abc123 / hack /thematic_word_generator.py
vimalk78's picture
feat: implement difficulty-aware word selection with frequency percentiles
676533d
raw
history blame
52.4 kB
#!/usr/bin/env python3
"""
Unified Thematic Word Generator using WordFreq + SentenceTransformers
Eliminates vocabulary redundancy by using WordFreq as the single vocabulary source
for both word lists and frequency data, with all-mpnet-base-v2 for embeddings.
Features:
- Single vocabulary source (WordFreq 319K words vs previous 3 separate sources)
- Unified filtering for crossword-suitable words
- 10-tier frequency classification system
- Compatible with crossword backend services
- Comprehensive modern vocabulary with proper frequency data
"""
import os
import csv
import pickle
import numpy as np
import logging
import asyncio
import random
from typing import List, Tuple, Optional, Dict, Set, Any
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
from datetime import datetime
import time
from collections import Counter
from pathlib import Path
# WordFreq imports (assumed to be available)
from wordfreq import word_frequency, zipf_frequency, top_n_list
# Set up logging with filename and line numbers
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s:%(lineno)d - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
def get_timestamp():
return datetime.now().strftime("%H:%M:%S")
def get_datetimestamp():
return datetime.now().strftime("%Y-%m-%d %H:%M:%S")
class VocabularyManager:
"""
Centralized vocabulary management using WordFreq as the single source.
Handles loading, filtering, caching, and frequency data generation.
"""
def __init__(self, cache_dir: Optional[str] = None, vocab_size_limit: Optional[int] = None):
"""Initialize vocabulary manager.
Args:
cache_dir: Directory for caching vocabulary and embeddings
vocab_size_limit: Maximum vocabulary size (None for full WordFreq vocabulary)
"""
if cache_dir is None:
cache_dir = os.path.join(os.path.dirname(__file__), 'model_cache')
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(exist_ok=True)
# Vocabulary size configuration
self.vocab_size_limit = vocab_size_limit or int(os.getenv("MAX_VOCABULARY_SIZE", "100000"))
# Cache paths
self.vocab_cache_path = self.cache_dir / f"unified_vocabulary_{self.vocab_size_limit}.pkl"
self.frequency_cache_path = self.cache_dir / f"unified_frequencies_{self.vocab_size_limit}.pkl"
# Loaded data
self.vocabulary: List[str] = []
self.word_frequencies: Counter = Counter()
self.is_loaded = False
def load_vocabulary(self) -> Tuple[List[str], Counter]:
"""Load vocabulary and frequency data, with caching."""
if self.is_loaded:
return self.vocabulary, self.word_frequencies
# Try loading from cache
if self._load_from_cache():
logger.info(f"✅ Loaded vocabulary from cache: {len(self.vocabulary):,} words")
self.is_loaded = True
return self.vocabulary, self.word_frequencies
# Generate from WordFreq
logger.info("🔄 Generating vocabulary from WordFreq...")
self._generate_vocabulary_from_wordfreq()
# Save to cache
self._save_to_cache()
self.is_loaded = True
return self.vocabulary, self.word_frequencies
def _load_from_cache(self) -> bool:
"""Load vocabulary and frequencies from cache."""
try:
if self.vocab_cache_path.exists() and self.frequency_cache_path.exists():
logger.info("📦 Loading vocabulary from cache...")
with open(self.vocab_cache_path, 'rb') as f:
self.vocabulary = pickle.load(f)
with open(self.frequency_cache_path, 'rb') as f:
self.word_frequencies = pickle.load(f)
return True
except Exception as e:
logger.warning(f"⚠️ Cache loading failed: {e}")
return False
def _save_to_cache(self):
"""Save vocabulary and frequencies to cache."""
try:
logger.info("💾 Saving vocabulary to cache...")
with open(self.vocab_cache_path, 'wb') as f:
pickle.dump(self.vocabulary, f)
with open(self.frequency_cache_path, 'wb') as f:
pickle.dump(self.word_frequencies, f)
logger.info("✅ Vocabulary cached successfully")
except Exception as e:
logger.warning(f"⚠️ Cache saving failed: {e}")
def _generate_vocabulary_from_wordfreq(self):
"""Generate filtered vocabulary from WordFreq database."""
logger.info(f"📚 Fetching top {self.vocab_size_limit:,} words from WordFreq...")
# Get comprehensive word list from WordFreq
raw_words = top_n_list('en', self.vocab_size_limit * 2, wordlist='large') # Get extra for filtering
logger.info(f"📥 Retrieved {len(raw_words):,} raw words from WordFreq")
# Apply crossword-suitable filtering
filtered_words = []
frequency_data = Counter()
logger.info("🔍 Applying crossword filtering...")
for word in raw_words:
if self._is_crossword_suitable(word):
filtered_words.append(word.lower())
# Get frequency data
try:
freq = word_frequency(word, 'en', wordlist='large')
if freq > 0:
# Scale frequency to preserve precision
frequency_data[word.lower()] = int(freq * 1e9)
except:
frequency_data[word.lower()] = 1 # Minimal frequency for unknown words
if len(filtered_words) >= self.vocab_size_limit:
break
# Remove duplicates and sort
self.vocabulary = sorted(list(set(filtered_words)))
self.word_frequencies = frequency_data
logger.info(f"✅ Generated filtered vocabulary: {len(self.vocabulary):,} words")
logger.info(f"📊 Frequency data coverage: {len(self.word_frequencies):,} words")
def _is_crossword_suitable(self, word: str) -> bool:
"""Check if word is suitable for crosswords."""
