File size: 35,147 Bytes
486eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
#!/usr/bin/env python3
"""
Thematic Word Generator using Sentence Transformers

Generates thematically related words from a set of input words/sentences.
Uses semantic centroids to understand broader themes and find related vocabulary.
"""

import os
import csv
import pickle
import numpy as np
import logging
from typing import List, Tuple, Optional
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
import nltk
from nltk.corpus import words, brown
from datetime import datetime
import time
from collections import Counter

# Optional imports for WordFreq frequency source
try:
    from wordfreq import word_frequency, zipf_frequency, top_n_list
    HAS_WORDFREQ = True
except ImportError:
    HAS_WORDFREQ = False

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s:%(lineno)d - %(levelname)s - %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)

def get_timestamp():
    return datetime.now().strftime("%H:%M:%S")
def get_datetimestamp():
    return datetime.now().strftime("%Y-%m-%d %H:%M:%S")

class ThematicWordGeneranor_v0_1:
    def __init__(self, cache_dir: Optional[str] = None, model_name: str = 'all-mpnet-base-v2'):
        """Initialize the thematic word generator.
        
        Args:
            cache_dir: Directory to cache the embedding model
            model_name: Sentence transformer model to use
        """
        if cache_dir is None:
            cache_dir = os.path.join(os.path.dirname(__file__), 'model_cache')
        
        self.cache_dir = cache_dir
        os.makedirs(cache_dir, exist_ok=True)
        
        # Load embedding model with caching
        logger.info("Loading embedding model...")
        self.model = SentenceTransformer(
            f'sentence-transformers/{model_name}',
            cache_folder=cache_dir
        )
        logger.info("Model loaded successfully.")
        
        # Load vocabulary and embeddings (with caching)
        self.vocabulary, self.vocab_embeddings = self._load_or_create_vocab_embeddings()
        
        # Load frequency data
        self.word_frequencies = self._load_frequency_data()
        self.frequency_tiers = self._create_frequency_tiers()
    
    def _load_or_create_vocab_embeddings(self) -> Tuple[List[str], np.ndarray]:
        """Load vocabulary and embeddings from cache or create them."""
        # vocab_cache_path = os.path.join(self.cache_dir, 'vocabulary.pkl')
        vocab_cache_path = os.path.join(self.cache_dir, 'dictionary.pkl')
        embeddings_cache_path = os.path.join(self.cache_dir, 'vocab_embeddings.npy')
        
        # Check if cache exists and is valid
        if os.path.exists(vocab_cache_path) and os.path.exists(embeddings_cache_path):
            try:
                logger.info("Loading vocabulary and embeddings from cache...")
                start_time = time.time()
                
                with open(vocab_cache_path, 'rb') as f:
                    vocabulary = pickle.load(f)
                embeddings = np.load(embeddings_cache_path)
                
                load_time = time.time() - start_time
                logger.info(f"βœ“ Loaded {len(vocabulary):,} words and embeddings from cache in {load_time:.2f}s")
                return vocabulary, embeddings
                
            except Exception as e:
                logger.error(f"Error loading from cache: {e}")
                logger.info("Rebuilding vocabulary and embeddings...")
        
        # Create new vocabulary and embeddings
        logger.info("Creating new vocabulary and embeddings...")
        vocabulary = self._load_vocabulary()
        # vocabulary = self._load_dictionary()
        embeddings = self._create_vocab_embeddings(vocabulary)
        
        # Save to cache
        try:
            logger.info("Saving vocabulary and embeddings to cache...")
            with open(vocab_cache_path, 'wb') as f:
                pickle.dump(vocabulary, f)
            np.save(embeddings_cache_path, embeddings)
            logger.info("βœ“ Cache saved successfully")
        except Exception as e:
            logger.warning(f"Could not save cache: {e}")
        
        return vocabulary, embeddings
    
    def _load_dictionary(self) -> List[str]:
        """Load words from the dictionary CSV file."""
        dict_path = os.path.join(os.path.dirname(__file__), 'dict-words', 'dict.csv')
        words = []
        
        try:
            with open(dict_path, 'r', encoding='utf-8') as csvfile:
                reader = csv.DictReader(csvfile)
                for row in reader:
                    word = row['word'].strip().lower()
                    if word and len(word) > 1:  # Include words with 2+ characters
                        words.append(word)
        except FileNotFoundError:
            raise Exception(f"Dictionary file not found: {dict_path}")
        except Exception as e:
            raise Exception(f"Error reading dictionary: {e}")
        
        return words
    
    def _load_frequency_data(self) -> Counter:
        """Load word frequency data from WordFreq or Brown corpus fallback."""
        # Try WordFreq first (comprehensive modern data)
        if HAS_WORDFREQ:
            wordfreq_cache_path = os.path.join(self.cache_dir, 'wordfreq_frequencies.pkl')
            
