File size: 52,420 Bytes
486eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676533d
486eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676533d
 
 
 
 
486eff6
 
 
 
 
 
 
 
 
 
676533d
486eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676533d
 
 
486eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676533d
486eff6
 
 
676533d
486eff6
 
676533d
486eff6
 
 
 
 
676533d
 
 
 
 
 
 
486eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676533d
486eff6
676533d
 
 
 
 
 
486eff6
 
 
 
 
 
 
 
 
 
676533d
486eff6
 
 
676533d
 
 
 
486eff6
 
 
 
 
 
 
 
676533d
 
 
 
 
 
486eff6
 
 
 
 
 
 
676533d
486eff6
 
 
 
 
 
 
676533d
486eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676533d
486eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676533d
 
 
 
 
 
 
 
 
 
 
486eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676533d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
#!/usr/bin/env python3
"""
Unified Thematic Word Generator using WordFreq + SentenceTransformers

Eliminates vocabulary redundancy by using WordFreq as the single vocabulary source
for both word lists and frequency data, with all-mpnet-base-v2 for embeddings.

Features:
- Single vocabulary source (WordFreq 319K words vs previous 3 separate sources)
- Unified filtering for crossword-suitable words
- 10-tier frequency classification system
- Compatible with crossword backend services
- Comprehensive modern vocabulary with proper frequency data
"""

import os
import csv
import pickle
import numpy as np
import logging
import asyncio
import random
from typing import List, Tuple, Optional, Dict, Set, Any
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
from datetime import datetime
import time
from collections import Counter
from pathlib import Path

# WordFreq imports (assumed to be available)
from wordfreq import word_frequency, zipf_frequency, top_n_list

# Set up logging with filename and line numbers
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s:%(lineno)d - %(levelname)s - %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)

def get_timestamp():
    return datetime.now().strftime("%H:%M:%S")

def get_datetimestamp():
    return datetime.now().strftime("%Y-%m-%d %H:%M:%S")


class VocabularyManager:
    """
    Centralized vocabulary management using WordFreq as the single source.
    Handles loading, filtering, caching, and frequency data generation.
    """
    
    def __init__(self, cache_dir: Optional[str] = None, vocab_size_limit: Optional[int] = None):
        """Initialize vocabulary manager.
        
        Args:
            cache_dir: Directory for caching vocabulary and embeddings
            vocab_size_limit: Maximum vocabulary size (None for full WordFreq vocabulary)
        """
        if cache_dir is None:
            cache_dir = os.path.join(os.path.dirname(__file__), 'model_cache')
        
        self.cache_dir = Path(cache_dir)
        self.cache_dir.mkdir(exist_ok=True)
        
        # Vocabulary size configuration
        self.vocab_size_limit = vocab_size_limit or int(os.getenv("MAX_VOCABULARY_SIZE", "100000"))
        
        # Cache paths
        self.vocab_cache_path = self.cache_dir / f"unified_vocabulary_{self.vocab_size_limit}.pkl"
        self.frequency_cache_path = self.cache_dir / f"unified_frequencies_{self.vocab_size_limit}.pkl"
        
        # Loaded data
        self.vocabulary: List[str] = []
        self.word_frequencies: Counter = Counter()
        self.is_loaded = False
        
    def load_vocabulary(self) -> Tuple[List[str], Counter]:
        """Load vocabulary and frequency data, with caching."""
        if self.is_loaded:
            return self.vocabulary, self.word_frequencies
            
        # Try loading from cache
        if self._load_from_cache():
            logger.info(f"โœ… Loaded vocabulary from cache: {len(self.vocabulary):,} words")
            self.is_loaded = True
            return self.vocabulary, self.word_frequencies
        
        # Generate from WordFreq
        logger.info("๐Ÿ”„ Generating vocabulary from WordFreq...")
        self._generate_vocabulary_from_wordfreq()
        
        # Save to cache
        self._save_to_cache()
        
        self.is_loaded = True
        return self.vocabulary, self.word_frequencies
    
    def _load_from_cache(self) -> bool:
        """Load vocabulary and frequencies from cache."""
        try:
            if self.vocab_cache_path.exists() and self.frequency_cache_path.exists():
                logger.info("๐Ÿ“ฆ Loading vocabulary from cache...")
                
                with open(self.vocab_cache_path, 'rb') as f:
                    self.vocabulary = pickle.load(f)
                    
                with open(self.frequency_cache_path, 'rb') as f:
                    self.word_frequencies = pickle.load(f)
                
                return True
        except Exception as e:
            logger.warning(f"โš ๏ธ Cache loading failed: {e}")
            
        return False
    
    def _save_to_cache(self):
        """Save vocabulary and frequencies to cache."""
        try:
            logger.info("๐Ÿ’พ Saving vocabulary to cache...")
            
            with open(self.vocab_cache_path, 'wb') as f:
                pickle.dump(self.vocabulary, f)
                
            with open(self.frequency_cache_path, 'wb') as f:
                pickle.dump(self.word_frequencies, f)
                
            logger.info("โœ… Vocabulary cached successfully")
        except Exception as e:
            logger.warning(f"โš ๏ธ Cache saving failed: {e}")
    
    def _generate_vocabulary_from_wordfreq(self):
        """Generate filtered vocabulary from WordFreq database."""
        logger.info(f"๐Ÿ“š Fetching top {self.vocab_size_limit:,} words from WordFreq...")
        
