File size: 52,420 Bytes
486eff6 676533d 486eff6 676533d 486eff6 676533d 486eff6 676533d 486eff6 676533d 486eff6 676533d 486eff6 676533d 486eff6 676533d 486eff6 676533d 486eff6 676533d 486eff6 676533d 486eff6 676533d 486eff6 676533d 486eff6 676533d 486eff6 676533d 486eff6 676533d 486eff6 676533d 486eff6 676533d 486eff6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 |
#!/usr/bin/env python3
"""
Unified Thematic Word Generator using WordFreq + SentenceTransformers
Eliminates vocabulary redundancy by using WordFreq as the single vocabulary source
for both word lists and frequency data, with all-mpnet-base-v2 for embeddings.
Features:
- Single vocabulary source (WordFreq 319K words vs previous 3 separate sources)
- Unified filtering for crossword-suitable words
- 10-tier frequency classification system
- Compatible with crossword backend services
- Comprehensive modern vocabulary with proper frequency data
"""
import os
import csv
import pickle
import numpy as np
import logging
import asyncio
import random
from typing import List, Tuple, Optional, Dict, Set, Any
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
from datetime import datetime
import time
from collections import Counter
from pathlib import Path
# WordFreq imports (assumed to be available)
from wordfreq import word_frequency, zipf_frequency, top_n_list
# Set up logging with filename and line numbers
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s:%(lineno)d - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
def get_timestamp():
return datetime.now().strftime("%H:%M:%S")
def get_datetimestamp():
return datetime.now().strftime("%Y-%m-%d %H:%M:%S")
class VocabularyManager:
"""
Centralized vocabulary management using WordFreq as the single source.
Handles loading, filtering, caching, and frequency data generation.
"""
def __init__(self, cache_dir: Optional[str] = None, vocab_size_limit: Optional[int] = None):
"""Initialize vocabulary manager.
Args:
cache_dir: Directory for caching vocabulary and embeddings
vocab_size_limit: Maximum vocabulary size (None for full WordFreq vocabulary)
"""
if cache_dir is None:
cache_dir = os.path.join(os.path.dirname(__file__), 'model_cache')
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(exist_ok=True)
# Vocabulary size configuration
self.vocab_size_limit = vocab_size_limit or int(os.getenv("MAX_VOCABULARY_SIZE", "100000"))
# Cache paths
self.vocab_cache_path = self.cache_dir / f"unified_vocabulary_{self.vocab_size_limit}.pkl"
self.frequency_cache_path = self.cache_dir / f"unified_frequencies_{self.vocab_size_limit}.pkl"
# Loaded data
self.vocabulary: List[str] = []
self.word_frequencies: Counter = Counter()
self.is_loaded = False
def load_vocabulary(self) -> Tuple[List[str], Counter]:
"""Load vocabulary and frequency data, with caching."""
if self.is_loaded:
return self.vocabulary, self.word_frequencies
# Try loading from cache
if self._load_from_cache():
logger.info(f"โ
Loaded vocabulary from cache: {len(self.vocabulary):,} words")
self.is_loaded = True
return self.vocabulary, self.word_frequencies
# Generate from WordFreq
logger.info("๐ Generating vocabulary from WordFreq...")
self._generate_vocabulary_from_wordfreq()
# Save to cache
self._save_to_cache()
self.is_loaded = True
return self.vocabulary, self.word_frequencies
def _load_from_cache(self) -> bool:
"""Load vocabulary and frequencies from cache."""
try:
if self.vocab_cache_path.exists() and self.frequency_cache_path.exists():
logger.info("๐ฆ Loading vocabulary from cache...")
with open(self.vocab_cache_path, 'rb') as f:
self.vocabulary = pickle.load(f)
with open(self.frequency_cache_path, 'rb') as f:
self.word_frequencies = pickle.load(f)
return True
except Exception as e:
logger.warning(f"โ ๏ธ Cache loading failed: {e}")
return False
def _save_to_cache(self):
"""Save vocabulary and frequencies to cache."""
try:
logger.info("๐พ Saving vocabulary to cache...")
with open(self.vocab_cache_path, 'wb') as f:
pickle.dump(self.vocabulary, f)
with open(self.frequency_cache_path, 'wb') as f:
pickle.dump(self.word_frequencies, f)
logger.info("โ
Vocabulary cached successfully")
except Exception as e:
logger.warning(f"โ ๏ธ Cache saving failed: {e}")
def _generate_vocabulary_from_wordfreq(self):
"""Generate filtered vocabulary from WordFreq database."""
logger.info(f"๐ Fetching top {self.vocab_size_limit:,} words from WordFreq...")