            # Check if WordFreq data is cached
            if os.path.exists(wordfreq_cache_path):
                try:
                    logger.info("Loading WordFreq data from cache...")
                    with open(wordfreq_cache_path, 'rb') as f:
                        word_freq = pickle.load(f)
                    logger.info(f"βœ“ Loaded WordFreq data for {len(word_freq):,} words")
                    return word_freq
                except Exception as e:
                    logger.warning(f"Error loading WordFreq cache: {e}")
            
            # Generate WordFreq data
            logger.info("Generating frequency data from WordFreq (comprehensive multi-source)...")
            try:
                word_freq = self._generate_wordfreq_data()
                
                # Cache the frequency data
                try:
                    with open(wordfreq_cache_path, 'wb') as f:
                        pickle.dump(word_freq, f)
                    logger.info("βœ“ Cached WordFreq data")
                except Exception as e:
                    logger.warning(f"Could not cache WordFreq data: {e}")
                
                return word_freq
                
            except Exception as e:
                logger.error(f"Error loading WordFreq data: {e}")
                logger.info("Falling back to Brown corpus...")
        
        # Fallback to Brown corpus
        return self._load_brown_frequency_data()
    
    def _generate_wordfreq_data(self) -> Counter:
        """Generate frequency data from WordFreq's comprehensive vocabulary."""
        logger.info("Fetching comprehensive vocabulary from WordFreq...")
        
        try:
            # Get comprehensive word list from WordFreq
            top_words = top_n_list('en', 500000, wordlist='large')
            logger.info(f"Retrieved {len(top_words):,} words from WordFreq")
            
            frequency_data = Counter()
            processed_count = 0
            
            # Process words in batches for better performance
            batch_size = 5000
            total_batches = (len(top_words) + batch_size - 1) // batch_size
            
            for batch_num in range(total_batches):
                start_idx = batch_num * batch_size
                end_idx = min(start_idx + batch_size, len(top_words))
                batch_words = top_words[start_idx:end_idx]
                
                for word in batch_words:
                    try:
                        # Get actual frequency from WordFreq
                        freq = word_frequency(word, 'en', wordlist='large')
                        if freq > 0:
                            # Scale by billions to preserve tiny frequencies
                            count = int(freq * 1_000_000_000)
                            if count > 0:
                                frequency_data[word] = count
                                processed_count += 1
                            else:
                                # For extremely rare words, use minimum count of 1
                                frequency_data[word] = 1
                                processed_count += 1
                    except Exception:
                        continue  # Skip problematic words
                
                # Progress update
                if batch_num % 20 == 0 or batch_num == total_batches - 1:
                    logger.info(f"  Batch {batch_num + 1:3d}/{total_batches} | "
                               f"Processed {end_idx:6,}/{len(top_words):,} words | "
                               f"Found {processed_count:,} with frequencies")
            
            logger.info(f"βœ“ Generated WordFreq data: {len(frequency_data):,} words with frequencies")
            return frequency_data
            
        except Exception as e:
            logger.error(f"Error generating WordFreq data: {e}")
            raise
    
    def _load_brown_frequency_data(self) -> Counter:
        """Load frequency data from Brown corpus (fallback)."""
        freq_cache_path = os.path.join(self.cache_dir, 'brown_frequencies.pkl')
        
        # Check if frequency data is cached
        if os.path.exists(freq_cache_path):
            try:
                logger.info("Loading Brown corpus frequency data from cache...")
                with open(freq_cache_path, 'rb') as f:
                    word_freq = pickle.load(f)
                logger.info(f"βœ“ Loaded Brown corpus data for {len(word_freq):,} words")
                return word_freq
            except Exception as e:
                logger.warning(f"Error loading Brown corpus cache: {e}")
        
