Spaces:
Running
Running
File size: 25,239 Bytes
396dfd7 f7b89d2 4de1a2b 19d93fe 3c64e23 ebac224 f7b89d2 9331159 19d93fe 4c1e130 9331159 ebac224 19d93fe ebac224 19d93fe ebac224 f7b89d2 19d93fe ebac224 19d93fe f7b89d2 4c1e130 f7b89d2 4c1e130 f7b89d2 4c1e130 3c64e23 396dfd7 f7b89d2 4c1e130 3c64e23 19d93fe d5a3f7a 3c64e23 d5a3f7a 9331159 d5a3f7a 3c64e23 19d93fe 3c64e23 d5a3f7a ebac224 d5a3f7a ebac224 3c64e23 19d93fe d5a3f7a 3c64e23 d5a3f7a ebac224 4de1a2b 3c64e23 19d93fe 3c64e23 d5a3f7a ebac224 3c64e23 d5a3f7a ebac224 d5a3f7a ebac224 d5a3f7a ebac224 19d93fe ebac224 3c64e23 19d93fe d5a3f7a ebac224 d5a3f7a ebac224 d5a3f7a ebac224 3c64e23 19d93fe 3c64e23 ebac224 d5a3f7a ebac224 d5a3f7a ebac224 3c64e23 ebac224 19d93fe d5a3f7a ebac224 d5a3f7a ebac224 4de1a2b ebac224 19d93fe ebac224 d5a3f7a ebac224 d5a3f7a ebac224 d5a3f7a ebac224 d5a3f7a ebac224 d5a3f7a ebac224 3c64e23 19d93fe 3c64e23 957b077 8b7cf39 957b077 7545429 3c64e23 19d93fe 9331159 3c64e23 19d93fe 9331159 3c64e23 00cedc6 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 00cedc6 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe 4de1a2b 19d93fe f7b89d2 4c1e130 ebac224 4c1e130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import gradio as gr
from app.utils import add_rank_and_format, filter_models, get_refresh_function, deprecated_get_refresh_function
from data.deprecated_model_handler import DeprecatedModelHandler
from data.model_handler import ModelHandler
METRICS = [
"ndcg_at_1",
"ndcg_at_5",
"ndcg_at_10",
"ndcg_at_100",
"recall_at_1",
"recall_at_5",
"recall_at_10",
"recall_at_100",
]
def main():
# Get new results
model_handler = ModelHandler()
initial_metric = "ndcg_at_5"
model_handler.get_vidore_data(initial_metric)
data_benchmark_1 = model_handler.render_df(initial_metric, benchmark_version=1)
data_benchmark_1 = add_rank_and_format(data_benchmark_1, benchmark_version=1)
data_benchmark_2 = model_handler.render_df(initial_metric, benchmark_version=2)
data_benchmark_2 = add_rank_and_format(data_benchmark_2, benchmark_version=2)
num_datasets_1 = len(data_benchmark_1.columns) - 3
num_scores_1 = len(data_benchmark_1) * num_datasets_1
num_models_1 = len(data_benchmark_1)
num_datasets_2 = len(data_benchmark_2.columns) - 3
num_scores_2 = len(data_benchmark_2) * num_datasets_2
num_models_2 = len(data_benchmark_2)
# Get deprecated results
deprecated_model_handler = DeprecatedModelHandler()
initial_metric = "ndcg_at_5"
deprecated_model_handler.get_vidore_data(initial_metric)
deprecated_data_benchmark_1 = deprecated_model_handler.render_df(initial_metric, benchmark_version=1)
deprecated_data_benchmark_1 = add_rank_and_format(deprecated_data_benchmark_1, benchmark_version=1)
deprecated_data_benchmark_2 = deprecated_model_handler.render_df(initial_metric, benchmark_version=2)
deprecated_data_benchmark_2 = add_rank_and_format(deprecated_data_benchmark_2, benchmark_version=2)
deprecated_num_datasets_1 = len(deprecated_data_benchmark_1.columns) - 3
deprecated_num_scores_1 = len(deprecated_data_benchmark_1) * deprecated_num_datasets_1
deprecated_num_models_1 = len(deprecated_data_benchmark_1)
deprecated_num_datasets_2 = len(deprecated_data_benchmark_2.columns) - 3
deprecated_num_scores_2 = len(deprecated_data_benchmark_2) * deprecated_num_datasets_2
deprecated_num_models_2 = len(deprecated_data_benchmark_2)
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.filter-checkbox-group {
max-width: max-content;
}
#markdown size
.markdown {
font-size: 1rem;
}
"""
with gr.Blocks(css=css) as block:
with gr.Tabs():
with gr.TabItem("ViDoRe V1"):
gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark 1 📚🔍")
gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")
gr.Markdown(
"""
Visual Document Retrieval Benchmark 1 leaderboard. To submit results, refer to the corresponding tab.