# Get comprehensive word list from WordFreq
raw_words = top_n_list('en', self.vocab_size_limit * 2, wordlist='large') # Get extra for filtering
logger.info(f"๐ฅ Retrieved {len(raw_words):,} raw words from WordFreq")
# Apply crossword-suitable filtering
filtered_words = []
frequency_data = Counter()
logger.info("๐ Applying crossword filtering...")
for word in raw_words:
if self._is_crossword_suitable(word):
filtered_words.append(word.lower())
# Get frequency data
try:
freq = word_frequency(word, 'en', wordlist='large')
if freq > 0:
# Scale frequency to preserve precision
frequency_data[word.lower()] = int(freq * 1e9)
except:
frequency_data[word.lower()] = 1 # Minimal frequency for unknown words
if len(filtered_words) >= self.vocab_size_limit:
break
# Remove duplicates and sort
self.vocabulary = sorted(list(set(filtered_words)))
self.word_frequencies = frequency_data
logger.info(f"โ
Generated filtered vocabulary: {len(self.vocabulary):,} words")
logger.info(f"๐ Frequency data coverage: {len(self.word_frequencies):,} words")
def _is_crossword_suitable(self, word: str) -> bool:
"""Check if word is suitable for crosswords."""
word = word.lower().strip()
# Length check (3-12 characters for crosswords)
if len(word) < 3 or len(word) > 12:
return False
# Must be alphabetic only
if not word.isalpha():
return False
# Skip boring/common words
boring_words = {
'the', 'and', 'for', 'are', 'but', 'not', 'you', 'all', 'this', 'that',
'with', 'from', 'they', 'were', 'been', 'have', 'their', 'said', 'each',
'which', 'what', 'there', 'will', 'more', 'when', 'some', 'like', 'into',
'time', 'very', 'only', 'has', 'had', 'who', 'its', 'now', 'find', 'long',
'down', 'day', 'did', 'get', 'come', 'made', 'may', 'part'
}
if word in boring_words:
return False
# Skip obvious plurals (simple heuristic)
if len(word) > 4 and word.endswith('s') and not word.endswith(('ss', 'us', 'is')):
return False
# Skip words with repeated characters (often not real words)
if len(set(word)) < len(word) * 0.6: # Less than 60% unique characters
return False
return True
class UnifiedThematicWordGenerator:
"""
Unified thematic word generator using WordFreq vocabulary and all-mpnet-base-v2 embeddings.
Compatible with both hack tools and crossword backend services.
Eliminates vocabulary redundancy by using single source for everything.
"""
def __init__(self, cache_dir: Optional[str] = None, model_name: str = 'all-mpnet-base-v2',
vocab_size_limit: Optional[int] = None):
"""Initialize the unified thematic word generator.
Args:
cache_dir: Directory to cache model and embeddings
model_name: Sentence transformer model to use
vocab_size_limit: Maximum vocabulary size (None for 100K default)
"""
if cache_dir is None:
cache_dir = os.path.join(os.path.dirname(__file__), 'model_cache')
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(exist_ok=True)
self.model_name = model_name
self.vocab_size_limit = vocab_size_limit
# Configuration parameters
self.similarity_temperature = float(os.getenv("SIMILARITY_TEMPERATURE", "0.7"))
self.use_softmax_selection = os.getenv("USE_SOFTMAX_SELECTION", "true").lower() == "true"
self.difficulty_weight = float(os.getenv("DIFFICULTY_WEIGHT", "0.3"))
# Core components
self.vocab_manager = VocabularyManager(cache_dir, vocab_size_limit)
self.model: Optional[SentenceTransformer] = None
# Loaded data
self.vocabulary: List[str] = []
self.word_frequencies: Counter = Counter()
self.vocab_embeddings: Optional[np.ndarray] = None
self.frequency_tiers: Dict[str, str] = {}
self.tier_descriptions: Dict[str, str] = {}
self.word_percentiles: Dict[str, float] = {}
# Cache paths for embeddings
vocab_hash = f"{model_name}_{vocab_size_limit or 100000}"
self.embeddings_cache_path = self.cache_dir / f"unified_embeddings_{vocab_hash}.npy"
self.is_initialized = False
def initialize(self):
"""Initialize the generator (synchronous version)."""
if self.is_initialized:
return
start_time = time.time()
logger.info(f"๐ Initializing Unified Thematic Word Generator...")
# Load vocabulary and frequency data
self.vocabulary, self.word_frequencies = self.vocab_manager.load_vocabulary()
# Load or create frequency tiers
self.frequency_tiers = self._create_frequency_tiers()
# Load model
logger.info(f"๐ค Loading embedding model: {self.model_name}")
model_start = time.time()
self.model = SentenceTransformer(
f'sentence-transformers/{self.model_name}',
cache_folder=str(self.cache_dir)
)
model_time = time.time() - model_start
logger.info(f"โ
Model loaded in {model_time:.2f}s")
# Load or create embeddings
self.vocab_embeddings = self._load_or_create_embeddings()
self.is_initialized = True
total_time = time.time() - start_time
logger.info(f"๐ Unified generator initialized in {total_time:.2f}s")
logger.info(f"๐ Vocabulary: {len(self.vocabulary):,} words")
logger.info(f"๐ Frequency data: {len(self.word_frequencies):,} words")
logger.info(f"๐ฒ Softmax selection: {'ENABLED' if self.use_softmax_selection else 'DISABLED'}")
if self.use_softmax_selection:
logger.info(f"๐ก๏ธ Similarity temperature: {self.similarity_temperature}")
async def initialize_async(self):
"""Initialize the generator (async version for backend compatibility)."""
return self.initialize() # For now, same as sync version
def _load_or_create_embeddings(self) -> np.ndarray:
"""Load embeddings from cache or create them."""
