File size: 24,900 Bytes
676533d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
#!/usr/bin/env python3
"""
Named Entity Recognition (NER) using Transformers
Extracts entities like PERSON, LOCATION, ORGANIZATION from text
"""

from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
import argparse
from typing import List, Dict, Any
import json
import os
import logging

# Set up logging
logging.basicConfig(
    level=logging.DEBUG,
    format='%(asctime)s - %(name)s:%(lineno)d - %(levelname)s - %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)

class TransformerNER:
    
    # Predefined model configurations
    MODELS = {
        "dslim-bert": "dslim/bert-base-NER",
        "dbmdz-bert": "dbmdz/bert-large-cased-finetuned-conll03-english", 
        "xlm-roberta": "xlm-roberta-large-finetuned-conll03-english",
        "distilbert": "distilbert-base-cased-distilled-squad"
    }
    
    def __init__(self, model_name: str = "dslim/bert-base-NER", aggregation_strategy: str = "simple"):
        """
        Initialize NER pipeline with specified model
        Default model: dslim/bert-base-NER (lightweight BERT model fine-tuned for NER)
        """
        self.logger = logging.getLogger(__name__)
        self.current_model_name = model_name
        self.cache_dir = os.path.join(os.path.dirname(__file__), "model_cache")
        os.makedirs(self.cache_dir, exist_ok=True)
        
        self._load_model(model_name, aggregation_strategy)
    
    def _load_model(self, model_name: str, aggregation_strategy: str = "simple"):
        """Load or reload model with given parameters"""
        # Resolve model name if it's a shorthand
        if model_name in self.MODELS:
            resolved_name = self.MODELS[model_name]
        else:
            resolved_name = model_name
            
        self.current_model_name = model_name
        self.aggregation_strategy = aggregation_strategy
        
        self.logger.info(f"Loading model: {resolved_name}")
        self.logger.info(f"Cache directory: {self.cache_dir}")
        self.logger.info(f"Aggregation strategy: {aggregation_strategy}")
        
        # Load tokenizer and model with cache directory
        self.tokenizer = AutoTokenizer.from_pretrained(resolved_name, cache_dir=self.cache_dir)
        self.model = AutoModelForTokenClassification.from_pretrained(resolved_name, cache_dir=self.cache_dir)
        self.nlp = pipeline("ner", model=self.model, tokenizer=self.tokenizer, aggregation_strategy=aggregation_strategy)
        self.logger.info("Model loaded successfully!")
    
    def switch_model(self, model_name: str, aggregation_strategy: str = None):
        """Switch to a different model dynamically"""
        if aggregation_strategy is None:
            aggregation_strategy = self.aggregation_strategy
        
        try:
            self._load_model(model_name, aggregation_strategy)
            return True
        except Exception as e:
            self.logger.error(f"Failed to load model '{model_name}': {e}")
            return False
    
    def change_aggregation(self, aggregation_strategy: str):
        """Change aggregation strategy for current model"""
        try:
            self._load_model(self.current_model_name, aggregation_strategy)
            return True
        except Exception as e:
            self.logger.error(f"Failed to change aggregation to '{aggregation_strategy}': {e}")
            return False
    
    def _post_process_entities(self, entities: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Post-process entities to fix common boundary and classification issues
        """
        corrected = []
        
        for entity in entities:
            text = entity["text"].strip()
            entity_type = entity["entity"]
            
            # Skip empty entities
            if not text:
                continue
                
            # Fix common misclassifications
            corrected_entity = entity.copy()
            
            # Rule 1: Single person names should be PER, not ORG
            if entity_type == "ORG" and len(text.split()) == 1:
                # Common person names or single words that might be misclassified
                if any(text.lower().endswith(suffix) for suffix in ['i', 'a', 'o']) or text.istitle():
                    corrected_entity["entity"] = "PER"
                    self.logger.debug(f"Fixed: '{text}' ORG -> PER")
            
            # Rule 2: Known countries should be LOC
            countries = ['India', 'China', 'USA', 'UK', 'Germany', 'France', 'Japan']
            if text in countries and entity_type != "LOC":
                corrected_entity["entity"] = "LOC"
                self.logger.debug(f"Fixed: '{text}' {entity_type} -> LOC")
            