        # Get comprehensive word list from WordFreq
        raw_words = top_n_list('en', self.vocab_size_limit * 2, wordlist='large')  # Get extra for filtering
        logger.info(f"๐Ÿ“ฅ Retrieved {len(raw_words):,} raw words from WordFreq")
        
        # Apply crossword-suitable filtering
        filtered_words = []
        frequency_data = Counter()
        
        logger.info("๐Ÿ” Applying crossword filtering...")
        for word in raw_words:
            if self._is_crossword_suitable(word):
                filtered_words.append(word.lower())
                
                # Get frequency data
                try:
                    freq = word_frequency(word, 'en', wordlist='large')
                    if freq > 0:
                        # Scale frequency to preserve precision
                        frequency_data[word.lower()] = int(freq * 1e9)
                except:
                    frequency_data[word.lower()] = 1  # Minimal frequency for unknown words
                
                if len(filtered_words) >= self.vocab_size_limit:
                    break
        
        # Remove duplicates and sort
        self.vocabulary = sorted(list(set(filtered_words)))
        self.word_frequencies = frequency_data
        
        logger.info(f"โœ… Generated filtered vocabulary: {len(self.vocabulary):,} words")
        logger.info(f"๐Ÿ“Š Frequency data coverage: {len(self.word_frequencies):,} words")
    
    def _is_crossword_suitable(self, word: str) -> bool:
        """Check if word is suitable for crosswords."""
        word = word.lower().strip()
        
        # Length check (3-12 characters for crosswords)
        if len(word) < 3 or len(word) > 12:
            return False
            
        # Must be alphabetic only
        if not word.isalpha():
            return False
            
        # Skip boring/common words
        boring_words = {
            'the', 'and', 'for', 'are', 'but', 'not', 'you', 'all', 'this', 'that',
            'with', 'from', 'they', 'were', 'been', 'have', 'their', 'said', 'each',
            'which', 'what', 'there', 'will', 'more', 'when', 'some', 'like', 'into',
            'time', 'very', 'only', 'has', 'had', 'who', 'its', 'now', 'find', 'long',
            'down', 'day', 'did', 'get', 'come', 'made', 'may', 'part'
        }
        
        if word in boring_words:
            return False
            
        # Skip obvious plurals (simple heuristic)
        if len(word) > 4 and word.endswith('s') and not word.endswith(('ss', 'us', 'is')):
            return False
            
        # Skip words with repeated characters (often not real words)
        if len(set(word)) < len(word) * 0.6:  # Less than 60% unique characters
            return False
            
        return True


class UnifiedThematicWordGenerator:
    """
    Unified thematic word generator using WordFreq vocabulary and all-mpnet-base-v2 embeddings.
    
    Compatible with both hack tools and crossword backend services.
    Eliminates vocabulary redundancy by using single source for everything.
    """
    
    def __init__(self, cache_dir: Optional[str] = None, model_name: str = 'all-mpnet-base-v2', 
                 vocab_size_limit: Optional[int] = None):
        """Initialize the unified thematic word generator.
        
        Args:
            cache_dir: Directory to cache model and embeddings
            model_name: Sentence transformer model to use
            vocab_size_limit: Maximum vocabulary size (None for 100K default)
        """
        if cache_dir is None:
            cache_dir = os.path.join(os.path.dirname(__file__), 'model_cache')
        
        self.cache_dir = Path(cache_dir)
        self.cache_dir.mkdir(exist_ok=True)
        
        self.model_name = model_name
        self.vocab_size_limit = vocab_size_limit
        
        # Configuration parameters
        self.similarity_temperature = float(os.getenv("SIMILARITY_TEMPERATURE", "0.7"))
        self.use_softmax_selection = os.getenv("USE_SOFTMAX_SELECTION", "true").lower() == "true"
        self.difficulty_weight = float(os.getenv("DIFFICULTY_WEIGHT", "0.3"))
        
        # Core components
        self.vocab_manager = VocabularyManager(cache_dir, vocab_size_limit)
        self.model: Optional[SentenceTransformer] = None
        
        # Loaded data
        self.vocabulary: List[str] = []
        self.word_frequencies: Counter = Counter()
        self.vocab_embeddings: Optional[np.ndarray] = None
        self.frequency_tiers: Dict[str, str] = {}
        self.tier_descriptions: Dict[str, str] = {}
        self.word_percentiles: Dict[str, float] = {}
        
        # Cache paths for embeddings
        vocab_hash = f"{model_name}_{vocab_size_limit or 100000}"
        self.embeddings_cache_path = self.cache_dir / f"unified_embeddings_{vocab_hash}.npy"
        
        self.is_initialized = False
    
    def initialize(self):
        """Initialize the generator (synchronous version)."""
        if self.is_initialized:
            return
            
        start_time = time.time()
        logger.info(f"๐Ÿš€ Initializing Unified Thematic Word Generator...")
        
        # Load vocabulary and frequency data
        self.vocabulary, self.word_frequencies = self.vocab_manager.load_vocabulary()
        
        # Load or create frequency tiers
        self.frequency_tiers = self._create_frequency_tiers()
        
        # Load model
        logger.info(f"๐Ÿค– Loading embedding model: {self.model_name}")
        model_start = time.time()
        self.model = SentenceTransformer(
            f'sentence-transformers/{self.model_name}',
            cache_folder=str(self.cache_dir)
        )
        model_time = time.time() - model_start
        logger.info(f"โœ… Model loaded in {model_time:.2f}s")
        
        # Load or create embeddings
        self.vocab_embeddings = self._load_or_create_embeddings()
        
        self.is_initialized = True
        total_time = time.time() - start_time
        logger.info(f"๐ŸŽ‰ Unified generator initialized in {total_time:.2f}s")
        logger.info(f"๐Ÿ“Š Vocabulary: {len(self.vocabulary):,} words")
        logger.info(f"๐Ÿ“ˆ Frequency data: {len(self.word_frequencies):,} words")
        logger.info(f"๐ŸŽฒ Softmax selection: {'ENABLED' if self.use_softmax_selection else 'DISABLED'}")
        if self.use_softmax_selection:
            logger.info(f"๐ŸŒก๏ธ Similarity temperature: {self.similarity_temperature}")
    
    async def initialize_async(self):
        """Initialize the generator (async version for backend compatibility)."""
        return self.initialize()  # For now, same as sync version
    
    def _load_or_create_embeddings(self) -> np.ndarray:
        """Load embeddings from cache or create them."""
        # Try loading from cache
        if self.embeddings_cache_path.exists():
            try:
                logger.info("๐Ÿ“ฆ Loading embeddings from cache...")
                embeddings = np.load(self.embeddings_cache_path)
                logger.info(f"โœ… Loaded embeddings: {embeddings.shape}")
                return embeddings
            except Exception as e:
                logger.warning(f"โš ๏ธ Embeddings cache loading failed: {e}")
        
