vimalk78's picture
Add complete Python backend with AI-powered crossword generation
38c016b
|
raw
history blame
11 kB

Python Backend with Vector Similarity Search

This is the Python implementation of the crossword generator backend, featuring true AI word generation via vector similarity search.

πŸš€ Features

  • True Vector Search: Uses sentence-transformers + FAISS for semantic word discovery
  • 30K+ Vocabulary: Searches through full model vocabulary instead of limited static lists
  • FastAPI: Modern, fast Python web framework
  • Same API: Compatible with existing React frontend
  • Hybrid Approach: AI vector search with static word fallback

πŸ”„ Differences from JavaScript Backend

Feature JavaScript Backend Python Backend
Word Generation Embedding filtering of static lists True vector similarity search
Vocabulary Size ~100 words per topic 30K+ words from model
AI Approach Semantic similarity filtering Nearest neighbor search
Performance Fast but limited Slower startup, better results
Dependencies Node.js + HuggingFace API Python + ML libraries

πŸ› οΈ Setup & Installation

Prerequisites

  • Python 3.11+ (3.11 recommended for Docker compatibility)
  • pip (Python package manager)

Basic Setup (Core Functionality)

# Clone and navigate to backend directory
cd crossword-app/backend-py

# Create virtual environment (recommended)
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install core dependencies
pip install -r requirements.txt

# Start the server
python app.py

Full Development Setup (with AI features)

# Install development dependencies including AI/ML libraries
pip install -r requirements-dev.txt

# This includes:
# - All core dependencies
# - AI/ML libraries (torch, sentence-transformers, etc.)
# - Development tools (pytest, coverage, etc.)

Requirements Files

  • requirements.txt: Core dependencies for basic functionality
  • requirements-dev.txt: Full development environment with AI features

Note: The AI/ML dependencies are large (~2GB). For basic testing without AI features, use requirements.txt only.

Python Version: Both local development and Docker use Python 3.11+ for optimal performance and latest package compatibility.

πŸ“ Structure

backend-py/
β”œβ”€β”€ app.py                          # FastAPI application entry point
β”œβ”€β”€ requirements.txt                # Core Python dependencies
β”œβ”€β”€ requirements-dev.txt            # Full development dependencies
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ services/
β”‚   β”‚   β”œβ”€β”€ vector_search.py        # Core vector similarity search
β”‚   β”‚   └── crossword_generator.py  # Puzzle generation logic
β”‚   └── routes/
β”‚       └── api.py                  # API endpoints (matches JS backend)
β”œβ”€β”€ test-unit/                      # Unit tests (pytest framework) - 5 files
β”‚   β”œβ”€β”€ test_crossword_generator.py
β”‚   β”œβ”€β”€ test_api_routes.py
β”‚   └── test_vector_search.py
β”œβ”€β”€ test-integration/               # Integration tests (standalone scripts) - 16 files
β”‚   β”œβ”€β”€ test_simple_generation.py
β”‚   β”œβ”€β”€ test_boundary_fix.py
β”‚   └── test_local.py               # (+ 13 more test files)
β”œβ”€β”€ data/ -> ../backend/data/       # Symlink to shared word data
└── public/                         # Frontend static files (copied during build)

πŸ›  Dependencies

Core ML Stack

  • sentence-transformers: Local model loading and embeddings
  • faiss-cpu: Fast vector similarity search
  • torch: PyTorch for model inference
  • numpy: Vector operations

Web Framework

  • fastapi: Modern Python web framework
  • uvicorn: ASGI server
  • pydantic: Data validation

Testing

  • pytest: Testing framework
  • pytest-asyncio: Async test support

πŸ§ͺ Testing

πŸ“ Test Organization (Reorganized for Clarity)

We've reorganized the test structure for better developer experience:

Test Type Location Purpose Framework Count
Unit Tests test-unit/ Test individual components in isolation pytest 5 files
Integration Tests test-integration/ Test complete workflows end-to-end Standalone scripts 16 files

Benefits of this structure:

  • βœ… Clear separation between unit and integration testing
  • βœ… Intuitive naming - developers immediately understand test types
  • βœ… Better tooling - can run different test types independently
  • βœ… Easier maintenance - organized by testing strategy

Note: Previously tests were mixed in tests/ folder and root-level test_*.py files. The new structure provides much better organization.

Unit Tests Details (test-unit/)

What they test: Individual components with mocking and isolation

  • test_crossword_generator.py - Core crossword generation logic
  • test_api_routes.py - FastAPI endpoint handlers
  • test_crossword_generator_wrapper.py - Service wrapper layer
  • test_index_bug_fix.py - Specific bug fix validations
  • test_vector_search.py - AI vector search functionality (requires torch)

Run Unit Tests (Formal Test Suite)

# Run all unit tests
python run_tests.py

# Run specific test modules  
python run_tests.py crossword_generator
pytest test-unit/test_crossword_generator.py -v

# Run core tests (excluding AI dependencies)
pytest test-unit/ -v --ignore=test-unit/test_vector_search.py

# Run individual unit test classes
pytest test-unit/test_crossword_generator.py::TestCrosswordGenerator::test_init -v

Integration Tests Details (test-integration/)

What they test: Complete workflows without mocking - real functionality

  • test_simple_generation.py - End-to-end crossword generation
  • test_boundary_fix.py - Word boundary validation (our major fix!)
  • test_local.py - Local environment and dependencies
  • test_word_boundaries.py - Comprehensive boundary testing
  • test_bounds_comprehensive.py - Advanced bounds checking
  • test_final_validation.py - API integration testing
  • And 10 more specialized feature tests...