word = word.lower().strip()
# Length check (3-12 characters for crosswords)
if len(word) < 3 or len(word) > 12:
return False
# Must be alphabetic only
if not word.isalpha():
return False
# Skip boring/common words
boring_words = {
'the', 'and', 'for', 'are', 'but', 'not', 'you', 'all', 'this', 'that',
'with', 'from', 'they', 'were', 'been', 'have', 'their', 'said', 'each',
'which', 'what', 'there', 'will', 'more', 'when', 'some', 'like', 'into',
'time', 'very', 'only', 'has', 'had', 'who', 'its', 'now', 'find', 'long',
'down', 'day', 'did', 'get', 'come', 'made', 'may', 'part'
}
if word in boring_words:
return False
# Skip obvious plurals (simple heuristic)
if len(word) > 4 and word.endswith('s') and not word.endswith(('ss', 'us', 'is')):
return False
# Skip words with repeated characters (often not real words)
if len(set(word)) < len(word) * 0.6: # Less than 60% unique characters
return False
return True
class UnifiedThematicWordGenerator:
"""
Unified thematic word generator using WordFreq vocabulary and all-mpnet-base-v2 embeddings.
Compatible with both hack tools and crossword backend services.
Eliminates vocabulary redundancy by using single source for everything.
"""
def __init__(self, cache_dir: Optional[str] = None, model_name: str = 'all-mpnet-base-v2',
vocab_size_limit: Optional[int] = None):
"""Initialize the unified thematic word generator.
Args:
cache_dir: Directory to cache model and embeddings
model_name: Sentence transformer model to use
vocab_size_limit: Maximum vocabulary size (None for 100K default)
"""
if cache_dir is None:
cache_dir = os.path.join(os.path.dirname(__file__), 'model_cache')
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(exist_ok=True)
self.model_name = model_name
self.vocab_size_limit = vocab_size_limit
# Configuration parameters
self.similarity_temperature = float(os.getenv("SIMILARITY_TEMPERATURE", "0.7"))
self.use_softmax_selection = os.getenv("USE_SOFTMAX_SELECTION", "true").lower() == "true"
self.difficulty_weight = float(os.getenv("DIFFICULTY_WEIGHT", "0.3"))
# Core components
self.vocab_manager = VocabularyManager(cache_dir, vocab_size_limit)
self.model: Optional[SentenceTransformer] = None
# Loaded data
self.vocabulary: List[str] = []
self.word_frequencies: Counter = Counter()
self.vocab_embeddings: Optional[np.ndarray] = None
self.frequency_tiers: Dict[str, str] = {}
self.tier_descriptions: Dict[str, str] = {}
self.word_percentiles: Dict[str, float] = {}
# Cache paths for embeddings
vocab_hash = f"{model_name}_{vocab_size_limit or 100000}"
self.embeddings_cache_path = self.cache_dir / f"unified_embeddings_{vocab_hash}.npy"
self.is_initialized = False
def initialize(self):
"""Initialize the generator (synchronous version)."""
if self.is_initialized:
return
start_time = time.time()
logger.info(f"🚀 Initializing Unified Thematic Word Generator...")
# Load vocabulary and frequency data
self.vocabulary, self.word_frequencies = self.vocab_manager.load_vocabulary()
# Load or create frequency tiers
self.frequency_tiers = self._create_frequency_tiers()
# Load model
logger.info(f"🤖 Loading embedding model: {self.model_name}")
model_start = time.time()
self.model = SentenceTransformer(
f'sentence-transformers/{self.model_name}',
cache_folder=str(self.cache_dir)
)
model_time = time.time() - model_start
logger.info(f"✅ Model loaded in {model_time:.2f}s")
# Load or create embeddings
self.vocab_embeddings = self._load_or_create_embeddings()
self.is_initialized = True
total_time = time.time() - start_time
logger.info(f"🎉 Unified generator initialized in {total_time:.2f}s")
logger.info(f"📊 Vocabulary: {len(self.vocabulary):,} words")
logger.info(f"📈 Frequency data: {len(self.word_frequencies):,} words")
logger.info(f"🎲 Softmax selection: {'ENABLED' if self.use_softmax_selection else 'DISABLED'}")
if self.use_softmax_selection:
logger.info(f"🌡️ Similarity temperature: {self.similarity_temperature}")
async def initialize_async(self):
"""Initialize the generator (async version for backend compatibility)."""
return self.initialize() # For now, same as sync version
def _load_or_create_embeddings(self) -> np.ndarray:
"""Load embeddings from cache or create them."""