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
"""
)
datasets_columns_1 = list(data_benchmark_1.columns[4:])
with gr.Row():
metric_dropdown_1 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
research_textbox_1 = gr.Textbox(
placeholder="🔍 Search Models... [press enter]",
label="Filter Models by Name",
)
column_checkboxes_1 = gr.CheckboxGroup(
choices=datasets_columns_1, value=datasets_columns_1, label="Select Columns to Display"
)
with gr.Row():
datatype_1 = ["number", "markdown"] + ["number"] * (num_datasets_1 + 1)
dataframe_1 = gr.Dataframe(data_benchmark_1, datatype=datatype_1, type="pandas")
def update_data_1(metric, search_term, selected_columns):
model_handler.get_vidore_data(metric)
data = model_handler.render_df(metric, benchmark_version=1)
data = add_rank_and_format(data, benchmark_version=1, selected_columns=selected_columns)
data = filter_models(data, search_term)
if selected_columns:
data = data[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + selected_columns]
return data
with gr.Row():
refresh_button_1 = gr.Button("Refresh")
refresh_button_1.click(
get_refresh_function(model_handler, benchmark_version=1),
inputs=[metric_dropdown_1],
outputs=dataframe_1,
concurrency_limit=20,
)
# Automatically refresh the dataframe when the dropdown value changes
metric_dropdown_1.change(
get_refresh_function(model_handler, benchmark_version=1),
inputs=[metric_dropdown_1],
outputs=dataframe_1,
)
research_textbox_1.submit(
lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
outputs=dataframe_1,
)
column_checkboxes_1.change(
lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
outputs=dataframe_1,
)
gr.Markdown(
f"""
- **Total Datasets**: {num_datasets_1}
- **Total Scores**: {num_scores_1}
- **Total Models**: {num_models_1}
"""
+ r"""
Please consider citing:
```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
year={2024},
eprint={2407.01449},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.01449},
}
```
"""
)
with gr.TabItem("ViDoRe V2"):
gr.Markdown("# ViDoRe V2: A new visual Document Retrieval Benchmark 📚🔍")
gr.Markdown("### A harder dataset benchmark for visual document retrieval 👀")
gr.Markdown(
"""
Visual Document Retrieval Benchmark 2 leaderboard. To submit results, refer to the corresponding tab.
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models.
"""
)
datasets_columns_2 = list(data_benchmark_2.columns[4:])
with gr.Row():
metric_dropdown_2 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
research_textbox_2 = gr.Textbox(
placeholder="🔍 Search Models... [press enter]",
label="Filter Models by Name",
)
column_checkboxes_2 = gr.CheckboxGroup(
choices=datasets_columns_2, value=datasets_columns_2, label="Select Columns to Display"
)
with gr.Row():
datatype_2 = ["number", "markdown"] + ["number"] * (num_datasets_2 + 1)
dataframe_2 = gr.Dataframe(data_benchmark_2, datatype=datatype_2, type="pandas")
def update_data_2(metric, search_term, selected_columns):
model_handler.get_vidore_data(metric)
data = model_handler.render_df(metric, benchmark_version=2)
data = add_rank_and_format(data, benchmark_version=2, selected_columns=selected_columns)
data = filter_models(data, search_term)
# data = remove_duplicates(data) # Add this line
if selected_columns:
data = data[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + selected_columns]
return data
with gr.Row():
refresh_button_2 = gr.Button("Refresh")
refresh_button_2.click(
get_refresh_function(model_handler, benchmark_version=2),
inputs=[metric_dropdown_2],
outputs=dataframe_2,
concurrency_limit=20,
)
with gr.Row():
gr.Markdown(
"""
**Note**: For now, all models were evaluated using the vidore-benchmark package and custom retrievers on our side.
Those numbers are not numbers obtained from the organisations that released those models.
"""
)
# Automatically refresh the dataframe when the dropdown value changes
metric_dropdown_2.change(
get_refresh_function(model_handler, benchmark_version=2),
inputs=[metric_dropdown_2],
outputs=dataframe_2,
)
research_textbox_2.submit(
lambda metric, search_term, selected_columns: update_data_2(metric, search_term, selected_columns),
inputs=[metric_dropdown_2, research_textbox_2, column_checkboxes_2],
outputs=dataframe_2,
)
column_checkboxes_2.change(
lambda metric, search_term, selected_columns: update_data_2(metric, search_term, selected_columns),
inputs=[metric_dropdown_2, research_textbox_2, column_checkboxes_2],
outputs=dataframe_2,
)
gr.Markdown(
f"""
- **Total Datasets**: {num_datasets_2}
- **Total Scores**: {num_scores_2}
- **Total Models**: {num_models_2}
"""
+ r"""
Please consider citing:
```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
year={2024},
eprint={2407.01449},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.01449},
}
@misc{macé2025vidorebenchmarkv2raising,
title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
author={Quentin Macé and António Loison and Manuel Faysse},
year={2025},
eprint={2505.17166},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2505.17166},
}
```
"""
)
with gr.TabItem("📚 Submit your model"):
gr.Markdown("# How to Submit a New Model to the Leaderboard")
gr.Markdown(
"""
To submit a new model to the ViDoRe leaderboard, follow these steps:
1. **Evaluate your model**:
- Follow the evaluation procedure provided in the [ViDoRe GitHub repository](https://github.com/illuin-tech/vidore-benchmark/) that uses MTEB.
