abc123 / hack /ner_transformer.py
vimalk78's picture
feat: implement difficulty-aware word selection with frequency percentiles
676533d
raw
history blame
24.9 kB
#!/usr/bin/env python3
"""
Named Entity Recognition (NER) using Transformers
Extracts entities like PERSON, LOCATION, ORGANIZATION from text
"""
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
import argparse
from typing import List, Dict, Any
import json
import os
import logging
# Set up logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s:%(lineno)d - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
class TransformerNER:
# Predefined model configurations
MODELS = {
"dslim-bert": "dslim/bert-base-NER",
"dbmdz-bert": "dbmdz/bert-large-cased-finetuned-conll03-english",
"xlm-roberta": "xlm-roberta-large-finetuned-conll03-english",
"distilbert": "distilbert-base-cased-distilled-squad"
}
def __init__(self, model_name: str = "dslim/bert-base-NER", aggregation_strategy: str = "simple"):
"""
Initialize NER pipeline with specified model
Default model: dslim/bert-base-NER (lightweight BERT model fine-tuned for NER)
"""
self.logger = logging.getLogger(__name__)
self.current_model_name = model_name
self.cache_dir = os.path.join(os.path.dirname(__file__), "model_cache")
os.makedirs(self.cache_dir, exist_ok=True)
self._load_model(model_name, aggregation_strategy)
def _load_model(self, model_name: str, aggregation_strategy: str = "simple"):
"""Load or reload model with given parameters"""
# Resolve model name if it's a shorthand
if model_name in self.MODELS:
resolved_name = self.MODELS[model_name]
else:
resolved_name = model_name
self.current_model_name = model_name
self.aggregation_strategy = aggregation_strategy
self.logger.info(f"Loading model: {resolved_name}")
self.logger.info(f"Cache directory: {self.cache_dir}")
self.logger.info(f"Aggregation strategy: {aggregation_strategy}")
# Load tokenizer and model with cache directory
self.tokenizer = AutoTokenizer.from_pretrained(resolved_name, cache_dir=self.cache_dir)
self.model = AutoModelForTokenClassification.from_pretrained(resolved_name, cache_dir=self.cache_dir)
self.nlp = pipeline("ner", model=self.model, tokenizer=self.tokenizer, aggregation_strategy=aggregation_strategy)
self.logger.info("Model loaded successfully!")
def switch_model(self, model_name: str, aggregation_strategy: str = None):
"""Switch to a different model dynamically"""
if aggregation_strategy is None:
aggregation_strategy = self.aggregation_strategy
try:
self._load_model(model_name, aggregation_strategy)
return True
except Exception as e:
self.logger.error(f"Failed to load model '{model_name}': {e}")
return False
def change_aggregation(self, aggregation_strategy: str):
"""Change aggregation strategy for current model"""
try:
self._load_model(self.current_model_name, aggregation_strategy)
return True
except Exception as e:
self.logger.error(f"Failed to change aggregation to '{aggregation_strategy}': {e}")
return False
def _post_process_entities(self, entities: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Post-process entities to fix common boundary and classification issues
"""
corrected = []
for entity in entities:
text = entity["text"].strip()
entity_type = entity["entity"]
# Skip empty entities
if not text:
continue
# Fix common misclassifications
corrected_entity = entity.copy()
# Rule 1: Single person names should be PER, not ORG
if entity_type == "ORG" and len(text.split()) == 1:
# Common person names or single words that might be misclassified
if any(text.lower().endswith(suffix) for suffix in ['i', 'a', 'o']) or text.istitle():
corrected_entity["entity"] = "PER"
self.logger.debug(f"Fixed: '{text}' ORG -> PER")
# Rule 2: Known countries should be LOC
countries = ['India', 'China', 'USA', 'UK', 'Germany', 'France', 'Japan']
if text in countries and entity_type != "LOC":
corrected_entity["entity"] = "LOC"
self.logger.debug(f"Fixed: '{text}' {entity_type} -> LOC")
# Rule 3: Split incorrectly merged entities - Updated condition
words = text.split()
if len(words) >= 2 and entity_type == "ORG": # Changed from > 2 to >= 2
# Check if it looks like "PersonName ActionWord"
if words[0].istitle() and words[1].lower() in ['launches', 'announces', 'says', 'opens', 'creates', 'launch']:
# Split into person and skip the action
corrected_entity["text"] = words[0]
corrected_entity["entity"] = "PER"
corrected_entity["end"] = corrected_entity["start"] + len(words[0])
self.logger.info(f"Split entity: '{text}' -> PER: '{words[0]}'")
# Rule 4: Product/technology terms should be MISC
tech_terms = ['electric', 'suv', 'car', 'vehicle', 'app', 'software', 'ai', 'robot', 'global']
if any(term in text.lower() for term in tech_terms):
if entity_type != "MISC":
corrected_entity["entity"] = "MISC"