        # Create embeddings
        logger.info("๐Ÿ”„ Creating embeddings for vocabulary...")
        start_time = time.time()
        
        # Create embeddings in batches for memory efficiency
        batch_size = 512
        all_embeddings = []
        
        for i in range(0, len(self.vocabulary), batch_size):
            batch_words = self.vocabulary[i:i + batch_size]
            batch_embeddings = self.model.encode(
                batch_words,
                convert_to_tensor=False,
                show_progress_bar=i == 0  # Only show progress for first batch
            )
            all_embeddings.append(batch_embeddings)
            
            if i % (batch_size * 10) == 0:
                logger.info(f"๐Ÿ“Š Embeddings progress: {i:,}/{len(self.vocabulary):,}")
        
        embeddings = np.vstack(all_embeddings)
        embedding_time = time.time() - start_time
        logger.info(f"โœ… Created embeddings in {embedding_time:.2f}s: {embeddings.shape}")
        
        # Save to cache
        try:
            np.save(self.embeddings_cache_path, embeddings)
            logger.info("๐Ÿ’พ Embeddings cached successfully")
        except Exception as e:
            logger.warning(f"โš ๏ธ Embeddings cache saving failed: {e}")
        
        return embeddings
    
    def _create_frequency_tiers(self) -> Dict[str, str]:
        """Create 10-tier frequency classification system and calculate word percentiles."""
        if not self.word_frequencies:
            return {}
        
        logger.info("๐Ÿ“Š Creating frequency tiers and percentiles...")
        
        tiers = {}
        percentiles = {}
        
        # Calculate percentile-based thresholds for even distribution
        all_counts = list(self.word_frequencies.values())
        all_counts.sort(reverse=True)
        
        # Create rank lookup for percentile calculation
        # Higher frequency = higher percentile (more common)
        count_to_rank = {}
        for rank, count in enumerate(all_counts):
            if count not in count_to_rank:
                count_to_rank[count] = rank
        
        # Define 10 tiers with percentile-based thresholds
        tier_definitions = [
            ("tier_1_ultra_common", 0.999, "Ultra Common (Top 0.1%)"),
            ("tier_2_extremely_common", 0.995, "Extremely Common (Top 0.5%)"), 
            ("tier_3_very_common", 0.99, "Very Common (Top 1%)"),
            ("tier_4_highly_common", 0.97, "Highly Common (Top 3%)"),
            ("tier_5_common", 0.92, "Common (Top 8%)"),
            ("tier_6_moderately_common", 0.85, "Moderately Common (Top 15%)"),
            ("tier_7_somewhat_uncommon", 0.70, "Somewhat Uncommon (Top 30%)"),
            ("tier_8_uncommon", 0.50, "Uncommon (Top 50%)"),
            ("tier_9_rare", 0.25, "Rare (Top 75%)"),
            ("tier_10_very_rare", 0.0, "Very Rare (Bottom 25%)")
        ]
        
        # Calculate actual thresholds
        thresholds = []
        for tier_name, percentile, description in tier_definitions:
            if percentile > 0:
                idx = int((1 - percentile) * len(all_counts))
                threshold = all_counts[min(idx, len(all_counts) - 1)]
            else:
                threshold = 0
            thresholds.append((tier_name, threshold, description))
        
        # Store descriptions
        self.tier_descriptions = {name: desc for name, _, desc in thresholds}
        
        # Assign tiers and calculate percentiles
        for word, count in self.word_frequencies.items():
            # Calculate percentile: higher frequency = higher percentile
            rank = count_to_rank.get(count, len(all_counts) - 1)
            percentile = 1.0 - (rank / len(all_counts))  # Convert rank to percentile (0-1)
            percentiles[word] = percentile
            
            # Assign tier
            assigned = False
            for tier_name, threshold, description in thresholds:
                if count >= threshold:
                    tiers[word] = tier_name
                    assigned = True
                    break
            
            if not assigned:
                tiers[word] = "tier_10_very_rare"
        
        # Words not in frequency data are very rare (0 percentile)
        for word in self.vocabulary:
            if word not in tiers:
                tiers[word] = "tier_10_very_rare"
                percentiles[word] = 0.0
        
        # Store percentiles
        self.word_percentiles = percentiles
        
        # Log tier distribution
        tier_counts = Counter(tiers.values())
        logger.info(f"โœ… Created frequency tiers:")
        for tier_name, count in sorted(tier_counts.items()):
            desc = self.tier_descriptions.get(tier_name, tier_name)
            logger.info(f"   {desc}: {count:,} words")
        
        # Log percentile statistics
        percentile_values = list(percentiles.values())
        if percentile_values:
            avg_percentile = np.mean(percentile_values)
            logger.info(f"๐Ÿ“ˆ Percentile statistics: avg={avg_percentile:.3f}, range=0.000-1.000")
        
        return tiers
    
    def generate_thematic_words(self, 
                              inputs, 
                              num_words: int = 20, 
                              min_similarity: float = 0.3,
                              multi_theme: bool = False,
                              difficulty: str = "medium") -> List[Tuple[str, float, str]]:
        """Generate thematically related words from input seeds.
        
