File size: 25,239 Bytes
396dfd7
f7b89d2
4de1a2b
19d93fe
3c64e23
 
ebac224
 
 
 
 
 
 
 
 
 
 
f7b89d2
9331159
19d93fe
4c1e130
 
9331159
ebac224
19d93fe
ebac224
 
19d93fe
ebac224
f7b89d2
19d93fe
 
 
ebac224
19d93fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b89d2
4c1e130
 
 
 
f7b89d2
4c1e130
 
 
 
 
 
 
f7b89d2
4c1e130
 
 
3c64e23
 
 
 
 
396dfd7
f7b89d2
4c1e130
3c64e23
19d93fe
d5a3f7a
 
3c64e23
 
 
d5a3f7a
9331159
d5a3f7a
3c64e23
 
19d93fe
3c64e23
 
d5a3f7a
 
ebac224
 
 
d5a3f7a
 
ebac224
3c64e23
 
19d93fe
d5a3f7a
3c64e23
d5a3f7a
ebac224
4de1a2b
 
3c64e23
 
19d93fe
3c64e23
 
 
d5a3f7a
 
 
 
 
ebac224
 
3c64e23
 
d5a3f7a
 
 
 
ebac224
d5a3f7a
 
 
 
ebac224
d5a3f7a
 
 
 
ebac224
 
 
 
19d93fe
 
 
ebac224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c64e23
19d93fe
d5a3f7a
 
ebac224
 
 
d5a3f7a
ebac224
d5a3f7a
ebac224
3c64e23
19d93fe
3c64e23
ebac224
d5a3f7a
 
ebac224
 
 
d5a3f7a
 
ebac224
3c64e23
ebac224
19d93fe
d5a3f7a
ebac224
d5a3f7a
ebac224
4de1a2b
 
ebac224
 
 
19d93fe
ebac224
 
 
d5a3f7a
 
 
 
 
ebac224
 
 
d5a3f7a
 
 
 
 
 
 
 
ebac224
d5a3f7a
 
 
 
ebac224
d5a3f7a
 
 
 
ebac224
d5a3f7a
 
 
 
ebac224
3c64e23
 
 
19d93fe
 
 
3c64e23
 
 
 
 
957b077
8b7cf39
 
 
 
 
 
 
957b077
7545429
 
 
 
 
 
 
 
 
 
3c64e23
 
 
 
 
 
 
 
 
 
19d93fe
9331159
3c64e23
19d93fe
9331159
 
 
 
 
 
3c64e23
 
00cedc6
19d93fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4de1a2b
19d93fe
 
4de1a2b
 
19d93fe
 
 
4de1a2b
 
19d93fe
 
 
4de1a2b
 
19d93fe
4de1a2b
19d93fe
 
4de1a2b
19d93fe
 
 
4de1a2b
19d93fe
 
 
4de1a2b
 
 
 
 
19d93fe
 
 
 
4de1a2b
 
 
 
19d93fe
4de1a2b
 
 
 
19d93fe
4de1a2b
 
 
 
19d93fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00cedc6
19d93fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4de1a2b
19d93fe
 
4de1a2b
 
19d93fe
 
 
4de1a2b
 
19d93fe
 
 
4de1a2b
 
19d93fe
4de1a2b
19d93fe
 
4de1a2b
19d93fe
 
 
4de1a2b
19d93fe
 
 
4de1a2b
 
 
 
 
19d93fe
 
 
 
 
 
 
 
 
 
 
 
4de1a2b
 
 
 
19d93fe
4de1a2b
 
 
 
19d93fe
4de1a2b
 
 
 
19d93fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b89d2
 
4c1e130
 
ebac224
4c1e130
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import gradio as gr

from app.utils import add_rank_and_format, filter_models, get_refresh_function, deprecated_get_refresh_function
from data.deprecated_model_handler import DeprecatedModelHandler
from data.model_handler import ModelHandler