# Try loading from cache
if self.embeddings_cache_path.exists():
try:
logger.info("📦 Loading embeddings from cache...")
embeddings = np.load(self.embeddings_cache_path)
logger.info(f"✅ Loaded embeddings: {embeddings.shape}")
return embeddings
except Exception as e:
logger.warning(f"⚠️ Embeddings cache loading failed: {e}")
# Create embeddings
logger.info("🔄 Creating embeddings for vocabulary...")
start_time = time.time()
# Create embeddings in batches for memory efficiency
batch_size = 512
all_embeddings = []
for i in range(0, len(self.vocabulary), batch_size):
batch_words = self.vocabulary[i:i + batch_size]
batch_embeddings = self.model.encode(
batch_words,
convert_to_tensor=False,
show_progress_bar=i == 0 # Only show progress for first batch
)
all_embeddings.append(batch_embeddings)
if i % (batch_size * 10) == 0:
logger.info(f"📊 Embeddings progress: {i:,}/{len(self.vocabulary):,}")
embeddings = np.vstack(all_embeddings)
embedding_time = time.time() - start_time
logger.info(f"✅ Created embeddings in {embedding_time:.2f}s: {embeddings.shape}")
# Save to cache
try:
np.save(self.embeddings_cache_path, embeddings)
logger.info("💾 Embeddings cached successfully")
except Exception as e:
logger.warning(f"⚠️ Embeddings cache saving failed: {e}")
return embeddings
def _create_frequency_tiers(self) -> Dict[str, str]:
"""Create 10-tier frequency classification system and calculate word percentiles."""
if not self.word_frequencies:
return {}
logger.info("📊 Creating frequency tiers and percentiles...")
tiers = {}
percentiles = {}
# Calculate percentile-based thresholds for even distribution
all_counts = list(self.word_frequencies.values())
all_counts.sort(reverse=True)
# Create rank lookup for percentile calculation
# Higher frequency = higher percentile (more common)
count_to_rank = {}
for rank, count in enumerate(all_counts):
if count not in count_to_rank:
count_to_rank[count] = rank
# Define 10 tiers with percentile-based thresholds
tier_definitions = [
("tier_1_ultra_common", 0.999, "Ultra Common (Top 0.1%)"),
("tier_2_extremely_common", 0.995, "Extremely Common (Top 0.5%)"),
("tier_3_very_common", 0.99, "Very Common (Top 1%)"),
("tier_4_highly_common", 0.97, "Highly Common (Top 3%)"),
("tier_5_common", 0.92, "Common (Top 8%)"),
("tier_6_moderately_common", 0.85, "Moderately Common (Top 15%)"),
("tier_7_somewhat_uncommon", 0.70, "Somewhat Uncommon (Top 30%)"),
("tier_8_uncommon", 0.50, "Uncommon (Top 50%)"),
("tier_9_rare", 0.25, "Rare (Top 75%)"),
("tier_10_very_rare", 0.0, "Very Rare (Bottom 25%)")
]
# Calculate actual thresholds
thresholds = []
for tier_name, percentile, description in tier_definitions:
if percentile > 0:
idx = int((1 - percentile) * len(all_counts))
threshold = all_counts[min(idx, len(all_counts) - 1)]
else:
threshold = 0
thresholds.append((tier_name, threshold, description))
# Store descriptions
self.tier_descriptions = {name: desc for name, _, desc in thresholds}
# Assign tiers and calculate percentiles
for word, count in self.word_frequencies.items():
# Calculate percentile: higher frequency = higher percentile
rank = count_to_rank.get(count, len(all_counts) - 1)
percentile = 1.0 - (rank / len(all_counts)) # Convert rank to percentile (0-1)
percentiles[word] = percentile
# Assign tier
assigned = False
for tier_name, threshold, description in thresholds:
if count >= threshold:
tiers[word] = tier_name
assigned = True
break
if not assigned:
tiers[word] = "tier_10_very_rare"
# Words not in frequency data are very rare (0 percentile)
for word in self.vocabulary:
if word not in tiers:
tiers[word] = "tier_10_very_rare"
percentiles[word] = 0.0
# Store percentiles
self.word_percentiles = percentiles
# Log tier distribution
tier_counts = Counter(tiers.values())
logger.info(f"✅ Created frequency tiers:")
for tier_name, count in sorted(tier_counts.items()):
desc = self.tier_descriptions.get(tier_name, tier_name)
logger.info(f" {desc}: {count:,} words")
# Log percentile statistics
percentile_values = list(percentiles.values())
if percentile_values:
avg_percentile = np.mean(percentile_values)
logger.info(f"📈 Percentile statistics: avg={avg_percentile:.3f}, range=0.000-1.000")
return tiers
def generate_thematic_words(self,
inputs,
num_words: int = 20,
min_similarity: float = 0.3,
multi_theme: bool = False,
difficulty: str = "medium") -> List[Tuple[str, float, str]]:
"""Generate thematically related words from input seeds.