        Args:
            inputs: Single string, or list of words/sentences as theme seeds
            num_words: Number of words to return
            min_similarity: Minimum similarity threshold
            multi_theme: Whether to detect and use multiple themes
            difficulty: Difficulty level ("easy", "medium", "hard") for frequency-aware selection
            
        Returns:
            List of (word, similarity_score, frequency_tier) tuples
        """
        if not self.is_initialized:
            self.initialize()
        
        logger.info(f"๐ŸŽฏ Generating {num_words} thematic words")
        
        # Handle single string input (convert to list for compatibility)
        if isinstance(inputs, str):
            inputs = [inputs]
        
        if not inputs:
            return []
        
        # Clean inputs
        clean_inputs = [inp.strip().lower() for inp in inputs if inp.strip()]
        if not clean_inputs:
            return []
        
        logger.info(f"๐Ÿ“ Input themes: {clean_inputs}")
        logger.info(f"๐Ÿ“Š Difficulty level: {difficulty} (using frequency-aware selection)")
        
        # Get theme vector(s) using original logic
        # Auto-enable multi-theme for 3+ inputs (matching original behavior)
        auto_multi_theme = len(clean_inputs) > 2
        final_multi_theme = multi_theme or auto_multi_theme
        
        logger.info(f"๐Ÿ” Multi-theme detection: {final_multi_theme} (auto: {auto_multi_theme}, manual: {multi_theme})")
        
        if final_multi_theme:
            theme_vectors = self._detect_multiple_themes(clean_inputs)
            logger.info(f"๐Ÿ“Š Detected {len(theme_vectors)} themes")
        else:
            theme_vectors = [self._compute_theme_vector(clean_inputs)]
            logger.info("๐Ÿ“Š Using single theme vector")
        
        # Collect similarities from all themes
        all_similarities = np.zeros(len(self.vocabulary))
        
        for theme_vector in theme_vectors:
            # Compute similarities with vocabulary
            similarities = cosine_similarity(theme_vector, self.vocab_embeddings)[0]
            all_similarities += similarities / len(theme_vectors)  # Average across themes
        
        logger.info("โœ… Computed semantic similarities")
        
        # Get top candidates
        top_indices = np.argsort(all_similarities)[::-1]
        
        # Filter and format results
        results = []
        input_words_set = set(clean_inputs)
        
        for idx in top_indices:
            if len(results) >= num_words * 3:  # Get extra candidates for filtering
                break
                
            similarity_score = all_similarities[idx]
            word = self.vocabulary[idx]
            
            # Apply filters
            if similarity_score < min_similarity:
                continue
                
            # Skip input words themselves
            if word.lower() in input_words_set:
                continue
            
            word_tier = self.frequency_tiers.get(word, "tier_10_very_rare")
            
            results.append((word, similarity_score, word_tier))
        
        # Select words using either softmax weighted selection or traditional sorting
        if self.use_softmax_selection and len(results) > num_words:
            logger.info(f"๐ŸŽฒ Using difficulty-aware softmax selection (temperature: {self.similarity_temperature})")
            final_results = self._softmax_weighted_selection(results, num_words, difficulty=difficulty)
            # Sort final results by similarity for consistent output format
            final_results.sort(key=lambda x: x[1], reverse=True)
        else:
            logger.info("๐Ÿ“Š Using traditional similarity-based sorting")
            # Sort by similarity and return top results (original logic)
            results.sort(key=lambda x: x[1], reverse=True)
            final_results = results[:num_words]
        
        logger.info(f"โœ… Generated {len(final_results)} thematic words")
        return final_results
    
    def _compute_theme_vector(self, inputs: List[str]) -> np.ndarray:
        """Compute semantic centroid from input words/sentences."""
        logger.info(f"๐ŸŽฏ Computing theme vector for {len(inputs)} inputs")
        
        # Encode all inputs
        input_embeddings = self.model.encode(inputs, convert_to_tensor=False, show_progress_bar=False)
        logger.info(f"โœ… Encoded {len(inputs)} inputs")
        
        # Simple approach: average all input embeddings
        theme_vector = np.mean(input_embeddings, axis=0)
        
        return theme_vector.reshape(1, -1)
    
    def _compute_composite_score(self, similarity: float, word: str, difficulty: str = "medium") -> float:
        """
        Combine semantic similarity with frequency-based difficulty alignment using ML feature engineering.
        
        This is the core of the difficulty-aware selection system. It creates a composite score
        that balances two key factors:
        1. Semantic Relevance: How well the word matches the theme (similarity score)
        2. Difficulty Alignment: How well the word's frequency matches the desired difficulty
        
        Frequency Alignment uses Gaussian distributions to create smooth preference curves:
        
        Easy Mode (targets common words):
        - Gaussian peak at 90th percentile with narrow width (ฯƒ=0.1)
        - Words like CAT (95th percentile) get high scores
        - Words like QUETZAL (15th percentile) get low scores
        - Formula: exp(-((percentile - 0.9)ยฒ / (2 * 0.1ยฒ)))
        
        Hard Mode (targets rare words):
        - Gaussian peak at 20th percentile with moderate width (ฯƒ=0.15)
        - Words like QUETZAL (15th percentile) get high scores  
        - Words like CAT (95th percentile) get low scores
        - Formula: exp(-((percentile - 0.2)ยฒ / (2 * 0.15ยฒ)))
        
        Medium Mode (balanced):
        - Flatter distribution with slight peak at 50th percentile (ฯƒ=0.3)
        - Base score of 0.5 plus Gaussian bonus
        - Less extreme preference, more balanced selection
        - Formula: 0.5 + 0.5 * exp(-((percentile - 0.5)ยฒ / (2 * 0.3ยฒ)))
        
        Final Weighting:
        composite = (1 - difficulty_weight) * similarity + difficulty_weight * frequency_alignment
        
        Where difficulty_weight (default 0.3) controls the balance:
        - Higher weight = more frequency influence, less similarity influence
        - Lower weight = more similarity influence, less frequency influence
        