        # Generate frequency data from Brown corpus
        logger.info("Generating frequency data from Brown corpus (1960s academic fallback)...")
        try:
            nltk.download('brown', quiet=True)
            brown_words = [word.lower() for word in brown.words() if word.isalpha()]
            word_freq = Counter(brown_words)
            logger.info(f"βœ“ Generated Brown corpus data for {len(word_freq):,} unique words")
            
            # Cache the frequency data
            try:
                with open(freq_cache_path, 'wb') as f:
                    pickle.dump(word_freq, f)
                logger.info("βœ“ Cached Brown corpus data")
            except Exception as e:
                logger.warning(f"Could not cache Brown corpus data: {e}")
            
            return word_freq
            
        except Exception as e:
            logger.error(f"Error loading Brown corpus: {e}")
            # Return empty counter as fallback
            return Counter()
    
    def _create_frequency_tiers(self) -> dict:
        """Create detailed frequency tier classifications with 10 tiers."""
        if not self.word_frequencies:
            return {}
        
        tiers = {}
        
        # Calculate percentile-based thresholds for more even distribution
        all_counts = list(self.word_frequencies.values())
        all_counts.sort(reverse=True)
        
        # Define 10 tiers with percentile-based thresholds
        tier_definitions = [
            ("tier_1_ultra_common", 0.999, "Ultra Common (Top 0.1%)"),
            ("tier_2_extremely_common", 0.995, "Extremely Common (Top 0.5%)"), 
            ("tier_3_very_common", 0.99, "Very Common (Top 1%)"),
            ("tier_4_highly_common", 0.97, "Highly Common (Top 3%)"),
            ("tier_5_common", 0.92, "Common (Top 8%)"),
            ("tier_6_moderately_common", 0.85, "Moderately Common (Top 15%)"),
            ("tier_7_somewhat_uncommon", 0.70, "Somewhat Uncommon (Top 30%)"),
            ("tier_8_uncommon", 0.50, "Uncommon (Top 50%)"),
            ("tier_9_rare", 0.25, "Rare (Top 75%)"),
            ("tier_10_very_rare", 0.0, "Very Rare (Bottom 25%)")
        ]
        
        # Calculate actual count thresholds based on percentiles
        thresholds = []
        for tier_name, percentile, description in tier_definitions:
            if percentile > 0:
                idx = int((1 - percentile) * len(all_counts))
                threshold = all_counts[min(idx, len(all_counts) - 1)]
            else:
                threshold = 0
            thresholds.append((tier_name, threshold, description))
        
        # Store tier descriptions for lookup
        self.tier_descriptions = {name: desc for name, _, desc in thresholds}
        
        # Assign tiers based on thresholds
        for word, count in self.word_frequencies.items():
            assigned = False
            for tier_name, threshold, description in thresholds:
                if count >= threshold:
                    tiers[word] = tier_name
                    assigned = True
                    break
            
            if not assigned:
                tiers[word] = "tier_10_very_rare"
        
        # Words not in frequency data are considered "very rare"
        for word in self.vocabulary:
            if word not in tiers:
                tiers[word] = "tier_10_very_rare"
        
        # Log tier distribution
        tier_counts = Counter(tiers.values())
        logger.info(f"βœ“ Created 10-tier frequency system for {len(tiers):,} words:")
        
        tier_order = [f"tier_{i}_{name}" for i, name in enumerate([
            "ultra_common", "extremely_common", "very_common", "highly_common", 
            "common", "moderately_common", "somewhat_uncommon", "uncommon", 
            "rare", "very_rare"
        ], 1)]
        
        for tier_key in tier_order:
            if tier_key in tier_counts:
                count = tier_counts[tier_key]
                percentage = (count / len(tiers)) * 100 if tiers else 0
                description = self.tier_descriptions.get(tier_key, tier_key)
                logger.info(f"  - {description}: {count:,} words ({percentage:.1f}%)")
        
        return tiers
    
    def get_word_frequency_info(self, word: str) -> Tuple[float, str]:
        """Get relative frequency and tier for a word."""
        count = self.word_frequencies.get(word, 0)
        total_words = sum(self.word_frequencies.values()) if self.word_frequencies else 1
        relative_freq = count / total_words if total_words > 0 else 0.0
        tier = self.frequency_tiers.get(word, "tier_10_very_rare")
        return relative_freq, tier
    
    def get_tier_description(self, tier: str) -> str:
        """Get human-readable description for a tier."""
        return getattr(self, 'tier_descriptions', {}).get(tier, tier)
    