Args:
inputs: Single string, or list of words/sentences as theme seeds
num_words: Number of words to return
min_similarity: Minimum similarity threshold
multi_theme: Whether to detect and use multiple themes
difficulty: Difficulty level ("easy", "medium", "hard") for frequency-aware selection
Returns:
List of (word, similarity_score, frequency_tier) tuples
"""
if not self.is_initialized:
self.initialize()
logger.info(f"🎯 Generating {num_words} thematic words")
# Handle single string input (convert to list for compatibility)
if isinstance(inputs, str):
inputs = [inputs]
if not inputs:
return []
# Clean inputs
clean_inputs = [inp.strip().lower() for inp in inputs if inp.strip()]
if not clean_inputs:
return []
logger.info(f"📝 Input themes: {clean_inputs}")
logger.info(f"📊 Difficulty level: {difficulty} (using frequency-aware selection)")
# Get theme vector(s) using original logic
# Auto-enable multi-theme for 3+ inputs (matching original behavior)
auto_multi_theme = len(clean_inputs) > 2
final_multi_theme = multi_theme or auto_multi_theme
logger.info(f"🔍 Multi-theme detection: {final_multi_theme} (auto: {auto_multi_theme}, manual: {multi_theme})")
if final_multi_theme:
theme_vectors = self._detect_multiple_themes(clean_inputs)
logger.info(f"📊 Detected {len(theme_vectors)} themes")
else:
theme_vectors = [self._compute_theme_vector(clean_inputs)]
logger.info("📊 Using single theme vector")
# Collect similarities from all themes
all_similarities = np.zeros(len(self.vocabulary))
for theme_vector in theme_vectors:
# Compute similarities with vocabulary
similarities = cosine_similarity(theme_vector, self.vocab_embeddings)[0]
all_similarities += similarities / len(theme_vectors) # Average across themes
logger.info("✅ Computed semantic similarities")
# Get top candidates
top_indices = np.argsort(all_similarities)[::-1]
# Filter and format results
results = []
input_words_set = set(clean_inputs)
for idx in top_indices:
if len(results) >= num_words * 3: # Get extra candidates for filtering
break
similarity_score = all_similarities[idx]
word = self.vocabulary[idx]
# Apply filters
if similarity_score < min_similarity:
continue
# Skip input words themselves
if word.lower() in input_words_set:
continue
word_tier = self.frequency_tiers.get(word, "tier_10_very_rare")
results.append((word, similarity_score, word_tier))
# Select words using either softmax weighted selection or traditional sorting
if self.use_softmax_selection and len(results) > num_words:
logger.info(f"🎲 Using difficulty-aware softmax selection (temperature: {self.similarity_temperature})")
final_results = self._softmax_weighted_selection(results, num_words, difficulty=difficulty)
# Sort final results by similarity for consistent output format
final_results.sort(key=lambda x: x[1], reverse=True)
else:
logger.info("📊 Using traditional similarity-based sorting")
# Sort by similarity and return top results (original logic)
results.sort(key=lambda x: x[1], reverse=True)
final_results = results[:num_words]
logger.info(f"✅ Generated {len(final_results)} thematic words")
return final_results
def _compute_theme_vector(self, inputs: List[str]) -> np.ndarray:
"""Compute semantic centroid from input words/sentences."""
logger.info(f"🎯 Computing theme vector for {len(inputs)} inputs")
# Encode all inputs
input_embeddings = self.model.encode(inputs, convert_to_tensor=False, show_progress_bar=False)
logger.info(f"✅ Encoded {len(inputs)} inputs")
# Simple approach: average all input embeddings
theme_vector = np.mean(input_embeddings, axis=0)
return theme_vector.reshape(1, -1)
def _compute_composite_score(self, similarity: float, word: str, difficulty: str = "medium") -> float:
"""
Combine semantic similarity with frequency-based difficulty alignment using ML feature engineering.
This is the core of the difficulty-aware selection system. It creates a composite score
that balances two key factors:
1. Semantic Relevance: How well the word matches the theme (similarity score)
2. Difficulty Alignment: How well the word's frequency matches the desired difficulty
Frequency Alignment uses Gaussian distributions to create smooth preference curves:
Easy Mode (targets common words):
- Gaussian peak at 90th percentile with narrow width (σ=0.1)
- Words like CAT (95th percentile) get high scores
- Words like QUETZAL (15th percentile) get low scores
- Formula: exp(-((percentile - 0.9)² / (2 * 0.1²)))
Hard Mode (targets rare words):
- Gaussian peak at 20th percentile with moderate width (σ=0.15)
- Words like QUETZAL (15th percentile) get high scores
- Words like CAT (95th percentile) get low scores
- Formula: exp(-((percentile - 0.2)² / (2 * 0.15²)))
Medium Mode (balanced):
- Flatter distribution with slight peak at 50th percentile (σ=0.3)
- Base score of 0.5 plus Gaussian bonus
- Less extreme preference, more balanced selection
- Formula: 0.5 + 0.5 * exp(-((percentile - 0.5)² / (2 * 0.3²)))
Final Weighting:
composite = (1 - difficulty_weight) * similarity + difficulty_weight * frequency_alignment
Where difficulty_weight (default 0.3) controls the balance:
- Higher weight = more frequency influence, less similarity influence
- Lower weight = more similarity influence, less frequency influence
Example Calculations:
Theme: "animals", difficulty_weight=0.3
Easy mode:
- CAT: similarity=0.8, percentile=0.95 → freq_score=0.61 → composite=0.74
- PLATYPUS: similarity=0.9, percentile=0.15 → freq_score=0.01 → composite=0.63
- Result: CAT wins despite lower similarity (common word bonus)