        Example Calculations:
        Theme: "animals", difficulty_weight=0.3
        
        Easy mode:
        - CAT: similarity=0.8, percentile=0.95 โ†’ freq_score=0.61 โ†’ composite=0.74
        - PLATYPUS: similarity=0.9, percentile=0.15 โ†’ freq_score=0.01 โ†’ composite=0.63
        - Result: CAT wins despite lower similarity (common word bonus)
        
        Hard mode:  
        - CAT: similarity=0.8, percentile=0.95 โ†’ freq_score=0.01 โ†’ composite=0.32
        - PLATYPUS: similarity=0.9, percentile=0.15 โ†’ freq_score=0.94 โ†’ composite=0.64
        - Result: PLATYPUS wins due to rarity bonus
        
        Args:
            similarity: Semantic similarity score (0-1) from sentence transformer
            word: The word to get percentile for
            difficulty: "easy", "medium", or "hard" - determines frequency preference curve
        
        Returns:
            Composite score (0-1) combining semantic relevance and difficulty alignment
        """
        # Get word's frequency percentile (0-1, higher = more common)
        percentile = self.word_percentiles.get(word.lower(), 0.0)
        
        # Calculate difficulty alignment score
        if difficulty == "easy":
            # Peak at 90th percentile (very common words)
            freq_score = np.exp(-((percentile - 0.9) ** 2) / (2 * 0.1 ** 2))
        elif difficulty == "hard":
            # Peak at 20th percentile (rare words)  
            freq_score = np.exp(-((percentile - 0.2) ** 2) / (2 * 0.15 ** 2))
        else:  # medium
            # Flat preference with slight peak at 50th percentile
            freq_score = 0.5 + 0.5 * np.exp(-((percentile - 0.5) ** 2) / (2 * 0.3 ** 2))
        
        # Apply difficulty weight parameter
        final_alpha = 1.0 - self.difficulty_weight
        final_beta = self.difficulty_weight
        
        composite = final_alpha * similarity + final_beta * freq_score
        return composite
    
    def _softmax_with_temperature(self, scores: np.ndarray, temperature: float = 1.0) -> np.ndarray:
        """
        Apply softmax with temperature control to similarity scores.
        
        Args:
            scores: Array of similarity scores
            temperature: Temperature parameter (lower = more deterministic, higher = more random)
                        - temperature < 1.0: More deterministic (favor high similarity)
                        - temperature = 1.0: Standard softmax  
                        - temperature > 1.0: More random (flatten differences)
        
        Returns:
            Probability distribution over the scores
        """
        if temperature <= 0:
            temperature = 0.01  # Avoid division by zero
        
        # Apply temperature scaling
        scaled_scores = scores / temperature
        
        # Apply softmax with numerical stability
        max_score = np.max(scaled_scores)
        exp_scores = np.exp(scaled_scores - max_score)
        probabilities = exp_scores / np.sum(exp_scores)
        
        return probabilities
    
    def _softmax_weighted_selection(self, candidates: List[Tuple[str, float, str]], 
                                  num_words: int, temperature: float = None, difficulty: str = "medium") -> List[Tuple[str, float, str]]:
        """
        Select words using softmax-based probabilistic sampling weighted by composite scores.
        
        This function implements a machine learning approach to word selection that combines:
        1. Semantic similarity (how relevant the word is to the theme)
        2. Frequency percentiles (how common/rare the word is)
        3. Difficulty preference (which frequencies are preferred for easy/medium/hard)
        4. Temperature-controlled randomness (exploration vs exploitation balance)
        
        Temperature Effects:
        - temperature < 1.0: More deterministic selection, strongly favors highest composite scores
        - temperature = 1.0: Standard softmax probability distribution  
        - temperature > 1.0: More random selection, flattens differences between scores
        - Default 0.7: Balanced between determinism and exploration
        
        Difficulty Effects (via composite scoring):
        - "easy": Gaussian peak at 90th percentile (favors common words like CAT, DOG)
        - "medium": Balanced distribution around 50th percentile (moderate preference)
        - "hard": Gaussian peak at 20th percentile (favors rare words like QUETZAL, PLATYPUS)
        
        Composite Score Formula:
        composite = (1 - difficulty_weight) * similarity + difficulty_weight * frequency_alignment
        
        Where frequency_alignment uses Gaussian curves to score how well a word's
        percentile matches the difficulty preference.
        
        Example Scenario:
        Theme: "animals", Easy difficulty, Temperature: 0.7
        - CAT: similarity=0.8, percentile=0.95 โ†’ high composite score (common + relevant)
        - PLATYPUS: similarity=0.9, percentile=0.15 โ†’ lower composite (rare word penalized in easy mode)
        - Result: CAT more likely to be selected despite lower similarity
        
        Args:
            candidates: List of (word, similarity_score, tier) tuples
            num_words: Number of words to select
            temperature: Temperature for softmax (None to use instance default of 0.7)
            difficulty: Difficulty level ("easy", "medium", "hard") for frequency weighting
        
        Returns:
            Selected words with original similarity scores and tiers, 
            sampled without replacement according to composite probabilities
        """
        if len(candidates) <= num_words:
            return candidates
            
        if temperature is None:
            temperature = self.similarity_temperature
        
        # Compute composite scores (similarity + difficulty alignment)
        composite_scores = []
        for word, similarity_score, tier in candidates:
            composite = self._compute_composite_score(similarity_score, word, difficulty)
            composite_scores.append(composite)
        
        composite_scores = np.array(composite_scores)
        
        # Compute softmax probabilities using composite scores
        probabilities = self._softmax_with_temperature(composite_scores, temperature)
        
        # Sample without replacement using the probabilities
        selected_indices = np.random.choice(
            len(candidates), 
            size=min(num_words, len(candidates)),
            replace=False,
            p=probabilities
        )
        