    def get_tier_number(self, tier: str) -> int:
        """Extract tier number from tier string."""
        if tier.startswith("tier_"):
            try:
                return int(tier.split("_")[1])
            except (IndexError, ValueError):
                return 10
        return 10  # Default to tier 10 for unknown formats

    def _load_vocabulary(self) -> List[str]:
        """Load vocabulary from NLTK words corpus with frequency filtering."""
        try:
            logger.info("Downloading NLTK data...")
            # Download NLTK words if not already present
            nltk.download('words', quiet=True)
            word_list = list(words.words())
            logger.info(f"βœ“ Downloaded {len(word_list):,} words from NLTK")
            
            # Filter and clean vocabulary
            logger.info("Filtering vocabulary...")
            filtered_words = []
            for word in word_list:
                word_clean = word.lower().strip()
                # Include words with 3+ characters, only alphabetic
                if len(word_clean) >= 3 and word_clean.isalpha():
                    filtered_words.append(word_clean)
            
            # Remove duplicates
            unique_words = list(set(filtered_words))
            logger.info(f"βœ“ Filtered to {len(unique_words):,} unique words")
            
            # Reduce vocabulary size for performance (keep most common ~50K words)
            # Sort alphabetically first for consistent ordering
            vocabulary = sorted(unique_words)
            
            # If vocabulary is very large, take a reasonable subset
            max_vocab_size = 50000
            if len(vocabulary) > max_vocab_size:
                logger.info(f"Reducing vocabulary from {len(vocabulary):,} to {max_vocab_size:,} words for performance")
                vocabulary = vocabulary[:max_vocab_size]
            
            logger.info(f"βœ“ Final vocabulary: {len(vocabulary):,} words")
            return vocabulary
            
        except Exception as e:
            logger.error(f"Error loading NLTK vocabulary: {e}")
            logger.info("Using fallback vocabulary...")
            # Larger fallback vocabulary for better functionality
            basic_words = [
                "animal", "science", "technology", "ocean", "forest", "mountain",
                "computer", "music", "art", "book", "travel", "food", "nature",
                "space", "history", "culture", "sports", "weather", "education",
                "health", "family", "friend", "house", "car", "city", "country",
                "water", "fire", "earth", "air", "light", "dark", "color",
                "sound", "time", "world", "life", "death", "love", "peace",
                "war", "power", "money", "work", "play", "game", "sport",
                "business", "school", "university", "government", "law",
                "medicine", "hospital", "doctor", "nurse", "teacher", "student",
                "writer", "artist", "musician", "actor", "director", "producer"
            ]
            logger.info(f"Using fallback vocabulary with {len(basic_words)} words.")
            return basic_words
    
    def _create_vocab_embeddings(self, vocabulary: List[str]) -> np.ndarray:
        """Create embeddings for all vocabulary words with detailed progress."""
        batch_size = 512
        all_embeddings = []
        
        total_batches = (len(vocabulary) + batch_size - 1) // batch_size
        total_words = len(vocabulary)
        
        logger.info(f"Creating embeddings for {total_words:,} words in {total_batches} batches...")
        start_time = time.time()
        
        for i in range(0, len(vocabulary), batch_size):
            batch_start_time = time.time()
            batch_words = vocabulary[i:i + batch_size]
            batch_num = i // batch_size + 1
            
            batch_embeddings = self.model.encode(
                batch_words,
                convert_to_tensor=False,
                show_progress_bar=False  # We'll show our own progress
            )
            all_embeddings.append(batch_embeddings)
            
            # Calculate progress and ETA
            batch_time = time.time() - batch_start_time
            words_processed = min(i + batch_size, total_words)
            progress_pct = (words_processed / total_words) * 100
            
            elapsed_total = time.time() - start_time
            if words_processed > 0:
                words_per_second = words_processed / elapsed_total
                remaining_words = total_words - words_processed
                eta_seconds = remaining_words / words_per_second if words_per_second > 0 else 0
                eta_str = f"{eta_seconds:.0f}s" if eta_seconds < 60 else f"{eta_seconds/60:.1f}m"
            else:
                eta_str = "calculating..."
            