self.logger.info(f"Fixed: '{text}' {entity_type} -> MISC")
else:
self.logger.debug(f"Already MISC: '{text}'")
corrected.append(corrected_entity)
return corrected
def extract_entities(self, text: str, return_both: bool = False) -> Dict[str, List[Dict[str, Any]]]:
"""
Extract named entities from text
Returns list of entities with their labels, scores, and positions
If return_both=True, returns dict with 'cleaned' and 'corrected' keys
If return_both=False, returns just the corrected entities (backward compatibility)
"""
entities = self.nlp(text)
# Clean up entity groups
cleaned_entities = []
for entity in entities:
cleaned_entities.append({
"entity": entity["entity_group"],
"text": entity["word"],
"score": round(entity["score"], 4),
"start": entity["start"],
"end": entity["end"]
})
# Apply post-processing corrections
corrected_entities = self._post_process_entities(cleaned_entities)
if return_both:
return {
"cleaned": cleaned_entities,
"corrected": corrected_entities
}
else:
return corrected_entities
def extract_entities_debug(self, text: str) -> Dict[str, List[Dict[str, Any]]]:
"""
Extract entities and return both cleaned and corrected versions for debugging
"""
return self.extract_entities(text, return_both=True)
def extract_entities_by_type(self, text: str) -> Dict[str, List[str]]:
"""
Extract entities grouped by type
Returns dictionary with entity types as keys
"""
entities = self.extract_entities(text)
grouped = {}
for entity in entities:
entity_type = entity["entity"]
if entity_type not in grouped:
grouped[entity_type] = []
if entity["text"] not in grouped[entity_type]: # Avoid duplicates
grouped[entity_type].append(entity["text"])
return grouped
def format_output(self, entities: List[Dict[str, Any]], text: str) -> str:
"""
Format entities for display with context
"""
output = []
output.append("=" * 60)
output.append("NAMED ENTITY RECOGNITION RESULTS")
output.append("=" * 60)
output.append(f"\nOriginal Text:\n{text}\n")
output.append("-" * 40)
output.append("Entities Found:")
output.append("-" * 40)
if not entities:
output.append("No entities found.")
else:
for entity in entities:
output.append(f"• [{entity['entity']}] '{entity['text']}' (confidence: {entity['score']})")
return "\n".join(output)
def format_debug_output(self, debug_results: Dict[str, List[Dict[str, Any]]], text: str) -> str:
"""
Format debug output showing both cleaned and corrected entities
"""
output = []
output.append("=" * 70)
output.append("NER DEBUG: BEFORE & AFTER POST-PROCESSING")
output.append("=" * 70)
output.append(f"\nOriginal Text:\n{text}\n")
cleaned = debug_results["cleaned"]
corrected = debug_results["corrected"]
# Show raw cleaned entities
output.append("🔍 BEFORE Post-Processing (Raw Model Output):")
output.append("-" * 50)
if not cleaned:
output.append("No entities found by model.")
else:
for entity in cleaned:
output.append(f"• [{entity['entity']}] '{entity['text']}' (confidence: {entity['score']})")
output.append("")
# Show corrected entities
output.append("✨ AFTER Post-Processing (Corrected):")
output.append("-" * 50)
if not corrected:
output.append("No entities after correction.")
else:
for entity in corrected:
output.append(f"• [{entity['entity']}] '{entity['text']}' (confidence: {entity['score']})")
# Show differences
output.append("")
output.append("📝 Changes Made:")
output.append("-" * 25)
changes_found = False
# Create lookup for comparison
cleaned_lookup = {(e['text'], e['entity']) for e in cleaned}
corrected_lookup = {(e['text'], e['entity']) for e in corrected}
# Find what was changed
for corrected_entity in corrected:
corrected_key = (corrected_entity['text'], corrected_entity['entity'])
# Look for original entity with same text but different type
original_entity = None
for cleaned_entity in cleaned:
if (cleaned_entity['text'] == corrected_entity['text'] and
cleaned_entity['entity'] != corrected_entity['entity']):
original_entity = cleaned_entity
break
if original_entity:
output.append(f" Fixed: '{original_entity['text']}' {original_entity['entity']}{corrected_entity['entity']}")
changes_found = True
# Find split entities (text changed)
for corrected_entity in corrected:
found_exact_match = False
for cleaned_entity in cleaned:
if (cleaned_entity['text'] == corrected_entity['text'] and
cleaned_entity['entity'] == corrected_entity['entity']):
found_exact_match = True
break
if not found_exact_match:
# Look for partial matches (entity splitting)
for cleaned_entity in cleaned:
if (corrected_entity['text'] in cleaned_entity['text'] and
corrected_entity['text'] != cleaned_entity['text']):
output.append(f" Split: '{cleaned_entity['text']}' → '{corrected_entity['text']}'")
changes_found = True
break
if not changes_found:
output.append(" No changes made by post-processing.")