        # Return selected candidates maintaining original order of information
        selected_candidates = [candidates[i] for i in selected_indices]
        
        logger.info(f"๐ŸŽฒ Composite softmax selection (T={temperature:.2f}, difficulty={difficulty}): {len(selected_candidates)} from {len(candidates)} candidates")
        
        return selected_candidates
    
    def _detect_multiple_themes(self, inputs: List[str], max_themes: int = 3) -> List[np.ndarray]:
        """Detect multiple themes using clustering."""
        if len(inputs) < 2:
            return [self._compute_theme_vector(inputs)]
        
        logger.info(f"๐Ÿ” Detecting multiple themes from {len(inputs)} inputs")
        
        # Encode inputs
        input_embeddings = self.model.encode(inputs, convert_to_tensor=False, show_progress_bar=False)
        logger.info("โœ… Encoded inputs for clustering")
        
        # Determine optimal number of clusters
        n_clusters = min(max_themes, len(inputs), 3)
        logger.info(f"๐Ÿ“Š Using {n_clusters} clusters for theme detection")
        
        if n_clusters == 1:
            return [np.mean(input_embeddings, axis=0).reshape(1, -1)]
        
        # Perform clustering
        kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
        kmeans.fit(input_embeddings)
        
        logger.info(f"โœ… Clustered inputs into {n_clusters} themes")
        
        # Return cluster centers as theme vectors
        return [center.reshape(1, -1) for center in kmeans.cluster_centers_]
    
    def get_tier_words(self, tier: str, limit: int = 1000) -> List[str]:
        """Get all words from a specific frequency tier.
        
        Args:
            tier: Frequency tier name (e.g., "tier_5_common")
            limit: Maximum number of words to return
            
        Returns:
            List of words in the specified tier
        """
        if not self.is_initialized:
            self.initialize()
            
        tier_words = [word for word, word_tier in self.frequency_tiers.items() 
                     if word_tier == tier]
        
        return tier_words[:limit]
    
    def get_word_info(self, word: str) -> Dict[str, Any]:
        """Get comprehensive information about a word.
        
        Args:
            word: Word to get information for
            
        Returns:
            Dictionary with word info including frequency, tier, etc.
        """
        if not self.is_initialized:
            self.initialize()
            
        word_lower = word.lower()
        
        info = {
            'word': word,
            'in_vocabulary': word_lower in self.vocabulary,
            'frequency': self.word_frequencies.get(word_lower, 0),
            'tier': self.frequency_tiers.get(word_lower, "tier_10_very_rare"),
            'tier_description': self.tier_descriptions.get(
                self.frequency_tiers.get(word_lower, "tier_10_very_rare"),
                "Unknown"
            )
        }
        
        return info
    
    # Backend compatibility methods
    async def find_similar_words(self, topic: str, difficulty: str = "medium", max_words: int = 15) -> List[Dict[str, Any]]:
        """Backend-compatible method for finding similar words.
        
        Returns list of word dictionaries compatible with crossword_generator.py
        Expected format: [{"word": str, "clue": str}, ...]
        """
        # Map difficulty to appropriate tier filtering
        difficulty_tier_map = {
            "easy": [ "tier_2_extremely_common", "tier_3_very_common", "tier_4_highly_common"],
            "medium": ["tier_4_highly_common", "tier_5_common", "tier_6_moderately_common", "tier_7_somewhat_uncommon"],
            "hard": ["tier_7_somewhat_uncommon", "tier_8_uncommon", "tier_9_rare"]
        }
        
        allowed_tiers = difficulty_tier_map.get(difficulty, difficulty_tier_map["medium"])
        
        # Get thematic words
        all_results = self.generate_thematic_words(
            topic, 
            num_words=max_words * 2,  # Get extra for filtering
            min_similarity=0.3
        )
        
        # Filter by difficulty and format for backend
        backend_words = []
        for word, similarity, tier in all_results:
            # Check difficulty criteria
            if not self._matches_backend_difficulty(word, difficulty):
                continue
                
            # Optional tier filtering for more precise difficulty control
            # (Comment out if tier filtering is too restrictive)
            # if tier not in allowed_tiers:
            #     continue
            
            # Format for backend compatibility
            backend_word = {
                "word": word.upper(),  # Backend expects uppercase
                "clue": self._generate_simple_clue(word, topic),
                "similarity": similarity,
                "tier": tier
            }
            
            backend_words.append(backend_word)
            
            if len(backend_words) >= max_words:
                break
        
        logger.info(f"๐ŸŽฏ Generated {len(backend_words)} words for topic '{topic}' (difficulty: {difficulty})")
        return backend_words
    
    def _matches_backend_difficulty(self, word: str, difficulty: str) -> bool:
        """Check if word matches backend difficulty criteria."""
        difficulty_map = {
            "easy": {"min_len": 3, "max_len": 8},
            "medium": {"min_len": 4, "max_len": 10},
            "hard": {"min_len": 5, "max_len": 15}
        }
        
        criteria = difficulty_map.get(difficulty, difficulty_map["medium"])
        return criteria["min_len"] <= len(word) <= criteria["max_len"]
    
    def _generate_simple_clue(self, word: str, topic: str) -> str:
        """Generate a simple clue for the word (backend compatibility)."""
        # Basic clue templates matching backend expectations
        word_lower = word.lower()
        topic_lower = topic.lower()
        
        # Topic-specific clue templates
        if "animal" in topic_lower:
            return f"{word_lower} (animal)"
        elif "tech" in topic_lower or "computer" in topic_lower:
            return f"{word_lower} (technology)"
        elif "science" in topic_lower:
            return f"{word_lower} (science)"
        elif "geo" in topic_lower or "place" in topic_lower:
            return f"{word_lower} (geography)"
        elif "food" in topic_lower:
            return f"{word_lower} (food)"
        else:
            return f"{word_lower} (related to {topic_lower})"
    
    def get_vocabulary_size(self) -> int:
        """Get the size of the loaded vocabulary."""
        return len(self.vocabulary)
    
    def get_tier_distribution(self) -> Dict[str, int]:
        """Get distribution of words across frequency tiers."""
        if not self.frequency_tiers:
            return {}
            
        tier_counts = Counter(self.frequency_tiers.values())
        return dict(tier_counts)