Run Integration Tests (End-to-End Scripts)

# Test core functionality
python test-integration/test_simple_generation.py
python test-integration/test_boundary_fix.py
python test-integration/test_local.py

# Test specific features
python test-integration/test_word_boundaries.py
python test-integration/test_bounds_comprehensive.py

# Test API integration
python test-integration/test_final_validation.py

Test Coverage

# Run core tests with coverage (requires requirements-dev.txt)
pytest test-unit/test_crossword_generator.py --cov=src --cov-report=html
pytest test-unit/test_crossword_generator.py --cov=src --cov-report=term

# Full coverage report (may fail without AI dependencies)
pytest test-unit/ --cov=src --cov-report=html --ignore=test-unit/test_vector_search.py

Test Status

  • βœ… Core crossword generation: 15/19 unit tests passing
  • βœ… Boundary validation: All integration tests passing
  • ⚠️ AI/Vector search: Requires torch dependencies
  • ⚠️ Some async mocking: Minor test infrastructure issues

πŸ”„ Migration Guide (For Existing Developers)

If you had previous commands, update them:

Old Command New Command
pytest tests/ pytest test-unit/
python test_simple_generation.py python test-integration/test_simple_generation.py
pytest tests/ --cov=src pytest test-unit/ --cov=src

All functionality is preserved - just organized better!

πŸ”§ Configuration

Environment variables (set in HuggingFace Spaces):

# Core settings
PORT=7860
NODE_ENV=production

# AI Configuration
EMBEDDING_MODEL=sentence-transformers/all-mpnet-base-v2
WORD_SIMILARITY_THRESHOLD=0.65

# Optional
LOG_LEVEL=INFO

🎯 Vector Search Process

  1. Initialization:

    • Load sentence-transformers model locally
    • Extract 30K+ vocabulary from model tokenizer
    • Pre-compute embeddings for all vocabulary words
    • Build FAISS index for fast similarity search
  2. Word Generation:

    • Get topic embedding: "Animals" β†’ [768-dim vector]
    • Search FAISS index for nearest neighbors
    • Filter by similarity threshold (0.65+)
    • Filter by difficulty (word length)
    • Return top matches with generated clues
  3. Fallback:

    • If vector search fails β†’ use static word lists
    • If insufficient AI words β†’ supplement with static words

πŸ§ͺ Testing

# Local testing (without full vector search)
cd backend-py
python test_local.py

# Start development server
python app.py

🐳 Docker Deployment

The Dockerfile has been updated to use Python backend:

FROM python:3.9-slim
# ... install dependencies
# ... build frontend (same as before)
# ... copy to backend-py/public/
CMD ["python", "app.py"]

πŸ§ͺ Testing

Quick Test

# Basic functionality test (no model download)
python test_local.py

Comprehensive Unit Tests

# Run all unit tests
python run_tests.py

# Or use pytest directly
pytest tests/ -v

# Run specific test file
python run_tests.py crossword_generator_fixed
pytest tests/test_crossword_generator_fixed.py -v

# Run with coverage
pytest tests/ --cov=src --cov-report=html

Test Structure

  • tests/test_crossword_generator_fixed.py - Core grid generation logic
  • tests/test_vector_search.py - Vector similarity search
  • tests/test_crossword_generator_wrapper.py - Service wrapper
  • tests/test_api_routes.py - FastAPI endpoints

Key Test Features

  • βœ… Index alignment fix: Tests the list index out of range bug fix
  • βœ… Mocked vector search: Tests without downloading models
  • βœ… API validation: Tests all endpoints and error cases
  • βœ… Async support: Full pytest-asyncio integration
  • βœ… Error handling: Tests malformed inputs and edge cases

πŸ“Š Performance Comparison

Startup Time:

  • JavaScript: ~2 seconds
  • Python: ~30-60 seconds (model download + index building)

Word Quality:

  • JavaScript: Limited by static word lists
  • Python: Access to full model vocabulary with semantic understanding

Memory Usage:

  • JavaScript: ~100MB
  • Python: ~500MB-1GB (model + embeddings + FAISS index)

API Response Time:

  • JavaScript: ~100ms (after cache warm-up)
  • Python: ~200-500ms (vector search + filtering)

πŸ”„ Migration Strategy

  1. Phase 1 βœ…: Basic Python backend structure
  2. Phase 2: Test vector search functionality
  3. Phase 3: Docker deployment and production testing
  4. Phase 4: Compare with JavaScript backend
  5. Phase 5: Production switch with rollback capability

🎯 Next Steps

  • Test vector search with real model
  • Optimize FAISS index performance
  • Add more sophisticated crossword grid generation
  • Implement LLM-based clue generation
  • Add caching for frequently requested topics