# Try loading from cache
if self.embeddings_cache_path.exists():
try:
logger.info("๐ฆ Loading embeddings from cache...")
embeddings = np.load(self.embeddings_cache_path)
logger.info(f"โ
Loaded embeddings: {embeddings.shape}")
return embeddings
except Exception as e:
logger.warning(f"โ ๏ธ Embeddings cache loading failed: {e}")
# Create embeddings
logger.info("๐ Creating embeddings for vocabulary...")
start_time = time.time()
# Create embeddings in batches for memory efficiency
batch_size = 512
all_embeddings = []
for i in range(0, len(self.vocabulary), batch_size):
batch_words = self.vocabulary[i:i + batch_size]
batch_embeddings = self.model.encode(
batch_words,
convert_to_tensor=False,
show_progress_bar=i == 0 # Only show progress for first batch
)
all_embeddings.append(batch_embeddings)
if i % (batch_size * 10) == 0:
logger.info(f"๐ Embeddings progress: {i:,}/{len(self.vocabulary):,}")
embeddings = np.vstack(all_embeddings)
embedding_time = time.time() - start_time
logger.info(f"โ
Created embeddings in {embedding_time:.2f}s: {embeddings.shape}")
# Save to cache
try:
np.save(self.embeddings_cache_path, embeddings)
logger.info("๐พ Embeddings cached successfully")
except Exception as e:
logger.warning(f"โ ๏ธ Embeddings cache saving failed: {e}")
return embeddings
def _create_frequency_tiers(self) -> Dict[str, str]:
"""Create 10-tier frequency classification system and calculate word percentiles."""
if not self.word_frequencies:
return {}
logger.info("๐ Creating frequency tiers and percentiles...")
tiers = {}
percentiles = {}
# Calculate percentile-based thresholds for even distribution
all_counts = list(self.word_frequencies.values())
all_counts.sort(reverse=True)
# Create rank lookup for percentile calculation
# Higher frequency = higher percentile (more common)
count_to_rank = {}
for rank, count in enumerate(all_counts):
if count not in count_to_rank:
count_to_rank[count] = rank
# Define 10 tiers with percentile-based thresholds
tier_definitions = [
("tier_1_ultra_common", 0.999, "Ultra Common (Top 0.1%)"),
("tier_2_extremely_common", 0.995, "Extremely Common (Top 0.5%)"),
("tier_3_very_common", 0.99, "Very Common (Top 1%)"),
("tier_4_highly_common", 0.97, "Highly Common (Top 3%)"),
("tier_5_common", 0.92, "Common (Top 8%)"),
("tier_6_moderately_common", 0.85, "Moderately Common (Top 15%)"),
("tier_7_somewhat_uncommon", 0.70, "Somewhat Uncommon (Top 30%)"),
("tier_8_uncommon", 0.50, "Uncommon (Top 50%)"),
("tier_9_rare", 0.25, "Rare (Top 75%)"),
("tier_10_very_rare", 0.0, "Very Rare (Bottom 25%)")
]
# Calculate actual thresholds
thresholds = []
for tier_name, percentile, description in tier_definitions:
if percentile > 0:
idx = int((1 - percentile) * len(all_counts))
threshold = all_counts[min(idx, len(all_counts) - 1)]
else:
threshold = 0
thresholds.append((tier_name, threshold, description))
# Store descriptions
self.tier_descriptions = {name: desc for name, _, desc in thresholds}
# Assign tiers and calculate percentiles
for word, count in self.word_frequencies.items():
# Calculate percentile: higher frequency = higher percentile
rank = count_to_rank.get(count, len(all_counts) - 1)
percentile = 1.0 - (rank / len(all_counts)) # Convert rank to percentile (0-1)
percentiles[word] = percentile
# Assign tier
assigned = False
for tier_name, threshold, description in thresholds:
if count >= threshold:
tiers[word] = tier_name
assigned = True
break
if not assigned:
tiers[word] = "tier_10_very_rare"
# Words not in frequency data are very rare (0 percentile)
for word in self.vocabulary:
if word not in tiers:
tiers[word] = "tier_10_very_rare"
percentiles[word] = 0.0
# Store percentiles
self.word_percentiles = percentiles
# Log tier distribution
tier_counts = Counter(tiers.values())
logger.info(f"โ
Created frequency tiers:")
for tier_name, count in sorted(tier_counts.items()):
desc = self.tier_descriptions.get(tier_name, tier_name)
logger.info(f" {desc}: {count:,} words")
# Log percentile statistics
percentile_values = list(percentiles.values())
if percentile_values:
avg_percentile = np.mean(percentile_values)
logger.info(f"๐ Percentile statistics: avg={avg_percentile:.3f}, range=0.000-1.000")
return tiers
def generate_thematic_words(self,
inputs,
num_words: int = 20,
min_similarity: float = 0.3,
multi_theme: bool = False,
difficulty: str = "medium") -> List[Tuple[str, float, str]]:
"""Generate thematically related words from input seeds.