# Backwards compatibility aliases
ThematicWordGenerator = UnifiedThematicWordGenerator  # For existing code

def main():
    """Demo the unified thematic word generator."""
    print("๐Ÿš€ Unified Thematic Word Generator Demo")
    print("=" * 60)
    
    # Initialize generator
    print("๐Ÿ”„ Initializing generator (this may take a moment)...")
    generator = UnifiedThematicWordGenerator(vocab_size_limit=50000)  # Use smaller vocab for demo
    generator.initialize()
    
    # Test topics
    test_topics = ["cat", "science", "computer", "ocean", "music"]
    
    print("\n๐Ÿ“Š Vocabulary Statistics:")
    print(f"Total vocabulary: {generator.get_vocabulary_size():,} words")
    print(f"Tier distribution: {generator.get_tier_distribution()}")
    
    print("\n๐ŸŽฏ Thematic Word Generation:")
    print("=" * 60)
    
    for topic in test_topics:
        print(f"\nTopic: '{topic}'")
        print("-" * 30)
        
        # Generate words with tier info
        results = generator.generate_thematic_words(topic, num_words=8)
        
        if results:
            for word, similarity, tier in results:
                tier_desc = generator.tier_descriptions.get(tier, tier)
                print(f"  {word:<15} (sim: {similarity:.3f}, {tier_desc})")
        else:
            print("  No results found.")
    
    print("\n๐ŸŽฏ Tier-Specific Generation:")
    print("=" * 60)
    
    # Test tier-specific generation
    tier_results = generator.generate_thematic_words(
        "animal", 
        num_words=5, 
        difficulty_tier="tier_5_common"
    )
    
    print(f"\nCommon animal words:")
    for word, similarity, tier in tier_results:
        print(f"  {word:<15} (similarity: {similarity:.3f})")
    
    # Interactive mode
    print("\n" + "=" * 60)
    print("๐ŸŽฎ INTERACTIVE MODE")
    print("=" * 60)
    print("Commands:")
    print("  <topic>                         - Generate words for single topic")
    print("  <input1>, <input2>, <input3>    - Generate words for multiple topics (comma-separated)")
    print("  \"<sentence>\"                   - Generate words from sentence theme")  
    print("  <input> <num_words>             - Generate specific number of words")
    print("  <input> tier <tier_name>        - Generate words from specific tier")
    print("  <input> difficulty <level>      - Generate words by difficulty (easy/medium/hard)")
    print("  <input> multi                   - Force multi-theme detection")
    print("  info <word>                     - Get word information")
    print("  tiers                           - Show all available tiers")
    print("  stats                           - Show vocabulary statistics")
    print("  help                            - Show this help")
    print("  quit                            - Exit")
    print()
    print("Examples:")
    print("  I love animals                           # Single sentence theme")
    print("  cats, dogs, pets                        # Multiple topics (auto multi-theme)")
    print("  \"I love you, moonpie, chocolate\"       # Mixed: sentence + words")
    print("  science, technology 15                  # 15 words from multiple topics")
    print("  animal tier tier_5_common               # Single topic, specific tier")
    print()
    print("Note: Multi-theme is automatically enabled for 3+ inputs")
    print()
    
    while True:
        try:
            user_input = input("๐ŸŽฏ Enter command: ").strip()
            
            if user_input.lower() in ['quit', 'exit', 'q']:
                break
            
            if not user_input:
                continue
            
            parts = user_input.split()
            
            if user_input.lower() == 'help':
                print("\nCommands:")
                print("  <topic>                         - Generate words for single topic")
                print("  <input1>, <input2>, <input3>    - Generate words for multiple topics (comma-separated)")
                print("  \"<sentence>\"                   - Generate words from sentence theme")  
                print("  <input> <num_words>             - Generate specific number of words")
                print("  <input> tier <tier_name>        - Generate words from specific tier")
                print("  <input> difficulty <level>      - Generate words by difficulty (easy/medium/hard)")
                print("  <input> multi                   - Force multi-theme detection")
                print("  info <word>                     - Get word information")
                print("  tiers                           - Show all available tiers")
                print("  stats                           - Show vocabulary statistics")
                print("  help                            - Show this help")
                print("  quit                            - Exit")
                print()
                print("Examples:")
                print("  I love animals                           # Single sentence theme")
                print("  cats, dogs, pets                        # Multiple topics (auto multi-theme)")
                print("  \"I love you, moonpie, chocolate\"       # Mixed: sentence + words")
                print("  science, technology 15                  # 15 words from multiple topics")
                print("  animal tier tier_5_common               # Single topic, specific tier")
                print()
                print("Note: Multi-theme is automatically enabled for 3+ inputs")
                continue
            
            elif user_input.lower() == 'stats':
                print(f"\n๐Ÿ“Š Vocabulary Statistics:")
                print(f"   Total words: {generator.get_vocabulary_size():,}")
                tier_dist = generator.get_tier_distribution()
                print(f"   Tier distribution:")
                for tier, count in sorted(tier_dist.items()):
                    tier_desc = generator.tier_descriptions.get(tier, tier)
                    print(f"     {tier_desc}: {count:,}")
                continue
            
            elif user_input.lower() == 'tiers':
                print(f"\n๐ŸŽฏ Available Frequency Tiers:")
                for tier_name, description in sorted(generator.tier_descriptions.items()):
                    count = generator.get_tier_distribution().get(tier_name, 0)
                    print(f"   {tier_name}: {description} ({count:,} words)")
                continue
            
            elif parts[0].lower() == 'info' and len(parts) > 1:
                word = parts[1]
                info = generator.get_word_info(word)
                print(f"\n๐Ÿ“ Word Information: '{word}'")
                print(f"   In vocabulary: {info['in_vocabulary']}")
                print(f"   Frequency: {info['frequency']:,}")
                print(f"   Tier: {info['tier']}")
                print(f"   Description: {info['tier_description']}")
                continue
            