METRICS = [
    "ndcg_at_1",
    "ndcg_at_5",
    "ndcg_at_10",
    "ndcg_at_100",
    "recall_at_1",
    "recall_at_5",
    "recall_at_10",
    "recall_at_100",
]


def main():
    # Get new results
    model_handler = ModelHandler()
    initial_metric = "ndcg_at_5"

    model_handler.get_vidore_data(initial_metric)
    data_benchmark_1 = model_handler.render_df(initial_metric, benchmark_version=1)
    data_benchmark_1 = add_rank_and_format(data_benchmark_1, benchmark_version=1)

    data_benchmark_2 = model_handler.render_df(initial_metric, benchmark_version=2)
    data_benchmark_2 = add_rank_and_format(data_benchmark_2, benchmark_version=2)

    num_datasets_1 = len(data_benchmark_1.columns) - 3
    num_scores_1 = len(data_benchmark_1) * num_datasets_1
    num_models_1 = len(data_benchmark_1)

    num_datasets_2 = len(data_benchmark_2.columns) - 3
    num_scores_2 = len(data_benchmark_2) * num_datasets_2
    num_models_2 = len(data_benchmark_2)

    # Get deprecated results
    deprecated_model_handler = DeprecatedModelHandler()
    initial_metric = "ndcg_at_5"

    deprecated_model_handler.get_vidore_data(initial_metric)
    deprecated_data_benchmark_1 = deprecated_model_handler.render_df(initial_metric, benchmark_version=1)
    deprecated_data_benchmark_1 = add_rank_and_format(deprecated_data_benchmark_1, benchmark_version=1)

    deprecated_data_benchmark_2 = deprecated_model_handler.render_df(initial_metric, benchmark_version=2)
    deprecated_data_benchmark_2 = add_rank_and_format(deprecated_data_benchmark_2, benchmark_version=2)

    deprecated_num_datasets_1 = len(deprecated_data_benchmark_1.columns) - 3
    deprecated_num_scores_1 = len(deprecated_data_benchmark_1) * deprecated_num_datasets_1
    deprecated_num_models_1 = len(deprecated_data_benchmark_1)

    deprecated_num_datasets_2 = len(deprecated_data_benchmark_2.columns) - 3
    deprecated_num_scores_2 = len(deprecated_data_benchmark_2) * deprecated_num_datasets_2
    deprecated_num_models_2 = len(deprecated_data_benchmark_2)

    css = """
    table > thead {
        white-space: normal
    }

    table {
        --cell-width-1: 250px
    }

    table > tbody > tr > td:nth-child(2) > div {
        overflow-x: auto
    }

    .filter-checkbox-group {
        max-width: max-content;
    }

    #markdown size
    .markdown {
        font-size: 1rem;
    }
    """

    with gr.Blocks(css=css) as block:
        with gr.Tabs():
            with gr.TabItem("ViDoRe V1"):
                gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark 1 📚🔍")
                gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")

                gr.Markdown(
                    """
                Visual Document Retrieval Benchmark 1 leaderboard. To submit results, refer to the corresponding tab.  

                Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
                """
                )
                datasets_columns_1 = list(data_benchmark_1.columns[4:])

                with gr.Row():
                    metric_dropdown_1 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
                    research_textbox_1 = gr.Textbox(
                        placeholder="🔍 Search Models... [press enter]",
                        label="Filter Models by Name",
                    )
                    column_checkboxes_1 = gr.CheckboxGroup(
                        choices=datasets_columns_1, value=datasets_columns_1, label="Select Columns to Display"
                    )

                with gr.Row():
                    datatype_1 = ["number", "markdown"] + ["number"] * (num_datasets_1 + 1)
                    dataframe_1 = gr.Dataframe(data_benchmark_1, datatype=datatype_1, type="pandas")

                def update_data_1(metric, search_term, selected_columns):
                    model_handler.get_vidore_data(metric)
                    data = model_handler.render_df(metric, benchmark_version=1)
                    data = add_rank_and_format(data, benchmark_version=1, selected_columns=selected_columns)
                    data = filter_models(data, search_term)
                    if selected_columns:
                        data = data[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + selected_columns]
                    return data

                with gr.Row():
                    refresh_button_1 = gr.Button("Refresh")
                    refresh_button_1.click(
                        get_refresh_function(model_handler, benchmark_version=1),
                        inputs=[metric_dropdown_1],
                        outputs=dataframe_1,
                        concurrency_limit=20,
                    )