Args:
inputs: Single string, or list of words/sentences as theme seeds
num_words: Number of words to return
min_similarity: Minimum similarity threshold
multi_theme: Whether to detect and use multiple themes
difficulty: Difficulty level ("easy", "medium", "hard") for frequency-aware selection
Returns:
List of (word, similarity_score, frequency_tier) tuples
"""
if not self.is_initialized:
self.initialize()
logger.info(f"๐ฏ Generating {num_words} thematic words")
# Handle single string input (convert to list for compatibility)
if isinstance(inputs, str):
inputs = [inputs]
if not inputs:
return []
# Clean inputs
clean_inputs = [inp.strip().lower() for inp in inputs if inp.strip()]
if not clean_inputs:
return []
logger.info(f"๐ Input themes: {clean_inputs}")
logger.info(f"๐ Difficulty level: {difficulty} (using frequency-aware selection)")
# Get theme vector(s) using original logic
# Auto-enable multi-theme for 3+ inputs (matching original behavior)
auto_multi_theme = len(clean_inputs) > 2
final_multi_theme = multi_theme or auto_multi_theme
logger.info(f"๐ Multi-theme detection: {final_multi_theme} (auto: {auto_multi_theme}, manual: {multi_theme})")
if final_multi_theme:
theme_vectors = self._detect_multiple_themes(clean_inputs)
logger.info(f"๐ Detected {len(theme_vectors)} themes")
else:
theme_vectors = [self._compute_theme_vector(clean_inputs)]
logger.info("๐ Using single theme vector")
# Collect similarities from all themes
all_similarities = np.zeros(len(self.vocabulary))
for theme_vector in theme_vectors:
# Compute similarities with vocabulary
similarities = cosine_similarity(theme_vector, self.vocab_embeddings)[0]
all_similarities += similarities / len(theme_vectors) # Average across themes
logger.info("โ
Computed semantic similarities")
# Get top candidates
top_indices = np.argsort(all_similarities)[::-1]
# Filter and format results
results = []
input_words_set = set(clean_inputs)
for idx in top_indices:
if len(results) >= num_words * 3: # Get extra candidates for filtering
break
similarity_score = all_similarities[idx]
word = self.vocabulary[idx]
# Apply filters
if similarity_score < min_similarity:
continue
# Skip input words themselves
if word.lower() in input_words_set:
continue
word_tier = self.frequency_tiers.get(word, "tier_10_very_rare")
results.append((word, similarity_score, word_tier))
# Select words using either softmax weighted selection or traditional sorting
if self.use_softmax_selection and len(results) > num_words:
logger.info(f"๐ฒ Using difficulty-aware softmax selection (temperature: {self.similarity_temperature})")
final_results = self._softmax_weighted_selection(results, num_words, difficulty=difficulty)
# Sort final results by similarity for consistent output format
final_results.sort(key=lambda x: x[1], reverse=True)
else:
logger.info("๐ Using traditional similarity-based sorting")
# Sort by similarity and return top results (original logic)
results.sort(key=lambda x: x[1], reverse=True)
final_results = results[:num_words]
logger.info(f"โ
Generated {len(final_results)} thematic words")
return final_results
def _compute_theme_vector(self, inputs: List[str]) -> np.ndarray:
"""Compute semantic centroid from input words/sentences."""
logger.info(f"๐ฏ Computing theme vector for {len(inputs)} inputs")
# Encode all inputs
input_embeddings = self.model.encode(inputs, convert_to_tensor=False, show_progress_bar=False)
logger.info(f"โ
Encoded {len(inputs)} inputs")
# Simple approach: average all input embeddings
theme_vector = np.mean(input_embeddings, axis=0)
return theme_vector.reshape(1, -1)
def _compute_composite_score(self, similarity: float, word: str, difficulty: str = "medium") -> float:
"""
Combine semantic similarity with frequency-based difficulty alignment using ML feature engineering.
This is the core of the difficulty-aware selection system. It creates a composite score
that balances two key factors:
1. Semantic Relevance: How well the word matches the theme (similarity score)
2. Difficulty Alignment: How well the word's frequency matches the desired difficulty
Frequency Alignment uses Gaussian distributions to create smooth preference curves:
Easy Mode (targets common words):
- Gaussian peak at 90th percentile with narrow width (ฯ=0.1)
- Words like CAT (95th percentile) get high scores
- Words like QUETZAL (15th percentile) get low scores
- Formula: exp(-((percentile - 0.9)ยฒ / (2 * 0.1ยฒ)))
Hard Mode (targets rare words):
- Gaussian peak at 20th percentile with moderate width (ฯ=0.15)
- Words like QUETZAL (15th percentile) get high scores
- Words like CAT (95th percentile) get low scores
- Formula: exp(-((percentile - 0.2)ยฒ / (2 * 0.15ยฒ)))
Medium Mode (balanced):
- Flatter distribution with slight peak at 50th percentile (ฯ=0.3)
- Base score of 0.5 plus Gaussian bonus
- Less extreme preference, more balanced selection
- Formula: 0.5 + 0.5 * exp(-((percentile - 0.5)ยฒ / (2 * 0.3ยฒ)))
Final Weighting:
composite = (1 - difficulty_weight) * similarity + difficulty_weight * frequency_alignment
Where difficulty_weight (default 0.3) controls the balance:
- Higher weight = more frequency influence, less similarity influence
- Lower weight = more similarity influence, less frequency influence
Example Calculations:
Theme: "animals", difficulty_weight=0.3
Easy mode:
- CAT: similarity=0.8, percentile=0.95 โ freq_score=0.61 โ composite=0.74
- PLATYPUS: similarity=0.9, percentile=0.15 โ freq_score=0.01 โ composite=0.63