            # Rule 3: Split incorrectly merged entities - Updated condition
            words = text.split()
            if len(words) >= 2 and entity_type == "ORG":  # Changed from > 2 to >= 2
                # Check if it looks like "PersonName ActionWord"
                if words[0].istitle() and words[1].lower() in ['launches', 'announces', 'says', 'opens', 'creates', 'launch']:
                    # Split into person and skip the action
                    corrected_entity["text"] = words[0]
                    corrected_entity["entity"] = "PER"
                    corrected_entity["end"] = corrected_entity["start"] + len(words[0])
                    self.logger.info(f"Split entity: '{text}' -> PER: '{words[0]}'")
            
            # Rule 4: Product/technology terms should be MISC
            tech_terms = ['electric', 'suv', 'car', 'vehicle', 'app', 'software', 'ai', 'robot', 'global']
            if any(term in text.lower() for term in tech_terms):
                if entity_type != "MISC":
                    corrected_entity["entity"] = "MISC"
                    self.logger.info(f"Fixed: '{text}' {entity_type} -> MISC")
                else:
                    self.logger.debug(f"Already MISC: '{text}'")
                
            corrected.append(corrected_entity)
        
        return corrected

    def extract_entities(self, text: str, return_both: bool = False) -> Dict[str, List[Dict[str, Any]]]:
        """
        Extract named entities from text
        Returns list of entities with their labels, scores, and positions
        
        If return_both=True, returns dict with 'cleaned' and 'corrected' keys
        If return_both=False, returns just the corrected entities (backward compatibility)
        """
        entities = self.nlp(text)
        
        # Clean up entity groups
        cleaned_entities = []
        for entity in entities:
            cleaned_entities.append({
                "entity": entity["entity_group"],
                "text": entity["word"],
                "score": round(entity["score"], 4),
                "start": entity["start"],
                "end": entity["end"]
            })
        
        # Apply post-processing corrections
        corrected_entities = self._post_process_entities(cleaned_entities)
        
        if return_both:
            return {
                "cleaned": cleaned_entities,
                "corrected": corrected_entities
            }
        else:
            return corrected_entities
    
    def extract_entities_debug(self, text: str) -> Dict[str, List[Dict[str, Any]]]:
        """
        Extract entities and return both cleaned and corrected versions for debugging
        """
        return self.extract_entities(text, return_both=True)
    
    def extract_entities_by_type(self, text: str) -> Dict[str, List[str]]:
        """
        Extract entities grouped by type
        Returns dictionary with entity types as keys
        """
        entities = self.extract_entities(text)
        
        grouped = {}
        for entity in entities:
            entity_type = entity["entity"]
            if entity_type not in grouped:
                grouped[entity_type] = []
            if entity["text"] not in grouped[entity_type]:  # Avoid duplicates
                grouped[entity_type].append(entity["text"])
        
        return grouped
    
    def format_output(self, entities: List[Dict[str, Any]], text: str) -> str:
        """
        Format entities for display with context
        """
        output = []
        output.append("=" * 60)
        output.append("NAMED ENTITY RECOGNITION RESULTS")
        output.append("=" * 60)
        output.append(f"\nOriginal Text:\n{text}\n")
        output.append("-" * 40)
        output.append("Entities Found:")
        output.append("-" * 40)
        
        if not entities:
            output.append("No entities found.")
        else:
            for entity in entities:
                output.append(f"β€’ [{entity['entity']}] '{entity['text']}' (confidence: {entity['score']})")
        
        return "\n".join(output)
    
    def format_debug_output(self, debug_results: Dict[str, List[Dict[str, Any]]], text: str) -> str:
        """
        Format debug output showing both cleaned and corrected entities
        """
        output = []
        output.append("=" * 70)
        output.append("NER DEBUG: BEFORE & AFTER POST-PROCESSING")
        output.append("=" * 70)
        output.append(f"\nOriginal Text:\n{text}\n")
        
        cleaned = debug_results["cleaned"]
        corrected = debug_results["corrected"]
        
        # Show raw cleaned entities
        output.append("πŸ” BEFORE Post-Processing (Raw Model Output):")
        output.append("-" * 50)
        if not cleaned:
            output.append("No entities found by model.")
        else:
            for entity in cleaned:
                output.append(f"β€’ [{entity['entity']}] '{entity['text']}' (confidence: {entity['score']})")
        
        output.append("")
        
