list = list(words.words())
logger.info(f"✓ Downloaded {len(word_list):,} words from NLTK")
# Filter and clean vocabulary
logger.info("Filtering vocabulary...")
filtered_words = []
for word in word_list:
word_clean = word.lower().strip()
# Include words with 3+ characters, only alphabetic
if len(word_clean) >= 3 and word_clean.isalpha():
filtered_words.append(word_clean)
# Remove duplicates
unique_words = list(set(filtered_words))
logger.info(f"✓ Filtered to {len(unique_words):,} unique words")
# Reduce vocabulary size for performance (keep most common ~50K words)
# Sort alphabetically first for consistent ordering
vocabulary = sorted(unique_words)
# If vocabulary is very large, take a reasonable subset
max_vocab_size = 50000
if len(vocabulary) > max_vocab_size:
logger.info(f"Reducing vocabulary from {len(vocabulary):,} to {max_vocab_size:,} words for performance")
vocabulary = vocabulary[:max_vocab_size]
logger.info(f"✓ Final vocabulary: {len(vocabulary):,} words")
return vocabulary
except Exception as e:
logger.error(f"Error loading NLTK vocabulary: {e}")
logger.info("Using fallback vocabulary...")
# Larger fallback vocabulary for better functionality
basic_words = [
"animal", "science", "technology", "ocean", "forest", "mountain",
"computer", "music", "art", "book", "travel", "food", "nature",
"space", "history", "culture", "sports", "weather", "education",
"health", "family", "friend", "house", "car", "city", "country",
"water", "fire", "earth", "air", "light", "dark", "color",
"sound", "time", "world", "life", "death", "love", "peace",
"war", "power", "money", "work", "play", "game", "sport",
"business", "school", "university", "government", "law",
"medicine", "hospital", "doctor", "nurse", "teacher", "student",
"writer", "artist", "musician", "actor", "director", "producer"
]
logger.info(f"Using fallback vocabulary with {len(basic_words)} words.")
return basic_words
def _create_vocab_embeddings(self, vocabulary: List[str]) -> np.ndarray:
"""Create embeddings for all vocabulary words with detailed progress."""
batch_size = 512
all_embeddings = []
total_batches = (len(vocabulary) + batch_size - 1) // batch_size
total_words = len(vocabulary)
logger.info(f"Creating embeddings for {total_words:,} words in {total_batches} batches...")
start_time = time.time()
for i in range(0, len(vocabulary), batch_size):
batch_start_time = time.time()
batch_words = vocabulary[i:i + batch_size]
batch_num = i // batch_size + 1
batch_embeddings = self.model.encode(
batch_words,
convert_to_tensor=False,
show_progress_bar=False # We'll show our own progress
)
all_embeddings.append(batch_embeddings)
# Calculate progress and ETA
batch_time = time.time() - batch_start_time
words_processed = min(i + batch_size, total_words)
progress_pct = (words_processed / total_words) * 100
elapsed_total = time.time() - start_time
if words_processed > 0:
words_per_second = words_processed / elapsed_total
remaining_words = total_words - words_processed
eta_seconds = remaining_words / words_per_second if words_per_second > 0 else 0
eta_str = f"{eta_seconds:.0f}s" if eta_seconds < 60 else f"{eta_seconds/60:.1f}m"
else:
eta_str = "calculating..."
logger.info(f" Batch {batch_num:3d}/{total_batches} | "
f"{words_processed:6,}/{total_words:,} words ({progress_pct:5.1f}%) | "
f"ETA: {eta_str}")
total_time = time.time() - start_time
words_per_second = total_words / total_time
logger.info(f"✓ Created embeddings for {total_words:,} words in {total_time:.2f}s "
f"({words_per_second:.0f} words/sec)")
return np.vstack(all_embeddings)
def _compute_theme_vector(self, inputs: List[str]) -> np.ndarray:
"""Compute semantic centroid from input words/sentences."""
logger.info(f"entered _compute_theme_vector")
# Encode all inputs
input_embeddings = self.model.encode(inputs, convert_to_tensor=False, show_progress_bar=False)
logger.info(f"completed _compute_theme_vector model.encode")
# Simple approach: average all input embeddings
theme_vector = np.mean(input_embeddings, axis=0)
return theme_vector.reshape(1, -1)
def _detect_multiple_themes(self, inputs: List[str], max_themes: int = 3) -> List[np.ndarray]:
"""Detect multiple themes using clustering."""
if len(inputs) < 2:
return [self._compute_theme_vector(inputs)]
logger.info(f"entered _detect_multiple_themes")
# Encode inputs
logger.info("starting model.encode")
input_embeddings = self.model.encode(inputs, convert_to_tensor=False, show_progress_bar=False)
logger.info("completed model.encode")
# Determine optimal number of clusters
n_clusters = min(max_themes, len(inputs), 3)
logger.info(f"num of clusters: {n_clusters:2d}")
if n_clusters == 1:
return [np.mean(input_embeddings, axis=0).reshape(1, -1)]
# Perform clustering
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
kmeans.fit(input_embeddings)
# Return cluster centers as theme vectors
return [center.reshape(1, -1) for center in kmeans.cluster_centers_]
def generate_thematic_words(self,
inputs: List[str],
num_words: int = 20,
min_similarity: float = 0.3,
diversity_factor: float = 0.1,
multi_theme: bool = False) -> List[Tuple[str, float]]:
"""Generate thematically related words from input seeds.