Hard mode:
- CAT: similarity=0.8, percentile=0.95 → freq_score=0.01 → composite=0.32
- PLATYPUS: similarity=0.9, percentile=0.15 → freq_score=0.94 → composite=0.64
- Result: PLATYPUS wins due to rarity bonus
Args:
similarity: Semantic similarity score (0-1) from sentence transformer
word: The word to get percentile for
difficulty: "easy", "medium", or "hard" - determines frequency preference curve
Returns:
Composite score (0-1) combining semantic relevance and difficulty alignment
"""
# Get word's frequency percentile (0-1, higher = more common)
percentile = self.word_percentiles.get(word.lower(), 0.0)
# Calculate difficulty alignment score
if difficulty == "easy":
# Peak at 90th percentile (very common words)
freq_score = np.exp(-((percentile - 0.9) ** 2) / (2 * 0.1 ** 2))
elif difficulty == "hard":
# Peak at 20th percentile (rare words)
freq_score = np.exp(-((percentile - 0.2) ** 2) / (2 * 0.15 ** 2))
else: # medium
# Flat preference with slight peak at 50th percentile
freq_score = 0.5 + 0.5 * np.exp(-((percentile - 0.5) ** 2) / (2 * 0.3 ** 2))
# Apply difficulty weight parameter
final_alpha = 1.0 - self.difficulty_weight
final_beta = self.difficulty_weight
composite = final_alpha * similarity + final_beta * freq_score
return composite
def _softmax_with_temperature(self, scores: np.ndarray, temperature: float = 1.0) -> np.ndarray:
"""
Apply softmax with temperature control to similarity scores.
Args:
scores: Array of similarity scores
temperature: Temperature parameter (lower = more deterministic, higher = more random)
- temperature < 1.0: More deterministic (favor high similarity)
- temperature = 1.0: Standard softmax
- temperature > 1.0: More random (flatten differences)
Returns:
Probability distribution over the scores
"""
if temperature <= 0:
temperature = 0.01 # Avoid division by zero
# Apply temperature scaling
scaled_scores = scores / temperature
# Apply softmax with numerical stability
max_score = np.max(scaled_scores)
exp_scores = np.exp(scaled_scores - max_score)
probabilities = exp_scores / np.sum(exp_scores)
return probabilities
def _softmax_weighted_selection(self, candidates: List[Tuple[str, float, str]],
num_words: int, temperature: float = None, difficulty: str = "medium") -> List[Tuple[str, float, str]]:
"""
Select words using softmax-based probabilistic sampling weighted by composite scores.
This function implements a machine learning approach to word selection that combines:
1. Semantic similarity (how relevant the word is to the theme)
2. Frequency percentiles (how common/rare the word is)
3. Difficulty preference (which frequencies are preferred for easy/medium/hard)
4. Temperature-controlled randomness (exploration vs exploitation balance)
Temperature Effects:
- temperature < 1.0: More deterministic selection, strongly favors highest composite scores
- temperature = 1.0: Standard softmax probability distribution
- temperature > 1.0: More random selection, flattens differences between scores
- Default 0.7: Balanced between determinism and exploration
Difficulty Effects (via composite scoring):
- "easy": Gaussian peak at 90th percentile (favors common words like CAT, DOG)
- "medium": Balanced distribution around 50th percentile (moderate preference)
- "hard": Gaussian peak at 20th percentile (favors rare words like QUETZAL, PLATYPUS)
Composite Score Formula:
composite = (1 - difficulty_weight) * similarity + difficulty_weight * frequency_alignment
Where frequency_alignment uses Gaussian curves to score how well a word's
percentile matches the difficulty preference.
Example Scenario:
Theme: "animals", Easy difficulty, Temperature: 0.7
- CAT: similarity=0.8, percentile=0.95 → high composite score (common + relevant)
- PLATYPUS: similarity=0.9, percentile=0.15 → lower composite (rare word penalized in easy mode)
- Result: CAT more likely to be selected despite lower similarity
Args:
candidates: List of (word, similarity_score, tier) tuples
num_words: Number of words to select
temperature: Temperature for softmax (None to use instance default of 0.7)
difficulty: Difficulty level ("easy", "medium", "hard") for frequency weighting
Returns:
Selected words with original similarity scores and tiers,
sampled without replacement according to composite probabilities
"""
if len(candidates) <= num_words:
return candidates
if temperature is None:
temperature = self.similarity_temperature
# Compute composite scores (similarity + difficulty alignment)
composite_scores = []
for word, similarity_score, tier in candidates:
composite = self._compute_composite_score(similarity_score, word, difficulty)
composite_scores.append(composite)
composite_scores = np.array(composite_scores)
# Compute softmax probabilities using composite scores
probabilities = self._softmax_with_temperature(composite_scores, temperature)
# Sample without replacement using the probabilities
selected_indices = np.random.choice(
len(candidates),
size=min(num_words, len(candidates)),
replace=False,
p=probabilities
)
# Return selected candidates maintaining original order of information
selected_candidates = [candidates[i] for i in selected_indices]
logger.info(f"🎲 Composite softmax selection (T={temperature:.2f}, difficulty={difficulty}): {len(selected_candidates)} from {len(candidates)} candidates")
return selected_candidates
def _detect_multiple_themes(self, inputs: List[str], max_themes: int = 3) -> List[np.ndarray]:
"""Detect multiple themes using clustering."""