        # Show corrected entities
        output.append("✨ AFTER Post-Processing (Corrected):")
        output.append("-" * 50)
        if not corrected:
            output.append("No entities after correction.")
        else:
            for entity in corrected:
                output.append(f"β€’ [{entity['entity']}] '{entity['text']}' (confidence: {entity['score']})")
        
        # Show differences
        output.append("")
        output.append("πŸ“ Changes Made:")
        output.append("-" * 25)
        
        changes_found = False
        
        # Create lookup for comparison
        cleaned_lookup = {(e['text'], e['entity']) for e in cleaned}
        corrected_lookup = {(e['text'], e['entity']) for e in corrected}
        
        # Find what was changed
        for corrected_entity in corrected:
            corrected_key = (corrected_entity['text'], corrected_entity['entity'])
            
            # Look for original entity with same text but different type
            original_entity = None
            for cleaned_entity in cleaned:
                if (cleaned_entity['text'] == corrected_entity['text'] and 
                    cleaned_entity['entity'] != corrected_entity['entity']):
                    original_entity = cleaned_entity
                    break
            
            if original_entity:
                output.append(f"  Fixed: '{original_entity['text']}' {original_entity['entity']} β†’ {corrected_entity['entity']}")
                changes_found = True
        
        # Find split entities (text changed)
        for corrected_entity in corrected:
            found_exact_match = False
            for cleaned_entity in cleaned:
                if (cleaned_entity['text'] == corrected_entity['text'] and 
                    cleaned_entity['entity'] == corrected_entity['entity']):
                    found_exact_match = True
                    break
            
            if not found_exact_match:
                # Look for partial matches (entity splitting)
                for cleaned_entity in cleaned:
                    if (corrected_entity['text'] in cleaned_entity['text'] and 
                        corrected_entity['text'] != cleaned_entity['text']):
                        output.append(f"  Split: '{cleaned_entity['text']}' β†’ '{corrected_entity['text']}'")
                        changes_found = True
                        break
        
        if not changes_found:
            output.append("  No changes made by post-processing.")
        
        return "\n".join(output)


def interactive_mode(ner: TransformerNER):
    """
    Interactive mode that keeps the model loaded and processes multiple texts
    """
    print("\n" + "=" * 60)
    print("INTERACTIVE NER MODE")
    print("=" * 60)
    print("Enter text to analyze (or 'quit' to exit)")
    print("Commands: 'help' for full list, 'model <name>' to switch models")
    print("=" * 60)
    
    grouped_mode = False
    json_mode = False
    debug_mode = False
    
    def show_help():
        print("\n" + "=" * 50)
        print("INTERACTIVE COMMANDS")
        print("=" * 50)
        print("Output Modes:")
        print(f"  grouped     - Toggle grouped output (currently: {'ON' if grouped_mode else 'OFF'})")
        print(f"  json        - Toggle JSON output (currently: {'ON' if json_mode else 'OFF'})")
        print(f"  debug       - Toggle debug mode - show before/after post-processing (currently: {'ON' if debug_mode else 'OFF'})")
        print("\nModel Management:")
        print("  model <name> - Switch to model (e.g., 'model dbmdz-bert')")
        print("  models       - List available model shortcuts")
        print("  agg <strat>  - Change aggregation (simple/first/average/max)")
        print("\nFile Operations:")
        print("  file <path>  - Analyze text from file")
        print("\nInformation:")
        print("  info        - Show current configuration")
        print("  help        - Show this help")
        print("  quit        - Exit interactive mode")
        print("=" * 50)
    
    def show_models():
        print("\nAvailable model shortcuts:")
        print("-" * 50)
        for shortcut, full_name in TransformerNER.MODELS.items():
            current = " (current)" if shortcut == ner.current_model_name or full_name == ner.current_model_name else ""
            print(f"  {shortcut:<15} -> {full_name}{current}")
        print(f"\nUsage: 'model <shortcut>' (e.g., 'model dbmdz-bert')")
        print(f"Aggregation strategies: {['simple', 'first', 'average', 'max']}")
        print(f"Usage: 'agg <strategy>' (e.g., 'agg first')")
    