Args:
inputs: List of words or sentences as theme seeds
num_words: Number of words to return
min_similarity: Minimum similarity threshold
diversity_factor: Balance between relevance and diversity (0.0-1.0)
multi_theme: Whether to detect and use multiple themes
Returns:
List of tuples (word, similarity_score) sorted by relevance
"""
logger.info(f"entered generate_thematic_words")
if not inputs:
return []
# Clean inputs
clean_inputs = [inp.strip().lower() for inp in inputs if inp.strip()]
if not clean_inputs:
return []
# Get theme vector(s)
logger.info(f"{multi_theme=},{clean_inputs=}")
if multi_theme and len(clean_inputs) > 2:
theme_vectors = self._detect_multiple_themes(clean_inputs)
else:
theme_vectors = [self._compute_theme_vector(clean_inputs)]
logger.info("done with getting theme_vectors")
# Collect similarities from all themes
all_similarities = np.zeros(len(self.vocabulary))
for theme_vector in theme_vectors:
# Compute similarities with vocabulary
similarities = cosine_similarity(theme_vector, self.vocab_embeddings)[0]
all_similarities += similarities / len(theme_vectors) # Average across themes
logger.info("done with cosine similarity")
# Get top candidates
top_indices = np.argsort(all_similarities)[::-1]
logger.info("done with argsort")
# Filter and format results
results = []
input_words_set = set(clean_inputs)
seen_words = set() # Track words we've already added
for idx in top_indices:
word = self.vocabulary[idx]
similarity_score = all_similarities[idx]
# Skip input words, duplicates, and low-similarity matches
if (word not in input_words_set and
word not in seen_words and
similarity_score >= min_similarity):
results.append((word, similarity_score))
seen_words.add(word)
if len(results) >= num_words * 3: # Get extra for diversity filtering
break
logger.info("starting with _apply_diversity_filter")
diversity_factor = 0.0
# Apply diversity filtering if requested
if diversity_factor > 0.0 and len(results) > num_words:
results = self._apply_diversity_filter(results, num_words, diversity_factor)
logger.info("done with _apply_diversity_filter")
# return results[:num_words]
return results
def _apply_diversity_filter(self,
candidates: List[Tuple[str, float]],
target_count: int,
diversity_factor: float) -> List[Tuple[str, float]]:
"""Apply diversity filtering to reduce semantic redundancy - optimized version."""
if len(candidates) <= target_count:
return candidates
if diversity_factor <= 0.0:
return candidates[:target_count]
logger.info(f"Applying diversity filter to {len(candidates)} candidates for {target_count} targets")
# Pre-compute embeddings for all candidate words (batch processing)
candidate_words = [word for word, _ in candidates]
logger.info("Computing embeddings for all candidates...")
start_time = time.time()
candidate_embeddings = self.model.encode(candidate_words, convert_to_tensor=False, show_progress_bar=False)
embed_time = time.time() - start_time
logger.info(f"✓ Computed {len(candidate_words)} embeddings in {embed_time:.2f}s")
# Start with the highest scoring word
selected_indices = [0] # Index of selected candidates
selected_embeddings = [candidate_embeddings[0]]
# Greedy selection with diversity
start_time = time.time()
for _ in range(1, min(target_count, len(candidates))):
best_idx = -1
best_score = -1
# Check each remaining candidate
for i in range(len(candidates)):
if i in selected_indices:
continue
# Compute minimum similarity to already selected words
candidate_emb = candidate_embeddings[i].reshape(1, -1)
min_sim_to_selected = float('inf')
for selected_emb in selected_embeddings:
selected_emb = selected_emb.reshape(1, -1)
sim = cosine_similarity(candidate_emb, selected_emb)[0][0]
min_sim_to_selected = min(min_sim_to_selected, sim)
# Balance original similarity score with diversity bonus
original_score = candidates[i][1]
diversity_bonus = (1.0 - min_sim_to_selected) * diversity_factor
combined_score = original_score + diversity_bonus
if combined_score > best_score:
best_score = combined_score
best_idx = i
# Add best candidate
if best_idx >= 0:
selected_indices.append(best_idx)
selected_embeddings.append(candidate_embeddings[best_idx])
else:
break
selection_time = time.time() - start_time
logger.info(f"✓ Completed diversity selection in {selection_time:.2f}s")
# Return selected candidates in order of selection
return [candidates[i] for i in selected_indices]
def get_theme_embedding(self, inputs: List[str]) -> np.ndarray:
"""Get the theme embedding vector for debugging/analysis."""
return self._compute_theme_vector(inputs)[0]
def main():
"""Demo the thematic word generator."""
logger.info("Initializing Thematic Word Generator...")