                # Automatically refresh the dataframe when the dropdown value changes
                metric_dropdown_1.change(
                    get_refresh_function(model_handler, benchmark_version=1),
                    inputs=[metric_dropdown_1],
                    outputs=dataframe_1,
                )
                research_textbox_1.submit(
                    lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
                    inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
                    outputs=dataframe_1,
                )
                column_checkboxes_1.change(
                    lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
                    inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
                    outputs=dataframe_1,
                )

                gr.Markdown(
                    f"""
                - **Total Datasets**: {num_datasets_1}
                - **Total Scores**: {num_scores_1}
                - **Total Models**: {num_models_1}
                """
                    + r"""
                Please consider citing:

                ```bibtex
                @misc{faysse2024colpaliefficientdocumentretrieval,
                  title={ColPali: Efficient Document Retrieval with Vision Language Models}, 
                  author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
                  year={2024},
                  eprint={2407.01449},
                  archivePrefix={arXiv},
                  primaryClass={cs.IR},
                  url={https://arxiv.org/abs/2407.01449}, 
                }
                ```
                """
                )
            with gr.TabItem("ViDoRe V2"):
                gr.Markdown("# ViDoRe V2: A new visual Document Retrieval Benchmark 📚🔍")
                gr.Markdown("### A harder dataset benchmark for visual document retrieval 👀")

                gr.Markdown(
                    """
                Visual Document Retrieval Benchmark 2 leaderboard. To submit results, refer to the corresponding tab.  

                Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models.
                """
                )
                datasets_columns_2 = list(data_benchmark_2.columns[4:])

                with gr.Row():
                    metric_dropdown_2 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
                    research_textbox_2 = gr.Textbox(
                        placeholder="🔍 Search Models... [press enter]",
                        label="Filter Models by Name",
                    )
                    column_checkboxes_2 = gr.CheckboxGroup(
                        choices=datasets_columns_2, value=datasets_columns_2, label="Select Columns to Display"
                    )

                with gr.Row():
                    datatype_2 = ["number", "markdown"] + ["number"] * (num_datasets_2 + 1)
                    dataframe_2 = gr.Dataframe(data_benchmark_2, datatype=datatype_2, type="pandas")

                def update_data_2(metric, search_term, selected_columns):
                    model_handler.get_vidore_data(metric)
                    data = model_handler.render_df(metric, benchmark_version=2)
                    data = add_rank_and_format(data, benchmark_version=2, selected_columns=selected_columns)
                    data = filter_models(data, search_term)
                    # data = remove_duplicates(data)  # Add this line
                    if selected_columns:
                        data = data[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + selected_columns]
                    return data

                with gr.Row():
                    refresh_button_2 = gr.Button("Refresh")
                    refresh_button_2.click(
                        get_refresh_function(model_handler, benchmark_version=2),
                        inputs=[metric_dropdown_2],
                        outputs=dataframe_2,
                        concurrency_limit=20,
                    )

                with gr.Row():
                    gr.Markdown(
                        """
                    **Note**: For now, all models were evaluated using the vidore-benchmark package and custom retrievers on our side. 
                    Those numbers are not numbers obtained from the organisations that released those models.
                    """
                    )