    def show_info():
        resolved_name = ner.MODELS.get(ner.current_model_name, ner.current_model_name)
        print(f"\nCurrent Configuration:")
        print(f"  Model: {ner.current_model_name}")
        print(f"  Full name: {resolved_name}")
        print(f"  Aggregation: {ner.aggregation_strategy}")
        print(f"  Grouped mode: {'ON' if grouped_mode else 'OFF'}")
        print(f"  JSON mode: {'ON' if json_mode else 'OFF'}")
        print(f"  Debug mode: {'ON' if debug_mode else 'OFF'}")
        print(f"  Cache dir: {ner.cache_dir}")
    
    def switch_model(model_name: str):
        print(f"Switching to model: {model_name}")
        if ner.switch_model(model_name):
            print(f"βœ… Successfully switched to {model_name}")
            return True
        else:
            print(f"❌ Failed to switch to {model_name}")
            return False
    
    def change_aggregation(strategy: str):
        valid_strategies = ["simple", "first", "average", "max"]
        if strategy not in valid_strategies:
            print(f"❌ Invalid aggregation strategy. Valid options: {valid_strategies}")
            return False
        
        print(f"Changing aggregation to: {strategy}")
        if ner.change_aggregation(strategy):
            print(f"βœ… Successfully changed aggregation to {strategy}")
            return True
        else:
            print(f"❌ Failed to change aggregation to {strategy}")
            return False
    
    def process_file(file_path: str):
        try:
            with open(file_path, 'r', encoding='utf-8') as f:
                file_text = f.read()
            print(f"πŸ“ Processing file: {file_path}")
            return file_text.strip()
        except Exception as e:
            print(f"❌ Error reading file '{file_path}': {e}")
            return None
    
    while True:
        try:
            print("\n> ", end="", flush=True)
            user_input = input().strip()
            
            if not user_input:
                continue
            
            # Parse command and arguments
            parts = user_input.split(None, 1)
            command = parts[0].lower()
            args = parts[1] if len(parts) > 1 else ""
            
            # Exit commands
            if command in ['quit', 'exit', 'q']:
                print("Goodbye!")
                break
            
            # Toggle commands
            elif command == 'grouped':
                grouped_mode = not grouped_mode
                print(f"Grouped mode: {'ON' if grouped_mode else 'OFF'}")
                continue
                
            elif command == 'json':
                json_mode = not json_mode
                print(f"JSON mode: {'ON' if json_mode else 'OFF'}")
                continue
                
            elif command == 'debug':
                debug_mode = not debug_mode
                print(f"Debug mode: {'ON' if debug_mode else 'OFF'}")
                continue
            
            # Information commands
            elif command in ['models', 'list-models']:
                show_models()
                continue
                
            elif command == 'info':
                show_info()
                continue
                
            elif command == 'help':
                show_help()
                continue
            
            # Model management commands
            elif command == 'model':
                if not args:
                    print("❌ Please specify a model name. Use 'models' to see available options.")
                    continue
                switch_model(args)
                continue
            
            elif command in ['agg', 'aggregation']:
                if not args:
                    print("❌ Please specify an aggregation strategy: simple, first, average, max")
                    continue
                change_aggregation(args)
                continue
            
            # File processing command
            elif command == 'file':
                if not args:
                    print("❌ Please specify a file path.")
                    continue
                file_content = process_file(args)
                if file_content:
                    user_input = file_content
                else:
                    continue
            
            # If we reach here, treat input as text to process
            text = user_input if command != 'file' else file_content
            
            # Process the text based on debug mode
            if debug_mode:
                # Debug mode: show both cleaned and corrected
                debug_results = ner.extract_entities_debug(text)
                debug_output = ner.format_debug_output(debug_results, text)
                print(debug_output)
            else:
                # Normal mode
                if grouped_mode:
                    entities = ner.extract_entities_by_type(text)
                else:
                    entities = ner.extract_entities(text)
                