generator = ThematicWordGeneranor_v0_1()
# Test cases
test_cases = [
{
"name": "Ocean Theme",
"inputs": ["ocean", "waves", "sailing"],
"description": "Maritime and ocean-related concepts"
},
# {
# "name": "Technology Theme",
# "inputs": ["computer", "software", "programming"],
# "description": "Technology and computing concepts"
# },
# {
# "name": "Nature Theme",
# "inputs": ["forest", "mountain", "wildlife"],
# "description": "Natural environment concepts"
# },
# {
# "name": "Sentence-based Theme",
# "inputs": ["The night sky is full of stars", "Space exploration fascinates me"],
# "description": "Astronomy theme from sentences"
# },
# {
# "name": "Mixed Theme",
# "inputs": ["music", "art", "creativity", "performance"],
# "description": "Creative arts theme"
# }
]
print("\n" + "="*70)
print("THEMATIC WORD GENERATOR DEMO")
print("="*70)
for test_case in test_cases:
print(f"\n{test_case['name']}: {test_case['description']}")
print(f"Input: {test_case['inputs']}")
print("-" * 50)
# Generate basic theme
thematic_words = generator.generate_thematic_words(
test_case['inputs'],
num_words=12,
min_similarity=0.2
)
if thematic_words:
# Sort by tier (T1 → T10), then by similarity score within each tier
def sort_by_tier_and_similarity(item):
word, similarity = item
freq, tier = generator.get_word_frequency_info(word)
tier_num = generator.get_tier_number(tier)
return (tier_num, -similarity) # Sort by tier first, then by similarity (descending)
thematic_words_sorted = sorted(thematic_words, key=sort_by_tier_and_similarity)
print("Related words (sorted by frequency tier T1→T10):")
for i, (word, score) in enumerate(thematic_words_sorted):
freq, tier = generator.get_word_frequency_info(word)
tier_desc = generator.get_tier_description(tier)
tier_num = generator.get_tier_number(tier)
print(f" {i+1:2d}. {word:<15} (sim: {score:.3f}, freq: {freq:.8f}) [T{tier_num}: {tier_desc}]")
else:
print(" No related words found.")
# Also try with diversity
if len(test_case['inputs']) > 1:
diverse_words = generator.generate_thematic_words(
test_case['inputs'],
num_words=8,
diversity_factor=0.3,
multi_theme=True
)
# Sort diverse words by tier too
diverse_words_sorted = sorted(diverse_words, key=sort_by_tier_and_similarity)
print(f"\nWith diversity (showing {len(diverse_words_sorted)} words, sorted by tier):")
for i, (word, score) in enumerate(diverse_words_sorted):
freq, tier = generator.get_word_frequency_info(word)
tier_desc = generator.get_tier_description(tier)
tier_num = generator.get_tier_number(tier)
print(f" {i+1:2d}. {word:<15} (sim: {score:.3f}, freq: {freq:.8f}) [T{tier_num}: {tier_desc}]")
# Interactive mode
print("\n" + "="*70)
print("INTERACTIVE MODE")
print("Enter words/sentences separated by commas (type 'quit' to exit)")
print("="*70)
while True:
try:
start = get_timestamp()
user_input = input(f"\n[{start}] Enter theme words/sentences: ").strip()
if user_input.lower() == 'quit':
break
if not user_input:
continue
# Parse input
inputs = [inp.strip() for inp in user_input.split(',') if inp.strip()]
if not inputs:
print("Please provide at least one word or sentence.")
continue
start = get_timestamp()
print(f"\n[{start}] Generating thematic words for: {inputs}")
print("-" * 40)
# Generate thematic words
thematic_words = generator.generate_thematic_words(
inputs,
num_words=50,
diversity_factor=0.2,
multi_theme=len(inputs) > 2
)
logger.info("returned from generate_thematic_words")
# Sort by tier (T1 → T10), then by similarity score within each tier
def sort_by_tier_and_similarity(item):
word, similarity = item
freq, tier = generator.get_word_frequency_info(word)
tier_num = generator.get_tier_number(tier)
return (tier_num, -similarity) # Sort by tier first, then by similarity (descending)
thematic_words = sorted(thematic_words, key=sort_by_tier_and_similarity)
if thematic_words:
print(f"\nGenerated {len(thematic_words)} thematic words (sorted by frequency tier T1→T10):")
current_tier = None
for i, (word, score) in enumerate(thematic_words):
freq, tier = generator.get_word_frequency_info(word)
tier_desc = generator.get_tier_description(tier)
tier_num = generator.get_tier_number(tier)
# Add tier group headers
if tier_num != current_tier:
current_tier = tier_num
print(f"\n === TIER {tier_num}: {tier_desc} ===")
print(f" {i+1:2d}. {word:<15} (sim: {score:.3f}, freq: {freq:.8f})")
else:
print(" No thematic words found. Try different inputs or lower similarity threshold.")
except KeyboardInterrupt:
break
except Exception as e:
logger.error(f"Error in main loop: {e}")
print(f"Error: {e}")
print("\nGoodbye!")
if __name__ == "__main__":
main()