- Result: CAT wins despite lower similarity (common word bonus)
Hard mode:
- CAT: similarity=0.8, percentile=0.95 โ freq_score=0.01 โ composite=0.32
- PLATYPUS: similarity=0.9, percentile=0.15 โ freq_score=0.94 โ composite=0.64
- Result: PLATYPUS wins due to rarity bonus
Args:
similarity: Semantic similarity score (0-1) from sentence transformer
word: The word to get percentile for
difficulty: "easy", "medium", or "hard" - determines frequency preference curve
Returns:
Composite score (0-1) combining semantic relevance and difficulty alignment
"""
# Get word's frequency percentile (0-1, higher = more common)
percentile = self.word_percentiles.get(word.lower(), 0.0)
# Calculate difficulty alignment score
if difficulty == "easy":
# Peak at 90th percentile (very common words)
freq_score = np.exp(-((percentile - 0.9) ** 2) / (2 * 0.1 ** 2))
elif difficulty == "hard":
# Peak at 20th percentile (rare words)
freq_score = np.exp(-((percentile - 0.2) ** 2) / (2 * 0.15 ** 2))
else: # medium
# Flat preference with slight peak at 50th percentile
freq_score = 0.5 + 0.5 * np.exp(-((percentile - 0.5) ** 2) / (2 * 0.3 ** 2))
# Apply difficulty weight parameter
final_alpha = 1.0 - self.difficulty_weight
final_beta = self.difficulty_weight
composite = final_alpha * similarity + final_beta * freq_score
return composite
def _softmax_with_temperature(self, scores: np.ndarray, temperature: float = 1.0) -> np.ndarray:
"""
Apply softmax with temperature control to similarity scores.
Args:
scores: Array of similarity scores
temperature: Temperature parameter (lower = more deterministic, higher = more random)
- temperature < 1.0: More deterministic (favor high similarity)
- temperature = 1.0: Standard softmax
- temperature > 1.0: More random (flatten differences)
Returns:
Probability distribution over the scores
"""
if temperature <= 0:
temperature = 0.01 # Avoid division by zero
# Apply temperature scaling
scaled_scores = scores / temperature
# Apply softmax with numerical stability
max_score = np.max(scaled_scores)
exp_scores = np.exp(scaled_scores - max_score)
probabilities = exp_scores / np.sum(exp_scores)
return probabilities
def _softmax_weighted_selection(self, candidates: List[Tuple[str, float, str]],
num_words: int, temperature: float = None, difficulty: str = "medium") -> List[Tuple[str, float, str]]:
"""
Select words using softmax-based probabilistic sampling weighted by composite scores.
This function implements a machine learning approach to word selection that combines:
1. Semantic similarity (how relevant the word is to the theme)
2. Frequency percentiles (how common/rare the word is)
3. Difficulty preference (which frequencies are preferred for easy/medium/hard)
4. Temperature-controlled randomness (exploration vs exploitation balance)
Temperature Effects:
- temperature < 1.0: More deterministic selection, strongly favors highest composite scores
- temperature = 1.0: Standard softmax probability distribution
- temperature > 1.0: More random selection, flattens differences between scores
- Default 0.7: Balanced between determinism and exploration
Difficulty Effects (via composite scoring):
- "easy": Gaussian peak at 90th percentile (favors common words like CAT, DOG)
- "medium": Balanced distribution around 50th percentile (moderate preference)
- "hard": Gaussian peak at 20th percentile (favors rare words like QUETZAL, PLATYPUS)
Composite Score Formula:
composite = (1 - difficulty_weight) * similarity + difficulty_weight * frequency_alignment
Where frequency_alignment uses Gaussian curves to score how well a word's
percentile matches the difficulty preference.
Example Scenario:
Theme: "animals", Easy difficulty, Temperature: 0.7
- CAT: similarity=0.8, percentile=0.95 โ high composite score (common + relevant)
- PLATYPUS: similarity=0.9, percentile=0.15 โ lower composite (rare word penalized in easy mode)
- Result: CAT more likely to be selected despite lower similarity
Args:
candidates: List of (word, similarity_score, tier) tuples
num_words: Number of words to select
temperature: Temperature for softmax (None to use instance default of 0.7)
difficulty: Difficulty level ("easy", "medium", "hard") for frequency weighting
Returns:
Selected words with original similarity scores and tiers,
sampled without replacement according to composite probabilities
"""
if len(candidates) <= num_words:
return candidates
if temperature is None:
temperature = self.similarity_temperature
# Compute composite scores (similarity + difficulty alignment)
composite_scores = []
for word, similarity_score, tier in candidates:
composite = self._compute_composite_score(similarity_score, word, difficulty)
composite_scores.append(composite)
composite_scores = np.array(composite_scores)
# Compute softmax probabilities using composite scores
probabilities = self._softmax_with_temperature(composite_scores, temperature)
# Sample without replacement using the probabilities
selected_indices = np.random.choice(
len(candidates),
size=min(num_words, len(candidates)),
replace=False,
p=probabilities
)
# Return selected candidates maintaining original order of information
selected_candidates = [candidates[i] for i in selected_indices]
logger.info(f"๐ฒ Composite softmax selection (T={temperature:.2f}, difficulty={difficulty}): {len(selected_candidates)} from {len(candidates)} candidates")
return selected_candidates
def _detect_multiple_themes(self, inputs: List[str], max_themes: int = 3) -> List[np.ndarray]:
"""Detect multiple themes using clustering."""