                # Automatically refresh the dataframe when the dropdown value changes
                metric_dropdown_2.change(
                    get_refresh_function(model_handler, benchmark_version=2),
                    inputs=[metric_dropdown_2],
                    outputs=dataframe_2,
                )
                research_textbox_2.submit(
                    lambda metric, search_term, selected_columns: update_data_2(metric, search_term, selected_columns),
                    inputs=[metric_dropdown_2, research_textbox_2, column_checkboxes_2],
                    outputs=dataframe_2,
                )
                column_checkboxes_2.change(
                    lambda metric, search_term, selected_columns: update_data_2(metric, search_term, selected_columns),
                    inputs=[metric_dropdown_2, research_textbox_2, column_checkboxes_2],
                    outputs=dataframe_2,
                )

                gr.Markdown(
                    f"""
                - **Total Datasets**: {num_datasets_2}
                - **Total Scores**: {num_scores_2}
                - **Total Models**: {num_models_2}
                """
                    + r"""
                Please consider citing:

                ```bibtex
                @misc{faysse2024colpaliefficientdocumentretrieval,
                  title={ColPali: Efficient Document Retrieval with Vision Language Models}, 
                  author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
                  year={2024},
                  eprint={2407.01449},
                  archivePrefix={arXiv},
                  primaryClass={cs.IR},
                  url={https://arxiv.org/abs/2407.01449}, 
                }

                @misc{macé2025vidorebenchmarkv2raising,
                      title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval}, 
                      author={Quentin Macé and António Loison and Manuel Faysse},
                      year={2025},
                      eprint={2505.17166},
                      archivePrefix={arXiv},
                      primaryClass={cs.IR},
                      url={https://arxiv.org/abs/2505.17166}, 
                }
                ```
                """
                )
            with gr.TabItem("📚 Submit your model"):
                gr.Markdown("# How to Submit a New Model to the Leaderboard")
                gr.Markdown(
                    """
                    To submit a new model to the ViDoRe leaderboard, follow these steps:

                    1. **Evaluate your model**:
                       - Follow the evaluation procedure provided in the [ViDoRe GitHub repository](https://github.com/illuin-tech/vidore-benchmark/) that uses MTEB.

                    2. **Format your submission file**:
                        - Add the generated files to [MTEB results](https://github.com/embeddings-benchmark/results) project. Check the [Colpali results](https://github.com/embeddings-benchmark/results/tree/main/results/vidore__colpali-v1.3/1b5c8929330df1a66de441a9b5409a878f0de5b0) for an example.

                    And you're done! Your model will appear on the leaderboard when you click refresh! Once the space
                    gets rebooted, it will appear on startup.

                    Note: For proper hyperlink redirection, please ensure that your model repository name is in
                    kebab-case, e.g. `my-model-name`.
                    """
                )
            with gr.TabItem("Deprecated ViDoRe V1"):
                gr.Markdown(
                    "## <span style='color:red'>Deprecation notice: This leaderboard contains the results computed with the "
                    "[vidore-benchmark](https://github.com/illuin-tech/vidore-benchmark) package, "
                    "which is no longer maintained. Results should be computed using the "
                    "[mteb](https://github.com/embeddings-benchmark/mteb) package as described "
                    "[here](https://github.com/illuin-tech/vidore-benchmark/blob/main/README.md).</span>"
                )
                gr.Markdown("## <span style='color:red'>Missing results in the new leaderboard are being added as they are re-computed.</span>")
                gr.Markdown("# <span style='color:red'>[Deprecated]</span> ViDoRe: The Visual Document Retrieval Benchmark 1 📚🔍")
                gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")

                gr.Markdown(
                    """
                Visual Document Retrieval Benchmark 1 leaderboard. To submit results, refer to the corresponding tab.  

                Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
                """
                )
                deprecated_datasets_columns_1 = list(deprecated_data_benchmark_1.columns[3:])

                with gr.Row():
                    deprecated_metric_dropdown_1 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
                    deprecated_research_textbox_1 = gr.Textbox(
                        placeholder="🔍 Search Models... [press enter]",
                        label="Filter Models by Name",
                    )
                    deprecated_column_checkboxes_1 = gr.CheckboxGroup(
                        choices=deprecated_datasets_columns_1, value=deprecated_datasets_columns_1, label="Select Columns to Display"
                    )