                # Output results
                if json_mode:
                    print(json.dumps(entities, indent=2))
                elif grouped_mode:
                    print("\nEntities by type:")
                    print("-" * 30)
                    if not entities:
                        print("No entities found.")
                    else:
                        for entity_type, entity_list in entities.items():
                            print(f"{entity_type}: {', '.join(entity_list)}")
                else:
                    if not entities:
                        print("No entities found.")
                    else:
                        print("\nEntities found:")
                        print("-" * 20)
                        for entity in entities:
                            print(f"β€’ [{entity['entity']}] '{entity['text']}' (confidence: {entity['score']})")
                        
        except KeyboardInterrupt:
            print("\n\nGoodbye!")
            break
        except EOFError:
            print("\nGoodbye!")
            break
        except Exception as e:
            logger.error(f"Error processing text: {e}")


def main():
    parser = argparse.ArgumentParser(description="Extract named entities from text using Transformers")
    parser.add_argument("--text", type=str, help="Text to analyze")
    parser.add_argument("--file", type=str, help="File containing text to analyze")
    parser.add_argument("--model", type=str, default="dslim/bert-base-NER", 
                       help="HuggingFace model to use. Shortcuts: dslim-bert, dbmdz-bert, xlm-roberta")
    parser.add_argument("--aggregation", type=str, default="simple",
                       choices=["simple", "first", "average", "max"],
                       help="Aggregation strategy for subword tokens (default: simple)")
    parser.add_argument("--json", action="store_true", help="Output as JSON")
    parser.add_argument("--grouped", action="store_true", help="Group entities by type")
    parser.add_argument("--interactive", "-i", action="store_true", help="Start interactive mode")
    parser.add_argument("--list-models", action="store_true", help="List available model shortcuts")
    
    args = parser.parse_args()
    
    # List available models
    if args.list_models:
        print("\nAvailable model shortcuts:")
        print("-" * 40)
        for shortcut, full_name in TransformerNER.MODELS.items():
            print(f"  {shortcut:<15} -> {full_name}")
        print(f"\nDefault aggregation strategies: {['simple', 'first', 'average', 'max']}")
        return
    
    # Initialize NER (load model once)
    ner = TransformerNER(model_name=args.model, aggregation_strategy=args.aggregation)
    
    # Interactive mode
    if args.interactive:
        interactive_mode(ner)
        return
    
    # Get input text
    if args.file:
        with open(args.file, 'r') as f:
            text = f.read()
    elif args.text:
        text = args.text
    else:
        # If no text provided, start interactive mode
        interactive_mode(ner)
        return
    
    if not text.strip():
        logging.error("No text provided")
        return
    
    # Extract entities
    if args.grouped:
        entities = ner.extract_entities_by_type(text)
    else:
        entities = ner.extract_entities(text)
    
    # Output results
    if args.json:
        print(json.dumps(entities, indent=2))
    elif args.grouped:
        print("\n" + "=" * 60)
        print("ENTITIES GROUPED BY TYPE")
        print("=" * 60)
        for entity_type, entity_list in entities.items():
            print(f"\n{entity_type}:")
            for item in entity_list:
                print(f"  β€’ {item}")
    else:
        formatted = ner.format_output(entities, text)
        print(formatted)


if __name__ == "__main__":
    # Example sentences for testing
    example_sentences = [
        "Apple Inc. was founded by Steve Jobs in Cupertino, California.",
        "Barack Obama was the 44th President of the United States.",
        "The Eiffel Tower in Paris attracts millions of tourists each year.",
        "Google's CEO Sundar Pichai announced new AI features at the conference in San Francisco.",
        "Microsoft and OpenAI partnered to develop ChatGPT in Seattle."
    ]
    
    # If no arguments provided, run demo
    import sys
    if len(sys.argv) == 1:
        # Configure logging for demo
        logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
        
        logging.info("Running demo with example sentences...\n")
        ner = TransformerNER()
        
        for sentence in example_sentences:
            print("\n" + "="*60)
            print(f"Input: {sentence}")
            print("-"*40)
            entities = ner.extract_entities_by_type(sentence)
            for entity_type, items in entities.items():
                print(f"{entity_type}: {', '.join(items)}")
        
        print("\n" + "="*60)
        print("\nTo analyze your own text, use:")
        print("  python ner_transformer.py --text 'Your text here'")
        print("  python ner_transformer.py --file input.txt")
        print("  python ner_transformer.py --json --grouped")
    else:
        # Configure logging for main function
        logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
        main()