if len(inputs) < 2:
return [self._compute_theme_vector(inputs)]
logger.info(f"๐ Detecting multiple themes from {len(inputs)} inputs")
# Encode inputs
input_embeddings = self.model.encode(inputs, convert_to_tensor=False, show_progress_bar=False)
logger.info("โ
Encoded inputs for clustering")
# Determine optimal number of clusters
n_clusters = min(max_themes, len(inputs), 3)
logger.info(f"๐ Using {n_clusters} clusters for theme detection")
if n_clusters == 1:
return [np.mean(input_embeddings, axis=0).reshape(1, -1)]
# Perform clustering
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
kmeans.fit(input_embeddings)
logger.info(f"โ
Clustered inputs into {n_clusters} themes")
# Return cluster centers as theme vectors
return [center.reshape(1, -1) for center in kmeans.cluster_centers_]
def get_tier_words(self, tier: str, limit: int = 1000) -> List[str]:
"""Get all words from a specific frequency tier.
Args:
tier: Frequency tier name (e.g., "tier_5_common")
limit: Maximum number of words to return
Returns:
List of words in the specified tier
"""
if not self.is_initialized:
self.initialize()
tier_words = [word for word, word_tier in self.frequency_tiers.items()
if word_tier == tier]
return tier_words[:limit]
def get_word_info(self, word: str) -> Dict[str, Any]:
"""Get comprehensive information about a word.
Args:
word: Word to get information for
Returns:
Dictionary with word info including frequency, tier, etc.
"""
if not self.is_initialized:
self.initialize()
word_lower = word.lower()
info = {
'word': word,
'in_vocabulary': word_lower in self.vocabulary,
'frequency': self.word_frequencies.get(word_lower, 0),
'tier': self.frequency_tiers.get(word_lower, "tier_10_very_rare"),
'tier_description': self.tier_descriptions.get(
self.frequency_tiers.get(word_lower, "tier_10_very_rare"),
"Unknown"
)
}
return info
# Backend compatibility methods
async def find_similar_words(self, topic: str, difficulty: str = "medium", max_words: int = 15) -> List[Dict[str, Any]]:
"""Backend-compatible method for finding similar words.
Returns list of word dictionaries compatible with crossword_generator.py
Expected format: [{"word": str, "clue": str}, ...]
"""
# Map difficulty to appropriate tier filtering
difficulty_tier_map = {
"easy": [ "tier_2_extremely_common", "tier_3_very_common", "tier_4_highly_common"],
"medium": ["tier_4_highly_common", "tier_5_common", "tier_6_moderately_common", "tier_7_somewhat_uncommon"],
"hard": ["tier_7_somewhat_uncommon", "tier_8_uncommon", "tier_9_rare"]
}
allowed_tiers = difficulty_tier_map.get(difficulty, difficulty_tier_map["medium"])
# Get thematic words
all_results = self.generate_thematic_words(
topic,
num_words=max_words * 2, # Get extra for filtering
min_similarity=0.3
)
# Filter by difficulty and format for backend
backend_words = []
for word, similarity, tier in all_results:
# Check difficulty criteria
if not self._matches_backend_difficulty(word, difficulty):
continue
# Optional tier filtering for more precise difficulty control
# (Comment out if tier filtering is too restrictive)
# if tier not in allowed_tiers:
# continue
# Format for backend compatibility
backend_word = {
"word": word.upper(), # Backend expects uppercase
"clue": self._generate_simple_clue(word, topic),
"similarity": similarity,
"tier": tier
}
backend_words.append(backend_word)
if len(backend_words) >= max_words:
break
logger.info(f"๐ฏ Generated {len(backend_words)} words for topic '{topic}' (difficulty: {difficulty})")
return backend_words
def _matches_backend_difficulty(self, word: str, difficulty: str) -> bool:
"""Check if word matches backend difficulty criteria."""
difficulty_map = {
"easy": {"min_len": 3, "max_len": 8},
"medium": {"min_len": 4, "max_len": 10},
"hard": {"min_len": 5, "max_len": 15}
}
criteria = difficulty_map.get(difficulty, difficulty_map["medium"])
return criteria["min_len"] <= len(word) <= criteria["max_len"]
def _generate_simple_clue(self, word: str, topic: str) -> str:
"""Generate a simple clue for the word (backend compatibility)."""