                with gr.Row():
                    deprecated_datatype_1 = ["number", "markdown"] + ["number"] * (deprecated_num_datasets_1 + 1)
                    deprecated_dataframe_1 = gr.Dataframe(deprecated_data_benchmark_1, datatype=deprecated_datatype_1, type="pandas")

                def deprecated_update_data_1(metric, search_term, selected_columns):
                    deprecated_model_handler.get_vidore_data(metric)
                    data = deprecated_model_handler.render_df(metric, benchmark_version=1)
                    data = add_rank_and_format(data, benchmark_version=1, selected_columns=selected_columns)
                    data = filter_models(data, search_term)
                    # data = remove_duplicates(data)  # Add this line
                    if selected_columns:
                        data = data[["Rank", "Model", "Average"] + selected_columns]
                    return data

                with gr.Row():
                    deprecated_refresh_button_1 = gr.Button("Refresh")
                    deprecated_refresh_button_1.click(
                        deprecated_get_refresh_function(deprecated_model_handler, benchmark_version=1),
                        inputs=[deprecated_metric_dropdown_1],
                        outputs=deprecated_dataframe_1,
                        concurrency_limit=20,
                    )

                # Automatically refresh the dataframe when the dropdown value changes
                deprecated_metric_dropdown_1.change(
                    deprecated_get_refresh_function(deprecated_model_handler, benchmark_version=1),
                    inputs=[deprecated_metric_dropdown_1],
                    outputs=deprecated_dataframe_1,
                )
                deprecated_research_textbox_1.submit(
                    lambda metric, search_term, selected_columns: deprecated_update_data_1(metric, search_term, selected_columns),
                    inputs=[deprecated_metric_dropdown_1, deprecated_research_textbox_1, deprecated_column_checkboxes_1],
                    outputs=deprecated_dataframe_1,
                )
                deprecated_column_checkboxes_1.change(
                    lambda metric, search_term, selected_columns: deprecated_update_data_1(metric, search_term, selected_columns),
                    inputs=[deprecated_metric_dropdown_1, deprecated_research_textbox_1, deprecated_column_checkboxes_1],
                    outputs=deprecated_dataframe_1,
                )

                gr.Markdown(
                    f"""
                - **Total Datasets**: {deprecated_num_datasets_1}
                - **Total Scores**: {deprecated_num_scores_1}
                - **Total Models**: {deprecated_num_models_1}
                """
                    + r"""
                Please consider citing:

                ```bibtex
                @misc{faysse2024colpaliefficientdocumentretrieval,
                  title={ColPali: Efficient Document Retrieval with Vision Language Models}, 
                  author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
                  year={2024},
                  eprint={2407.01449},
                  archivePrefix={arXiv},
                  primaryClass={cs.IR},
                  url={https://arxiv.org/abs/2407.01449}, 
                }
                ```
                """
                )
            with gr.TabItem("Deprecated ViDoRe V2"):
                gr.Markdown(
                    "## <span style='color:red'>Deprecation notice: This leaderboard contains the results computed with the "
                    "[vidore-benchmark](https://github.com/illuin-tech/vidore-benchmark) package, "
                    "which is no longer maintained. Results should be computed using the "
                    "[mteb](https://github.com/embeddings-benchmark/mteb) package as described "
                    "[here](https://github.com/illuin-tech/vidore-benchmark/blob/main/README.md).</span>"
                )
                gr.Markdown("## <span style='color:red'>Missing results in the new leaderboard are being added as they are re-computed.</span>")
                gr.Markdown("# <span style='color:red'>[Deprecated]</span> ViDoRe V2: A new visual Document Retrieval Benchmark 📚🔍")
                gr.Markdown("### A harder dataset benchmark for visual document retrieval 👀")

                gr.Markdown(
                    """
                Visual Document Retrieval Benchmark 2 leaderboard. To submit results, refer to the corresponding tab.  

                Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models.
                """
                )
                deprecated_datasets_columns_2 = list(deprecated_data_benchmark_2.columns[3:])

                with gr.Row():
                    deprecated_metric_dropdown_2 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
                    deprecated_research_textbox_2 = gr.Textbox(
                        placeholder="🔍 Search Models... [press enter]",
                        label="Filter Models by Name",
                    )
                    deprecated_column_checkboxes_2 = gr.CheckboxGroup(
                        choices=deprecated_datasets_columns_2, value=deprecated_datasets_columns_2, label="Select Columns to Display"
                    )

                with gr.Row():
                    deprecated_datatype_2 = ["number", "markdown"] + ["number"] * (deprecated_num_datasets_2 + 1)
                    deprecated_dataframe_2 = gr.Dataframe(deprecated_data_benchmark_2, datatype=deprecated_datatype_2, type="pandas")

                def deprecated_update_data_2(metric, search_term, selected_columns):
                    deprecated_model_handler.get_vidore_data(metric)
                    data = deprecated_model_handler.render_df(metric, benchmark_version=2)
                    data = add_rank_and_format(data, benchmark_version=2, selected_columns=selected_columns)
                    data = filter_models(data, search_term)
                    # data = remove_duplicates(data)  # Add this line
                    if selected_columns:
                        data = data[["Rank", "Model", "Average"] + selected_columns]
                    return data

                with gr.Row():
                    deprecated_refresh_button_2 = gr.Button("Refresh")
                    deprecated_refresh_button_2.click(
                        deprecated_get_refresh_function(deprecated_model_handler, benchmark_version=2),
                        inputs=[deprecated_metric_dropdown_2],
                        outputs=deprecated_dataframe_2,
                        concurrency_limit=20,
                    )

                with gr.Row():
                    gr.Markdown(
                        """
                    **Note**: For now, all models were evaluated using the vidore-benchmark package and custom retrievers on our side. 
                    Those numbers are not numbers obtained from the organisations that released those models.
                    """
                    )

                # Automatically refresh the dataframe when the dropdown value changes
                deprecated_metric_dropdown_2.change(
                    deprecated_get_refresh_function(deprecated_model_handler, benchmark_version=2),
                    inputs=[deprecated_metric_dropdown_2],
                    outputs=deprecated_dataframe_2,
                )
                deprecated_research_textbox_2.submit(
                    lambda metric, search_term, selected_columns: deprecated_update_data_2(metric, search_term, selected_columns),
                    inputs=[deprecated_metric_dropdown_2, deprecated_research_textbox_2, deprecated_column_checkboxes_2],
                    outputs=deprecated_dataframe_2,
                )
                deprecated_column_checkboxes_2.change(
                    lambda metric, search_term, selected_columns: deprecated_update_data_2(metric, search_term, selected_columns),
                    inputs=[deprecated_metric_dropdown_2, deprecated_research_textbox_2, deprecated_column_checkboxes_2],
                    outputs=deprecated_dataframe_2,
                )

                gr.Markdown(
                    f"""
                - **Total Datasets**: {deprecated_num_datasets_2}
                - **Total Scores**: {deprecated_num_scores_2}
                - **Total Models**: {deprecated_num_models_2}
                """
                    + r"""
                Please consider citing:

                ```bibtex
                @misc{faysse2024colpaliefficientdocumentretrieval,
                  title={ColPali: Efficient Document Retrieval with Vision Language Models}, 
                  author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
                  year={2024},
                  eprint={2407.01449},
                  archivePrefix={arXiv},
                  primaryClass={cs.IR},
                  url={https://arxiv.org/abs/2407.01449}, 
                }

                @misc{macé2025vidorebenchmarkv2raising,
                      title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval}, 
                      author={Quentin Macé and António Loison and Manuel Faysse},
                      year={2025},
                      eprint={2505.17166},
                      archivePrefix={arXiv},
                      primaryClass={cs.IR},
                      url={https://arxiv.org/abs/2505.17166}, 
                }
                ```
                """
                )

    block.queue(max_size=10).launch(debug=True)


if __name__ == "__main__":
    main()