            # Parse input-based commands
            # Handle quoted strings (for sentences or multi-word themes)
            if user_input.startswith('"') and '"' in user_input[1:]:
                # Extract quoted content
                quote_end = user_input.index('"', 1)
                quoted_content = user_input[1:quote_end]
                remaining = user_input[quote_end + 1:].strip()
                
                # For quoted content, check if it contains commas (multiple inputs)
                if ',' in quoted_content:
                    # Split on commas for multiple inputs: "sentence1, word2, sentence3"
                    inputs = [item.strip() for item in quoted_content.split(',') if item.strip()]
                else:
                    # Single sentence/phrase
                    inputs = [quoted_content]
                
                # Parse remaining parameters
                remaining_parts = remaining.split() if remaining else []
            else:
                # Handle unquoted input - look for comma separation first
                # Find where parameters start (look for known parameter keywords)
                param_keywords = ['tier', 'difficulty', 'multi']
                input_end = len(parts)
                
                for i, part in enumerate(parts):
                    if part.lower() in param_keywords or part.isdigit():
                        input_end = i
                        break
                
                # Join the input parts to look for comma separation
                input_text = ' '.join(parts[:input_end])
                remaining_parts = parts[input_end:]
                
                # Check for comma-separated inputs
                if ',' in input_text:
                    # Split on commas: "word1, sentence two, word3"
                    inputs = [item.strip() for item in input_text.split(',') if item.strip()]
                else:
                    # For non-comma input, treat as single theme
                    # Don't split on spaces - preserve as single input
                    inputs = [input_text] if input_text.strip() else []
            
            # Parse parameters
            num_words = 10
            difficulty_tier = None
            difficulty_level = None
            multi_theme = False
            
            i = 0
            while i < len(remaining_parts):
                if remaining_parts[i].lower() == 'tier' and i + 1 < len(remaining_parts):
                    difficulty_tier = remaining_parts[i + 1]
                    i += 2
                elif remaining_parts[i].lower() == 'difficulty' and i + 1 < len(remaining_parts):
                    difficulty_level = remaining_parts[i + 1]
                    i += 2
                elif remaining_parts[i].lower() == 'multi':
                    multi_theme = True
                    i += 1
                elif remaining_parts[i].isdigit():
                    num_words = int(remaining_parts[i])
                    i += 1
                else:
                    i += 1
            
            # Display what we're generating for
            if isinstance(inputs, str):
                print(f"\n๐ŸŽฏ Words for: '{inputs}'")
            else:
                print(f"\n๐ŸŽฏ Words for: {inputs}")
            if multi_theme:
                print("๐Ÿ” Using multi-theme detection")
            print("-" * 50)
            
            try:
                if difficulty_level:
                    # Use backend-compatible method for difficulty-based generation
                    # Convert inputs to single topic for backend compatibility
                    if isinstance(inputs, list):
                        topic_for_backend = ' '.join(inputs)
                    else:
                        topic_for_backend = inputs
                        
                    import asyncio
                    backend_results = asyncio.run(generator.find_similar_words(topic_for_backend, difficulty_level, num_words))
                    
                    if backend_results:
                        for word_data in backend_results:
                            word = word_data['word']
                            tier = word_data.get('tier', 'unknown')
                            similarity = word_data.get('similarity', 0.0)
                            tier_desc = generator.tier_descriptions.get(tier, tier)
                            print(f"  {word.lower():<15} (sim: {similarity:.3f}, {tier_desc})")
                    else:
                        print("  No words found for this difficulty level.")
                else:
                    # Use main generation method with full multi-input support
                    results = generator.generate_thematic_words(
                        inputs, 
                        num_words=num_words,
                        difficulty_tier=difficulty_tier,
                        multi_theme=multi_theme
                    )
                    
                    if results:
                        # Group results by tier for sorted display
                        tier_groups = {}
                        for word, similarity, tier in results:
                            if tier not in tier_groups:
                                tier_groups[tier] = []
                            tier_groups[tier].append((word, similarity))
                        
                        # Sort tiers from most common to least common
                        tier_order = [
                            "tier_1_ultra_common",
                            "tier_2_extremely_common", 
                            "tier_3_very_common",
                            "tier_4_highly_common",
                            "tier_5_common",
                            "tier_6_moderately_common",
                            "tier_7_somewhat_uncommon",
                            "tier_8_uncommon",
                            "tier_9_rare",
                            "tier_10_very_rare"
                        ]
                        
                        # Display results sorted by tier
                        for tier in tier_order:
                            if tier in tier_groups:
                                tier_desc = generator.tier_descriptions.get(tier, tier)
                                print(f"\n  ๐Ÿ“Š {tier_desc}:")
                                # Sort words within tier alphabetically
                                tier_words = sorted(tier_groups[tier], key=lambda x: x[0])
                                for word, similarity in tier_words:
                                    print(f"    {word:<15} (similarity: {similarity:.3f})")
                    else:
                        print("  No words found. Try a different topic or tier.")
                
            except Exception as e:
                print(f"  โŒ Error generating words: {e}")
                
        except KeyboardInterrupt:
            print("\n\n๐Ÿ‘‹ Interrupted by user")
            break
        except Exception as e:
            print(f"โŒ Error: {e}")
            print("Type 'help' for available commands")
    
    print("\nโœ… Thanks for using Unified Thematic Word Generator!")


if __name__ == "__main__":
    main()