# Basic clue templates matching backend expectations
word_lower = word.lower()
topic_lower = topic.lower()
# Topic-specific clue templates
if "animal" in topic_lower:
return f"{word_lower} (animal)"
elif "tech" in topic_lower or "computer" in topic_lower:
return f"{word_lower} (technology)"
elif "science" in topic_lower:
return f"{word_lower} (science)"
elif "geo" in topic_lower or "place" in topic_lower:
return f"{word_lower} (geography)"
elif "food" in topic_lower:
return f"{word_lower} (food)"
else:
return f"{word_lower} (related to {topic_lower})"
def get_vocabulary_size(self) -> int:
"""Get the size of the loaded vocabulary."""
return len(self.vocabulary)
def get_tier_distribution(self) -> Dict[str, int]:
"""Get distribution of words across frequency tiers."""
if not self.frequency_tiers:
return {}
tier_counts = Counter(self.frequency_tiers.values())
return dict(tier_counts)
# Backwards compatibility aliases
ThematicWordGenerator = UnifiedThematicWordGenerator # For existing code
def main():
"""Demo the unified thematic word generator."""
print("๐ Unified Thematic Word Generator Demo")
print("=" * 60)
# Initialize generator
print("๐ Initializing generator (this may take a moment)...")
generator = UnifiedThematicWordGenerator(vocab_size_limit=50000) # Use smaller vocab for demo
generator.initialize()
# Test topics
test_topics = ["cat", "science", "computer", "ocean", "music"]
print("\n๐ Vocabulary Statistics:")
print(f"Total vocabulary: {generator.get_vocabulary_size():,} words")
print(f"Tier distribution: {generator.get_tier_distribution()}")
print("\n๐ฏ Thematic Word Generation:")
print("=" * 60)
for topic in test_topics:
print(f"\nTopic: '{topic}'")
print("-" * 30)
# Generate words with tier info
results = generator.generate_thematic_words(topic, num_words=8)
if results:
for word, similarity, tier in results:
tier_desc = generator.tier_descriptions.get(tier, tier)
print(f" {word:<15} (sim: {similarity:.3f}, {tier_desc})")
else:
print(" No results found.")
print("\n๐ฏ Tier-Specific Generation:")
print("=" * 60)
# Test tier-specific generation
tier_results = generator.generate_thematic_words(
"animal",
num_words=5,
difficulty_tier="tier_5_common"
)
print(f"\nCommon animal words:")
for word, similarity, tier in tier_results:
print(f" {word:<15} (similarity: {similarity:.3f})")
# Interactive mode
print("\n" + "=" * 60)
print("๐ฎ INTERACTIVE MODE")
print("=" * 60)
print("Commands:")
print(" <topic> - Generate words for single topic")
print(" <input1>, <input2>, <input3> - Generate words for multiple topics (comma-separated)")
print(" \"<sentence>\" - Generate words from sentence theme")
print(" <input> <num_words> - Generate specific number of words")
print(" <input> tier <tier_name> - Generate words from specific tier")
print(" <input> difficulty <level> - Generate words by difficulty (easy/medium/hard)")
print(" <input> multi - Force multi-theme detection")
print(" info <word> - Get word information")
print(" tiers - Show all available tiers")
print(" stats - Show vocabulary statistics")
print(" help - Show this help")
print(" quit - Exit")
print()
print("Examples:")
print(" I love animals # Single sentence theme")
print(" cats, dogs, pets # Multiple topics (auto multi-theme)")
print(" \"I love you, moonpie, chocolate\" # Mixed: sentence + words")
print(" science, technology 15 # 15 words from multiple topics")
print(" animal tier tier_5_common # Single topic, specific tier")
print()
print("Note: Multi-theme is automatically enabled for 3+ inputs")
print()
while True:
try:
user_input = input("๐ฏ Enter command: ").strip()
if user_input.lower() in ['quit', 'exit', 'q']:
break
if not user_input:
continue
parts = user_input.split()
if user_input.lower() == 'help':
print("\nCommands:")
print(" <topic> - Generate words for single topic")
print(" <input1>, <input2>, <input3> - Generate words for multiple topics (comma-separated)")
print(" \"<sentence>\" - Generate words from sentence theme")
print(" <input> <num_words> - Generate specific number of words")
print(" <input> tier <tier_name> - Generate words from specific tier")
print(" <input> difficulty <level> - Generate words by difficulty (easy/medium/hard)")
print(" <input> multi - Force multi-theme detection")
print(" info <word> - Get word information")
print(" tiers - Show all available tiers")
print(" stats - Show vocabulary statistics")
print(" help - Show this help")
print(" quit - Exit")
print()
print("Examples:")
print(" I love animals # Single sentence theme")
print(" cats, dogs, pets # Multiple topics (auto multi-theme)")
print(" \"I love you, moonpie, chocolate\" # Mixed: sentence + words")
print(" science, technology 15 # 15 words from multiple topics")
print(" animal tier tier_5_common # Single topic, specific tier")
print()
print("Note: Multi-theme is automatically enabled for 3+ inputs")
continue
elif user_input.lower() == 'stats':
print(f"\n๐ Vocabulary Statistics:")
print(f" Total words: {generator.get_vocabulary_size():,}")
tier_dist = generator.get_tier_distribution()
print(f" Tier distribution:")
for tier, count in sorted(tier_dist.items()):