if len(inputs) < 2:
return [self._compute_theme_vector(inputs)]
logger.info(f"🔍 Detecting multiple themes from {len(inputs)} inputs")
# Encode inputs
input_embeddings = self.model.encode(inputs, convert_to_tensor=False, show_progress_bar=False)
logger.info("✅ Encoded inputs for clustering")
# Determine optimal number of clusters
n_clusters = min(max_themes, len(inputs), 3)
logger.info(f"📊 Using {n_clusters} clusters for theme detection")
if n_clusters == 1:
return [np.mean(input_embeddings, axis=0).reshape(1, -1)]
# Perform clustering
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
kmeans.fit(input_embeddings)
logger.info(f"✅ Clustered inputs into {n_clusters} themes")
# Return cluster centers as theme vectors
return [center.reshape(1, -1) for center in kmeans.cluster_centers_]
def get_tier_words(self, tier: str, limit: int = 1000) -> List[str]:
"""Get all words from a specific frequency tier.
Args:
tier: Frequency tier name (e.g., "tier_5_common")
limit: Maximum number of words to return
Returns:
List of words in the specified tier
"""
if not self.is_initialized:
self.initialize()
tier_words = [word for word, word_tier in self.frequency_tiers.items()
if word_tier == tier]
return tier_words[:limit]
def get_word_info(self, word: str) -> Dict[str, Any]:
"""Get comprehensive information about a word.
Args:
word: Word to get information for
Returns:
Dictionary with word info including frequency, tier, etc.
"""
if not self.is_initialized:
self.initialize()
word_lower = word.lower()
info = {
'word': word,
'in_vocabulary': word_lower in self.vocabulary,
'frequency': self.word_frequencies.get(word_lower, 0),
'tier': self.frequency_tiers.get(word_lower, "tier_10_very_rare"),
'tier_description': self.tier_descriptions.get(
self.frequency_tiers.get(word_lower, "tier_10_very_rare"),
"Unknown"
)
}
return info
# Backend compatibility methods
async def find_similar_words(self, topic: str, difficulty: str = "medium", max_words: int = 15) -> List[Dict[str, Any]]:
"""Backend-compatible method for finding similar words.
Returns list of word dictionaries compatible with crossword_generator.py
Expected format: [{"word": str, "clue": str}, ...]
"""
# Map difficulty to appropriate tier filtering
difficulty_tier_map = {
"easy": [ "tier_2_extremely_common", "tier_3_very_common", "tier_4_highly_common"],
"medium": ["tier_4_highly_common", "tier_5_common", "tier_6_moderately_common", "tier_7_somewhat_uncommon"],
"hard": ["tier_7_somewhat_uncommon", "tier_8_uncommon", "tier_9_rare"]
}
allowed_tiers = difficulty_tier_map.get(difficulty, difficulty_tier_map["medium"])
# Get thematic words
all_results = self.generate_thematic_words(
topic,
num_words=max_words * 2, # Get extra for filtering
min_similarity=0.3
)
# Filter by difficulty and format for backend
backend_words = []
for word, similarity, tier in all_results:
# Check difficulty criteria
if not self._matches_backend_difficulty(word, difficulty):
continue
# Optional tier filtering for more precise difficulty control
# (Comment out if tier filtering is too restrictive)
# if tier not in allowed_tiers:
# continue
# Format for backend compatibility
backend_word = {
"word": word.upper(), # Backend expects uppercase
"clue": self._generate_simple_clue(word, topic),
"similarity": similarity,
"tier": tier
}
backend_words.append(backend_word)
if len(backend_words) >= max_words:
break
logger.info(f"🎯 Generated {len(backend_words)} words for topic '{topic}' (difficulty: {difficulty})")
return backend_words
def _matches_backend_difficulty(self, word: str, difficulty: str) -> bool:
"""Check if word matches backend difficulty criteria."""
difficulty_map = {
"easy": {"min_len": 3, "max_len": 8},
"medium": {"min_len": 4, "max_len": 10},
"hard": {"min_len": 5, "max_len": 15}
}
criteria = difficulty_map.get(difficulty, difficulty_map["medium"])
return criteria["min_len"] <= len(word) <= criteria["max_len"]
def _generate_simple_clue(self, word: str, topic: str) -> str:
"""Generate a simple clue for the word (backend compatibility)."""