            logger.info(f"  Batch {batch_num:3d}/{total_batches} | "
                       f"{words_processed:6,}/{total_words:,} words ({progress_pct:5.1f}%) | "
                       f"ETA: {eta_str}")
        
        total_time = time.time() - start_time
        words_per_second = total_words / total_time
        logger.info(f"βœ“ Created embeddings for {total_words:,} words in {total_time:.2f}s "
                   f"({words_per_second:.0f} words/sec)")
        
        return np.vstack(all_embeddings)
    
    def _compute_theme_vector(self, inputs: List[str]) -> np.ndarray:
        """Compute semantic centroid from input words/sentences."""
        logger.info(f"entered _compute_theme_vector")
        # Encode all inputs
        input_embeddings = self.model.encode(inputs, convert_to_tensor=False, show_progress_bar=False)
        logger.info(f"completed _compute_theme_vector model.encode")
        
        # Simple approach: average all input embeddings
        theme_vector = np.mean(input_embeddings, axis=0)
        
        return theme_vector.reshape(1, -1)
    
    def _detect_multiple_themes(self, inputs: List[str], max_themes: int = 3) -> List[np.ndarray]:
        """Detect multiple themes using clustering."""
        if len(inputs) < 2:
            return [self._compute_theme_vector(inputs)]
        logger.info(f"entered _detect_multiple_themes")
        
        # Encode inputs
        logger.info("starting model.encode")
        input_embeddings = self.model.encode(inputs, convert_to_tensor=False, show_progress_bar=False)
        logger.info("completed model.encode")
        
        # Determine optimal number of clusters
        n_clusters = min(max_themes, len(inputs), 3)
        logger.info(f"num of clusters: {n_clusters:2d}")
        
        if n_clusters == 1:
            return [np.mean(input_embeddings, axis=0).reshape(1, -1)]
        
        # Perform clustering
        kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
        kmeans.fit(input_embeddings)
        
        # Return cluster centers as theme vectors
        return [center.reshape(1, -1) for center in kmeans.cluster_centers_]
    
    def generate_thematic_words(self, 
                              inputs: List[str], 
                              num_words: int = 20, 
                              min_similarity: float = 0.3,
                              diversity_factor: float = 0.1,
                              multi_theme: bool = False) -> List[Tuple[str, float]]:
        """Generate thematically related words from input seeds.
        
        Args:
            inputs: List of words or sentences as theme seeds
            num_words: Number of words to return
            min_similarity: Minimum similarity threshold
            diversity_factor: Balance between relevance and diversity (0.0-1.0)
            multi_theme: Whether to detect and use multiple themes
            
        Returns:
            List of tuples (word, similarity_score) sorted by relevance
        """
        logger.info(f"entered generate_thematic_words")
        if not inputs:
            return []
        
        # Clean inputs
        clean_inputs = [inp.strip().lower() for inp in inputs if inp.strip()]
        if not clean_inputs:
            return []
        
        # Get theme vector(s)
        logger.info(f"{multi_theme=},{clean_inputs=}")
        if multi_theme and len(clean_inputs) > 2:
            theme_vectors = self._detect_multiple_themes(clean_inputs)
        else:
            theme_vectors = [self._compute_theme_vector(clean_inputs)]
        logger.info("done with getting theme_vectors")
        
        # Collect similarities from all themes
        all_similarities = np.zeros(len(self.vocabulary))
        
        for theme_vector in theme_vectors:
            # Compute similarities with vocabulary
            similarities = cosine_similarity(theme_vector, self.vocab_embeddings)[0]
            all_similarities += similarities / len(theme_vectors)  # Average across themes
        
        logger.info("done with cosine similarity")
        # Get top candidates
        top_indices = np.argsort(all_similarities)[::-1]
        logger.info("done with argsort")
        
        # Filter and format results
        results = []
        input_words_set = set(clean_inputs)
        seen_words = set()  # Track words we've already added
        
        for idx in top_indices:
            word = self.vocabulary[idx]
            similarity_score = all_similarities[idx]
            
            # Skip input words, duplicates, and low-similarity matches
            if (word not in input_words_set and 
                word not in seen_words and 
                similarity_score >= min_similarity):
                results.append((word, similarity_score))
                seen_words.add(word)
                
                if len(results) >= num_words * 3:  # Get extra for diversity filtering
                    break
        
        logger.info("starting with _apply_diversity_filter")
        diversity_factor = 0.0
        # Apply diversity filtering if requested
        if diversity_factor > 0.0 and len(results) > num_words:
            results = self._apply_diversity_filter(results, num_words, diversity_factor)
        logger.info("done with _apply_diversity_filter")
        