tier_desc = generator.tier_descriptions.get(tier, tier)
print(f" {tier_desc}: {count:,}")
continue
elif user_input.lower() == 'tiers':
print(f"\n๐ฏ Available Frequency Tiers:")
for tier_name, description in sorted(generator.tier_descriptions.items()):
count = generator.get_tier_distribution().get(tier_name, 0)
print(f" {tier_name}: {description} ({count:,} words)")
continue
elif parts[0].lower() == 'info' and len(parts) > 1:
word = parts[1]
info = generator.get_word_info(word)
print(f"\n๐ Word Information: '{word}'")
print(f" In vocabulary: {info['in_vocabulary']}")
print(f" Frequency: {info['frequency']:,}")
print(f" Tier: {info['tier']}")
print(f" Description: {info['tier_description']}")
continue
# Parse input-based commands
# Handle quoted strings (for sentences or multi-word themes)
if user_input.startswith('"') and '"' in user_input[1:]:
# Extract quoted content
quote_end = user_input.index('"', 1)
quoted_content = user_input[1:quote_end]
remaining = user_input[quote_end + 1:].strip()
# For quoted content, check if it contains commas (multiple inputs)
if ',' in quoted_content:
# Split on commas for multiple inputs: "sentence1, word2, sentence3"
inputs = [item.strip() for item in quoted_content.split(',') if item.strip()]
else:
# Single sentence/phrase
inputs = [quoted_content]
# Parse remaining parameters
remaining_parts = remaining.split() if remaining else []
else:
# Handle unquoted input - look for comma separation first
# Find where parameters start (look for known parameter keywords)
param_keywords = ['tier', 'difficulty', 'multi']
input_end = len(parts)
for i, part in enumerate(parts):
if part.lower() in param_keywords or part.isdigit():
input_end = i
break
# Join the input parts to look for comma separation
input_text = ' '.join(parts[:input_end])
remaining_parts = parts[input_end:]
# Check for comma-separated inputs
if ',' in input_text:
# Split on commas: "word1, sentence two, word3"
inputs = [item.strip() for item in input_text.split(',') if item.strip()]
else:
# For non-comma input, treat as single theme
# Don't split on spaces - preserve as single input
inputs = [input_text] if input_text.strip() else []
# Parse parameters
num_words = 10
difficulty_tier = None
difficulty_level = None
multi_theme = False
i = 0
while i < len(remaining_parts):
if remaining_parts[i].lower() == 'tier' and i + 1 < len(remaining_parts):
difficulty_tier = remaining_parts[i + 1]
i += 2
elif remaining_parts[i].lower() == 'difficulty' and i + 1 < len(remaining_parts):
difficulty_level = remaining_parts[i + 1]
i += 2
elif remaining_parts[i].lower() == 'multi':
multi_theme = True
i += 1
elif remaining_parts[i].isdigit():
num_words = int(remaining_parts[i])
i += 1
else:
i += 1
# Display what we're generating for
if isinstance(inputs, str):
print(f"\n๐ฏ Words for: '{inputs}'")
else:
print(f"\n๐ฏ Words for: {inputs}")
if multi_theme:
print("๐ Using multi-theme detection")
print("-" * 50)
try:
if difficulty_level:
# Use backend-compatible method for difficulty-based generation
# Convert inputs to single topic for backend compatibility
if isinstance(inputs, list):
topic_for_backend = ' '.join(inputs)
else:
topic_for_backend = inputs
import asyncio
backend_results = asyncio.run(generator.find_similar_words(topic_for_backend, difficulty_level, num_words))
if backend_results:
for word_data in backend_results:
word = word_data['word']
tier = word_data.get('tier', 'unknown')
similarity = word_data.get('similarity', 0.0)
tier_desc = generator.tier_descriptions.get(tier, tier)
print(f" {word.lower():<15} (sim: {similarity:.3f}, {tier_desc})")
else:
print(" No words found for this difficulty level.")
else:
# Use main generation method with full multi-input support
results = generator.generate_thematic_words(
inputs,
num_words=num_words,
difficulty_tier=difficulty_tier,
multi_theme=multi_theme
)
if results:
# Group results by tier for sorted display
tier_groups = {}
for word, similarity, tier in results:
if tier not in tier_groups:
tier_groups[tier] = []
tier_groups[tier].append((word, similarity))
# Sort tiers from most common to least common
tier_order = [
"tier_1_ultra_common",
"tier_2_extremely_common",
"tier_3_very_common",
"tier_4_highly_common",
"tier_5_common",
"tier_6_moderately_common",
"tier_7_somewhat_uncommon",
"tier_8_uncommon",
"tier_9_rare",
"tier_10_very_rare"
]
# Display results sorted by tier
for tier in tier_order:
if tier in tier_groups:
tier_desc = generator.tier_descriptions.get(tier, tier)
print(f"\n ๐ {tier_desc}:")
# Sort words within tier alphabetically
tier_words = sorted(tier_groups[tier], key=lambda x: x[0])
for word, similarity in tier_words:
print(f" {word:<15} (similarity: {similarity:.3f})")
else:
print(" No words found. Try a different topic or tier.")
except Exception as e:
print(f" โ Error generating words: {e}")
except KeyboardInterrupt:
print("\n\n๐ Interrupted by user")
break
except Exception as e:
print(f"โ Error: {e}")
print("Type 'help' for available commands")
print("\nโ
Thanks for using Unified Thematic Word Generator!")
if __name__ == "__main__":
main()
|