# Basic clue templates matching backend expectations
word_lower = word.lower()
topic_lower = topic.lower()
# Topic-specific clue templates
if "animal" in topic_lower:
return f"{word_lower} (animal)"
elif "tech" in topic_lower or "computer" in topic_lower:
return f"{word_lower} (technology)"
elif "science" in topic_lower:
return f"{word_lower} (science)"
elif "geo" in topic_lower or "place" in topic_lower:
return f"{word_lower} (geography)"
elif "food" in topic_lower:
return f"{word_lower} (food)"
else:
return f"{word_lower} (related to {topic_lower})"
def get_vocabulary_size(self) -> int:
"""Get the size of the loaded vocabulary."""
return len(self.vocabulary)
def get_tier_distribution(self) -> Dict[str, int]:
"""Get distribution of words across frequency tiers."""
if not self.frequency_tiers:
return {}
tier_counts = Counter(self.frequency_tiers.values())
return dict(tier_counts)
# Backwards compatibility aliases
ThematicWordGenerator = UnifiedThematicWordGenerator # For existing code
def main():
"""Demo the unified thematic word generator."""
print("🚀 Unified Thematic Word Generator Demo")
print("=" * 60)
# Initialize generator
print("🔄 Initializing generator (this may take a moment)...")
generator = UnifiedThematicWordGenerator(vocab_size_limit=50000) # Use smaller vocab for demo
generator.initialize()
# Test topics
test_topics = ["cat", "science", "computer", "ocean", "music"]
print("\n📊 Vocabulary Statistics:")
print(f"Total vocabulary: {generator.get_vocabulary_size():,} words")
print(f"Tier distribution: {generator.get_tier_distribution()}")
print("\n🎯 Thematic Word Generation:")
print("=" * 60)
for topic in test_topics:
print(f"\nTopic: '{topic}'")
print("-" * 30)
# Generate words with tier info
results = generator.generate_thematic_words(topic, num_words=8)
if results:
for word, similarity, tier in results:
tier_desc = generator.tier_descriptions.get(tier, tier)
print(f" {word:<15} (sim: {similarity:.3f}, {tier_desc})")
else:
print(" No results found.")
print("\n🎯 Tier-Specific Generation:")
print("=" * 60)
# Test tier-specific generation
tier_results = generator.generate_thematic_words(
"animal",
num_words=5,
difficulty_tier="tier_5_common"
)
print(f"\nCommon animal words:")
for word, similarity, tier in tier_results:
print(f" {word:<15} (similarity: {similarity:.3f})")
# Interactive mode
print("\n" + "=" * 60)
print("🎮 INTERACTIVE MODE")
print("=" * 60)
print("Commands:")
print(" <topic> - Generate words for single topic")
print(" <input1>, <input2>, <input3> - Generate words for multiple topics (comma-separated)")
print(" \"<sentence>\" - Generate words from sentence theme")
print(" <input> <num_words> - Generate specific number of words")
print(" <input> tier <tier_name> - Generate words from specific tier")
print(" <input> difficulty <level> - Generate words by difficulty (easy/medium/hard)")
print(" <input> multi - Force multi-theme detection")
print(" info <word> - Get word information")
print(" tiers - Show all available tiers")
print(" stats - Show vocabulary statistics")
print(" help - Show this help")
print(" quit - Exit")
print()
print("Examples:")
print(" I love animals # Single sentence theme")
print(" cats, dogs, pets # Multiple topics (auto multi-theme)")
print(" \"I love you, moonpie, chocolate\" # Mixed: sentence + words")
print(" science, technology 15 # 15 words from multiple topics")
print(" animal tier tier_5_common # Single topic, specific tier")
print()
print("Note: Multi-theme is automatically enabled for 3+ inputs")
print()
while True:
try:
user_input = input("🎯 Enter command: ").strip()
if user_input.lower() in ['quit', 'exit', 'q']:
break
if not user_input:
continue
parts = user_input.split()
if user_input.lower() == 'help':
print("\nCommands:")
print(" <topic> - Generate words for single topic")
print(" <input1>, <input2>, <input3> - Generate words for multiple topics (comma-separated)")
print(" \"<sentence>\" - Generate words from sentence theme")
print(" <input> <num_words> - Generate specific number of words")
print(" <input> tier <tier_name> - Generate words from specific tier")
print(" <input> difficulty <level> - Generate words by difficulty (easy/medium/hard)")
print(" <input> multi - Force multi-theme detection")
print(" info <word> - Get word information")
print(" tiers - Show all available tiers")
print(" stats - Show vocabulary statistics")
print(" help - Show this help")
print(" quit - Exit")
print()
print("Examples:")
print(" I love animals # Single sentence theme")
print(" cats, dogs, pets # Multiple topics (auto multi-theme)")
print(" \"I love you, moonpie, chocolate\" # Mixed: sentence + words")
print(" science, technology 15 # 15 words from multiple topics")
print(" animal tier tier_5_common # Single topic, specific tier")
print()
print("Note: Multi-theme is automatically enabled for 3+ inputs")
continue
elif user_input.lower() == 'stats':
print(f"\n📊 Vocabulary Statistics:")
print(f" Total words: {generator.get_vocabulary_size():,}")
tier_dist = generator.get_tier_distribution()
print(f" Tier distribution:")
for tier, count in sorted(tier_dist.items()):