        # return results[:num_words]
        return results
    
    def _apply_diversity_filter(self, 
                               candidates: List[Tuple[str, float]], 
                               target_count: int, 
                               diversity_factor: float) -> List[Tuple[str, float]]:
        """Apply diversity filtering to reduce semantic redundancy - optimized version."""
        if len(candidates) <= target_count:
            return candidates
            
        if diversity_factor <= 0.0:
            return candidates[:target_count]
        
        logger.info(f"Applying diversity filter to {len(candidates)} candidates for {target_count} targets")
        
        # Pre-compute embeddings for all candidate words (batch processing)
        candidate_words = [word for word, _ in candidates]
        logger.info("Computing embeddings for all candidates...")
        start_time = time.time()
        candidate_embeddings = self.model.encode(candidate_words, convert_to_tensor=False, show_progress_bar=False)
        embed_time = time.time() - start_time
        logger.info(f"βœ“ Computed {len(candidate_words)} embeddings in {embed_time:.2f}s")
        
        # Start with the highest scoring word
        selected_indices = [0]  # Index of selected candidates
        selected_embeddings = [candidate_embeddings[0]]
        
        # Greedy selection with diversity
        start_time = time.time()
        for _ in range(1, min(target_count, len(candidates))):
            best_idx = -1
            best_score = -1
            
            # Check each remaining candidate
            for i in range(len(candidates)):
                if i in selected_indices:
                    continue
                    
                # Compute minimum similarity to already selected words
                candidate_emb = candidate_embeddings[i].reshape(1, -1)
                min_sim_to_selected = float('inf')
                
                for selected_emb in selected_embeddings:
                    selected_emb = selected_emb.reshape(1, -1)
                    sim = cosine_similarity(candidate_emb, selected_emb)[0][0]
                    min_sim_to_selected = min(min_sim_to_selected, sim)
                
                # Balance original similarity score with diversity bonus
                original_score = candidates[i][1]
                diversity_bonus = (1.0 - min_sim_to_selected) * diversity_factor
                combined_score = original_score + diversity_bonus
                
                if combined_score > best_score:
                    best_score = combined_score
                    best_idx = i
            
            # Add best candidate
            if best_idx >= 0:
                selected_indices.append(best_idx)
                selected_embeddings.append(candidate_embeddings[best_idx])
            else:
                break
        
        selection_time = time.time() - start_time
        logger.info(f"βœ“ Completed diversity selection in {selection_time:.2f}s")
        
        # Return selected candidates in order of selection
        return [candidates[i] for i in selected_indices]
    
    def get_theme_embedding(self, inputs: List[str]) -> np.ndarray:
        """Get the theme embedding vector for debugging/analysis."""
        return self._compute_theme_vector(inputs)[0]


def main():
    """Demo the thematic word generator."""
    logger.info("Initializing Thematic Word Generator...")
    generator = ThematicWordGeneranor_v0_1()
    
    # Test cases
    test_cases = [
        {
            "name": "Ocean Theme",
            "inputs": ["ocean", "waves", "sailing"],
            "description": "Maritime and ocean-related concepts"
        },
        # {
        #     "name": "Technology Theme", 
        #     "inputs": ["computer", "software", "programming"],
        #     "description": "Technology and computing concepts"
        # },
        # {
        #     "name": "Nature Theme",
        #     "inputs": ["forest", "mountain", "wildlife"],
        #     "description": "Natural environment concepts"
        # },
        # {
        #     "name": "Sentence-based Theme",
        #     "inputs": ["The night sky is full of stars", "Space exploration fascinates me"],
        #     "description": "Astronomy theme from sentences"
        # },
        # {
        #     "name": "Mixed Theme",
        #     "inputs": ["music", "art", "creativity", "performance"],
        #     "description": "Creative arts theme"
        # }
    ]
    
    print("\n" + "="*70)
    print("THEMATIC WORD GENERATOR DEMO")
    print("="*70)
    
    for test_case in test_cases:
        print(f"\n{test_case['name']}: {test_case['description']}")
        print(f"Input: {test_case['inputs']}")
        print("-" * 50)
        