return "\n".join(output)
def interactive_mode(ner: TransformerNER):
"""
Interactive mode that keeps the model loaded and processes multiple texts
"""
print("\n" + "=" * 60)
print("INTERACTIVE NER MODE")
print("=" * 60)
print("Enter text to analyze (or 'quit' to exit)")
print("Commands: 'help' for full list, 'model <name>' to switch models")
print("=" * 60)
grouped_mode = False
json_mode = False
debug_mode = False
def show_help():
print("\n" + "=" * 50)
print("INTERACTIVE COMMANDS")
print("=" * 50)
print("Output Modes:")
print(f" grouped - Toggle grouped output (currently: {'ON' if grouped_mode else 'OFF'})")
print(f" json - Toggle JSON output (currently: {'ON' if json_mode else 'OFF'})")
print(f" debug - Toggle debug mode - show before/after post-processing (currently: {'ON' if debug_mode else 'OFF'})")
print("\nModel Management:")
print(" model <name> - Switch to model (e.g., 'model dbmdz-bert')")
print(" models - List available model shortcuts")
print(" agg <strat> - Change aggregation (simple/first/average/max)")
print("\nFile Operations:")
print(" file <path> - Analyze text from file")
print("\nInformation:")
print(" info - Show current configuration")
print(" help - Show this help")
print(" quit - Exit interactive mode")
print("=" * 50)
def show_models():
print("\nAvailable model shortcuts:")
print("-" * 50)
for shortcut, full_name in TransformerNER.MODELS.items():
current = " (current)" if shortcut == ner.current_model_name or full_name == ner.current_model_name else ""
print(f" {shortcut:<15} -> {full_name}{current}")
print(f"\nUsage: 'model <shortcut>' (e.g., 'model dbmdz-bert')")
print(f"Aggregation strategies: {['simple', 'first', 'average', 'max']}")
print(f"Usage: 'agg <strategy>' (e.g., 'agg first')")
def show_info():
resolved_name = ner.MODELS.get(ner.current_model_name, ner.current_model_name)
print(f"\nCurrent Configuration:")
print(f" Model: {ner.current_model_name}")
print(f" Full name: {resolved_name}")
print(f" Aggregation: {ner.aggregation_strategy}")
print(f" Grouped mode: {'ON' if grouped_mode else 'OFF'}")
print(f" JSON mode: {'ON' if json_mode else 'OFF'}")
print(f" Debug mode: {'ON' if debug_mode else 'OFF'}")
print(f" Cache dir: {ner.cache_dir}")
def switch_model(model_name: str):
print(f"Switching to model: {model_name}")
if ner.switch_model(model_name):
print(f"✅ Successfully switched to {model_name}")
return True
else:
print(f"❌ Failed to switch to {model_name}")
return False
def change_aggregation(strategy: str):
valid_strategies = ["simple", "first", "average", "max"]
if strategy not in valid_strategies:
print(f"❌ Invalid aggregation strategy. Valid options: {valid_strategies}")
return False
print(f"Changing aggregation to: {strategy}")
if ner.change_aggregation(strategy):
print(f"✅ Successfully changed aggregation to {strategy}")
return True
else:
print(f"❌ Failed to change aggregation to {strategy}")
return False
def process_file(file_path: str):
try:
with open(file_path, 'r', encoding='utf-8') as f:
file_text = f.read()
print(f"📁 Processing file: {file_path}")
return file_text.strip()
except Exception as e:
print(f"❌ Error reading file '{file_path}': {e}")
return None
while True:
try:
print("\n> ", end="", flush=True)
user_input = input().strip()
if not user_input:
continue
# Parse command and arguments
parts = user_input.split(None, 1)
command = parts[0].lower()
args = parts[1] if len(parts) > 1 else ""
# Exit commands
if command in ['quit', 'exit', 'q']:
print("Goodbye!")
break
# Toggle commands
elif command == 'grouped':
grouped_mode = not grouped_mode
print(f"Grouped mode: {'ON' if grouped_mode else 'OFF'}")
continue
elif command == 'json':
json_mode = not json_mode
print(f"JSON mode: {'ON' if json_mode else 'OFF'}")
continue
elif command == 'debug':
debug_mode = not debug_mode
print(f"Debug mode: {'ON' if debug_mode else 'OFF'}")
continue
# Information commands
elif command in ['models', 'list-models']:
show_models()
continue
elif command == 'info':
show_info()
continue
elif command == 'help':
show_help()
continue
# Model management commands
elif command == 'model':
if not args:
print("❌ Please specify a model name. Use 'models' to see available options.")