tier_desc = generator.tier_descriptions.get(tier, tier)
print(f" {tier_desc}: {count:,}")
continue
elif user_input.lower() == 'tiers':
print(f"\n🎯 Available Frequency Tiers:")
for tier_name, description in sorted(generator.tier_descriptions.items()):
count = generator.get_tier_distribution().get(tier_name, 0)
print(f" {tier_name}: {description} ({count:,} words)")
continue
elif parts[0].lower() == 'info' and len(parts) > 1:
word = parts[1]
info = generator.get_word_info(word)
print(f"\n📝 Word Information: '{word}'")
print(f" In vocabulary: {info['in_vocabulary']}")
print(f" Frequency: {info['frequency']:,}")
print(f" Tier: {info['tier']}")
print(f" Description: {info['tier_description']}")
continue
# Parse input-based commands
# Handle quoted strings (for sentences or multi-word themes)
if user_input.startswith('"') and '"' in user_input[1:]:
# Extract quoted content
quote_end = user_input.index('"', 1)
quoted_content = user_input[1:quote_end]
remaining = user_input[quote_end + 1:].strip()
# For quoted content, check if it contains commas (multiple inputs)
if ',' in quoted_content:
# Split on commas for multiple inputs: "sentence1, word2, sentence3"
inputs = [item.strip() for item in quoted_content.split(',') if item.strip()]
else:
# Single sentence/phrase
inputs = [quoted_content]
# Parse remaining parameters
remaining_parts = remaining.split() if remaining else []
else:
# Handle unquoted input - look for comma separation first
# Find where parameters start (look for known parameter keywords)
param_keywords = ['tier', 'difficulty', 'multi']
input_end = len(parts)
for i, part in enumerate(parts):
if part.lower() in param_keywords or part.isdigit():
input_end = i
break
# Join the input parts to look for comma separation
input_text = ' '.join(parts[:input_end])
remaining_parts = parts[input_end:]
# Check for comma-separated inputs
if ',' in input_text:
# Split on commas: "word1, sentence two, word3"
inputs = [item.strip() for item in input_text.split(',') if item.strip()]
else:
# For non-comma input, treat as single theme
# Don't split on spaces - preserve as single input
inputs = [input_text] if input_text.strip() else []
# Parse parameters
num_words = 10
difficulty_tier = None
difficulty_level = None
multi_theme = False
i = 0
while i < len(remaining_parts):
if remaining_parts[i].lower() == 'tier' and i + 1 < len(remaining_parts):
difficulty_tier = remaining_parts[i + 1]
i += 2
elif remaining_parts[i].lower() == 'difficulty' and i + 1 < len(remaining_parts):
difficulty_level = remaining_parts[i + 1]
i += 2
elif remaining_parts[i].lower() == 'multi':
multi_theme = True
i += 1
elif remaining_parts[i].isdigit():
num_words = int(remaining_parts[i])
i += 1
else:
i += 1
# Display what we're generating for
if isinstance(inputs, str):
print(f"\n🎯 Words for: '{inputs}'")
else:
print(f"\n🎯 Words for: {inputs}")
if multi_theme:
print("🔍 Using multi-theme detection")
print("-" * 50)
try:
if difficulty_level:
# Use backend-compatible method for difficulty-based generation
# Convert inputs to single topic for backend compatibility
if isinstance(inputs, list):
topic_for_backend = ' '.join(inputs)
else:
topic_for_backend = inputs
import asyncio
backend_results = asyncio.run(generator.find_similar_words(topic_for_backend, difficulty_level, num_words))
if backend_results:
for word_data in backend_results:
word = word_data['word']
tier = word_data.get('tier', 'unknown')
similarity = word_data.get('similarity', 0.0)
tier_desc = generator.tier_descriptions.get(tier, tier)
print(f" {word.lower():<15} (sim: {similarity:.3f}, {tier_desc})")
else:
print(" No words found for this difficulty level.")
else:
# Use main generation method with full multi-input support
results = generator.generate_thematic_words(
inputs,
num_words=num_words,
difficulty_tier=difficulty_tier,
multi_theme=multi_theme
)
if results:
# Group results by tier for sorted display
tier_groups = {}
for word, similarity, tier in results:
if tier not in tier_groups:
tier_groups[tier] = []
tier_groups[tier].append((word, similarity))
# Sort tiers from most common to least common
tier_order = [
"tier_1_ultra_common",
"tier_2_extremely_common",
"tier_3_very_common",
"tier_4_highly_common",
"tier_5_common",
"tier_6_moderately_common",
"tier_7_somewhat_uncommon",
"tier_8_uncommon",
"tier_9_rare",
"tier_10_very_rare"
]
# Display results sorted by tier
for tier in tier_order:
if tier in tier_groups:
tier_desc = generator.tier_descriptions.get(tier, tier)
print(f"\n 📊 {tier_desc}:")
# Sort words within tier alphabetically
tier_words = sorted(tier_groups[tier], key=lambda x: x[0])
for word, similarity in tier_words:
print(f" {word:<15} (similarity: {similarity:.3f})")
else:
print(" No words found. Try a different topic or tier.")
except Exception as e:
print(f" ❌ Error generating words: {e}")
except KeyboardInterrupt:
print("\n\n👋 Interrupted by user")
break
except Exception as e:
print(f"❌ Error: {e}")
print("Type 'help' for available commands")
print("\n✅ Thanks for using Unified Thematic Word Generator!")
if __name__ == "__main__":
main()