        # Generate basic theme
        thematic_words = generator.generate_thematic_words(
            test_case['inputs'], 
            num_words=12,
            min_similarity=0.2
        )
        
        if thematic_words:
            # Sort by tier (T1 β†’ T10), then by similarity score within each tier
            def sort_by_tier_and_similarity(item):
                word, similarity = item
                freq, tier = generator.get_word_frequency_info(word)
                tier_num = generator.get_tier_number(tier)
                return (tier_num, -similarity)  # Sort by tier first, then by similarity (descending)
            
            thematic_words_sorted = sorted(thematic_words, key=sort_by_tier_and_similarity)
            
            print("Related words (sorted by frequency tier T1β†’T10):")
            for i, (word, score) in enumerate(thematic_words_sorted):
                freq, tier = generator.get_word_frequency_info(word)
                tier_desc = generator.get_tier_description(tier)
                tier_num = generator.get_tier_number(tier)
                print(f"  {i+1:2d}. {word:<15} (sim: {score:.3f}, freq: {freq:.8f}) [T{tier_num}: {tier_desc}]")
        else:
            print("  No related words found.")
        
        # Also try with diversity
        if len(test_case['inputs']) > 1:
            diverse_words = generator.generate_thematic_words(
                test_case['inputs'],
                num_words=8,
                diversity_factor=0.3,
                multi_theme=True
            )
            
            # Sort diverse words by tier too
            diverse_words_sorted = sorted(diverse_words, key=sort_by_tier_and_similarity)
            
            print(f"\nWith diversity (showing {len(diverse_words_sorted)} words, sorted by tier):")
            for i, (word, score) in enumerate(diverse_words_sorted):
                freq, tier = generator.get_word_frequency_info(word)
                tier_desc = generator.get_tier_description(tier)
                tier_num = generator.get_tier_number(tier)
                print(f"  {i+1:2d}. {word:<15} (sim: {score:.3f}, freq: {freq:.8f}) [T{tier_num}: {tier_desc}]")
    
    # Interactive mode
    print("\n" + "="*70)
    print("INTERACTIVE MODE")
    print("Enter words/sentences separated by commas (type 'quit' to exit)")
    print("="*70)
    
    while True:
        try:
            start = get_timestamp()
            user_input = input(f"\n[{start}] Enter theme words/sentences: ").strip()
            
            if user_input.lower() == 'quit':
                break
            
            if not user_input:
                continue
            
            # Parse input
            inputs = [inp.strip() for inp in user_input.split(',') if inp.strip()]
            
            if not inputs:
                print("Please provide at least one word or sentence.")
                continue
            
            start = get_timestamp()
            print(f"\n[{start}] Generating thematic words for: {inputs}")
            print("-" * 40)
            
            # Generate thematic words
            thematic_words = generator.generate_thematic_words(
                inputs,
                num_words=50,
                diversity_factor=0.2,
                multi_theme=len(inputs) > 2
            )
            logger.info("returned from generate_thematic_words")
            
            # Sort by tier (T1 β†’ T10), then by similarity score within each tier
            def sort_by_tier_and_similarity(item):
                word, similarity = item
                freq, tier = generator.get_word_frequency_info(word)
                tier_num = generator.get_tier_number(tier)
                return (tier_num, -similarity)  # Sort by tier first, then by similarity (descending)
            
            thematic_words = sorted(thematic_words, key=sort_by_tier_and_similarity)
            
            if thematic_words:
                print(f"\nGenerated {len(thematic_words)} thematic words (sorted by frequency tier T1β†’T10):")
                current_tier = None
                for i, (word, score) in enumerate(thematic_words):
                    freq, tier = generator.get_word_frequency_info(word)
                    tier_desc = generator.get_tier_description(tier)
                    tier_num = generator.get_tier_number(tier)
                    
                    # Add tier group headers
                    if tier_num != current_tier:
                        current_tier = tier_num
                        print(f"\n  === TIER {tier_num}: {tier_desc} ===")
                    
                    print(f"  {i+1:2d}. {word:<15} (sim: {score:.3f}, freq: {freq:.8f})")
            else:
                print("  No thematic words found. Try different inputs or lower similarity threshold.")
                
        except KeyboardInterrupt:
            break
        except Exception as e:
            logger.error(f"Error in main loop: {e}")
            print(f"Error: {e}")
    
    print("\nGoodbye!")


if __name__ == "__main__":
    main()