continue
switch_model(args)
continue
elif command in ['agg', 'aggregation']:
if not args:
print("❌ Please specify an aggregation strategy: simple, first, average, max")
continue
change_aggregation(args)
continue
# File processing command
elif command == 'file':
if not args:
print("❌ Please specify a file path.")
continue
file_content = process_file(args)
if file_content:
user_input = file_content
else:
continue
# If we reach here, treat input as text to process
text = user_input if command != 'file' else file_content
# Process the text based on debug mode
if debug_mode:
# Debug mode: show both cleaned and corrected
debug_results = ner.extract_entities_debug(text)
debug_output = ner.format_debug_output(debug_results, text)
print(debug_output)
else:
# Normal mode
if grouped_mode:
entities = ner.extract_entities_by_type(text)
else:
entities = ner.extract_entities(text)
# Output results
if json_mode:
print(json.dumps(entities, indent=2))
elif grouped_mode:
print("\nEntities by type:")
print("-" * 30)
if not entities:
print("No entities found.")
else:
for entity_type, entity_list in entities.items():
print(f"{entity_type}: {', '.join(entity_list)}")
else:
if not entities:
print("No entities found.")
else:
print("\nEntities found:")
print("-" * 20)
for entity in entities:
print(f"• [{entity['entity']}] '{entity['text']}' (confidence: {entity['score']})")
except KeyboardInterrupt:
print("\n\nGoodbye!")
break
except EOFError:
print("\nGoodbye!")
break
except Exception as e:
logger.error(f"Error processing text: {e}")
def main():
parser = argparse.ArgumentParser(description="Extract named entities from text using Transformers")
parser.add_argument("--text", type=str, help="Text to analyze")
parser.add_argument("--file", type=str, help="File containing text to analyze")
parser.add_argument("--model", type=str, default="dslim/bert-base-NER",
help="HuggingFace model to use. Shortcuts: dslim-bert, dbmdz-bert, xlm-roberta")
parser.add_argument("--aggregation", type=str, default="simple",
choices=["simple", "first", "average", "max"],
help="Aggregation strategy for subword tokens (default: simple)")
parser.add_argument("--json", action="store_true", help="Output as JSON")
parser.add_argument("--grouped", action="store_true", help="Group entities by type")
parser.add_argument("--interactive", "-i", action="store_true", help="Start interactive mode")
parser.add_argument("--list-models", action="store_true", help="List available model shortcuts")
args = parser.parse_args()
# List available models
if args.list_models:
print("\nAvailable model shortcuts:")
print("-" * 40)
for shortcut, full_name in TransformerNER.MODELS.items():
print(f" {shortcut:<15} -> {full_name}")
print(f"\nDefault aggregation strategies: {['simple', 'first', 'average', 'max']}")
return
# Initialize NER (load model once)
ner = TransformerNER(model_name=args.model, aggregation_strategy=args.aggregation)
# Interactive mode
if args.interactive:
interactive_mode(ner)
return
# Get input text
if args.file:
with open(args.file, 'r') as f:
text = f.read()
elif args.text:
text = args.text
else:
# If no text provided, start interactive mode
interactive_mode(ner)
return
if not text.strip():
logging.error("No text provided")
return
# Extract entities
if args.grouped:
entities = ner.extract_entities_by_type(text)
else:
entities = ner.extract_entities(text)
# Output results
if args.json:
print(json.dumps(entities, indent=2))
elif args.grouped:
print("\n" + "=" * 60)
print("ENTITIES GROUPED BY TYPE")
print("=" * 60)
for entity_type, entity_list in entities.items():
print(f"\n{entity_type}:")
for item in entity_list:
print(f" • {item}")
else:
formatted = ner.format_output(entities, text)
print(formatted)
if __name__ == "__main__":
# Example sentences for testing
example_sentences = [
"Apple Inc. was founded by Steve Jobs in Cupertino, California.",
"Barack Obama was the 44th President of the United States.",
"The Eiffel Tower in Paris attracts millions of tourists each year.",
"Google's CEO Sundar Pichai announced new AI features at the conference in San Francisco.",
"Microsoft and OpenAI partnered to develop ChatGPT in Seattle."
]
# If no arguments provided, run demo
import sys
if len(sys.argv) == 1:
# Configure logging for demo
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
logging.info("Running demo with example sentences...\n")
ner = TransformerNER()
for sentence in example_sentences:
print("\n" + "="*60)
print(f"Input: {sentence}")
print("-"*40)
entities = ner.extract_entities_by_type(sentence)
for entity_type, items in entities.items():
print(f"{entity_type}: {', '.join(items)}")
print("\n" + "="*60)
print("\nTo analyze your own text, use:")
print(" python ner_transformer.py --text 'Your text here'")
print(" python ner_transformer.py --file input.txt")
print(" python ner_transformer.py --json --grouped")
else:
# Configure logging for main function
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
main()