2. **Format your submission file**:
- Add the generated files to [MTEB results](https://github.com/embeddings-benchmark/results) project. Check the [Colpali results](https://github.com/embeddings-benchmark/results/tree/main/results/vidore__colpali-v1.3/1b5c8929330df1a66de441a9b5409a878f0de5b0) for an example.
And you're done! Your model will appear on the leaderboard when you click refresh! Once the space
gets rebooted, it will appear on startup.
Note: For proper hyperlink redirection, please ensure that your model repository name is in
kebab-case, e.g. `my-model-name`.
"""
)
with gr.TabItem("Deprecated ViDoRe V1"):
gr.Markdown(
"## <span style='color:red'>Deprecation notice: This leaderboard contains the results computed with the "
"[vidore-benchmark](https://github.com/illuin-tech/vidore-benchmark) package, "
"which is no longer maintained. Results should be computed using the "
"[mteb](https://github.com/embeddings-benchmark/mteb) package as described "
"[here](https://github.com/illuin-tech/vidore-benchmark/blob/main/README.md).</span>"
)
gr.Markdown("## <span style='color:red'>Missing results in the new leaderboard are being added as they are re-computed.</span>")
gr.Markdown("# <span style='color:red'>[Deprecated]</span> ViDoRe: The Visual Document Retrieval Benchmark 1 📚🔍")
gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")
gr.Markdown(
"""
Visual Document Retrieval Benchmark 1 leaderboard. To submit results, refer to the corresponding tab.
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
"""
)
deprecated_datasets_columns_1 = list(deprecated_data_benchmark_1.columns[3:])
with gr.Row():
deprecated_metric_dropdown_1 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
deprecated_research_textbox_1 = gr.Textbox(
placeholder="🔍 Search Models... [press enter]",
label="Filter Models by Name",
)
deprecated_column_checkboxes_1 = gr.CheckboxGroup(
choices=deprecated_datasets_columns_1, value=deprecated_datasets_columns_1, label="Select Columns to Display"
)
with gr.Row():
deprecated_datatype_1 = ["number", "markdown"] + ["number"] * (deprecated_num_datasets_1 + 1)
deprecated_dataframe_1 = gr.Dataframe(deprecated_data_benchmark_1, datatype=deprecated_datatype_1, type="pandas")
def deprecated_update_data_1(metric, search_term, selected_columns):
deprecated_model_handler.get_vidore_data(metric)
data = deprecated_model_handler.render_df(metric, benchmark_version=1)
data = add_rank_and_format(data, benchmark_version=1, selected_columns=selected_columns)
data = filter_models(data, search_term)
# data = remove_duplicates(data) # Add this line
if selected_columns:
data = data[["Rank", "Model", "Average"] + selected_columns]
return data
with gr.Row():
deprecated_refresh_button_1 = gr.Button("Refresh")
deprecated_refresh_button_1.click(
deprecated_get_refresh_function(deprecated_model_handler, benchmark_version=1),
inputs=[deprecated_metric_dropdown_1],
outputs=deprecated_dataframe_1,
concurrency_limit=20,
)
# Automatically refresh the dataframe when the dropdown value changes
deprecated_metric_dropdown_1.change(
deprecated_get_refresh_function(deprecated_model_handler, benchmark_version=1),
inputs=[deprecated_metric_dropdown_1],
outputs=deprecated_dataframe_1,
)
deprecated_research_textbox_1.submit(
lambda metric, search_term, selected_columns: deprecated_update_data_1(metric, search_term, selected_columns),
inputs=[deprecated_metric_dropdown_1, deprecated_research_textbox_1, deprecated_column_checkboxes_1],
outputs=deprecated_dataframe_1,
)
deprecated_column_checkboxes_1.change(
lambda metric, search_term, selected_columns: deprecated_update_data_1(metric, search_term, selected_columns),
inputs=[deprecated_metric_dropdown_1, deprecated_research_textbox_1, deprecated_column_checkboxes_1],
outputs=deprecated_dataframe_1,
)
gr.Markdown(
f"""
- **Total Datasets**: {deprecated_num_datasets_1}
- **Total Scores**: {deprecated_num_scores_1}
- **Total Models**: {deprecated_num_models_1}
"""
+ r"""
Please consider citing:
```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
year={2024},
eprint={2407.01449},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.01449},
}
```
"""
)
with gr.TabItem("Deprecated ViDoRe V2"):
gr.Markdown(
"## <span style='color:red'>Deprecation notice: This leaderboard contains the results computed with the "
"[vidore-benchmark](https://github.com/illuin-tech/vidore-benchmark) package, "
"which is no longer maintained. Results should be computed using the "
"[mteb](https://github.com/embeddings-benchmark/mteb) package as described "
"[here](https://github.com/illuin-tech/vidore-benchmark/blob/main/README.md).</span>"
)
gr.Markdown("## <span style='color:red'>Missing results in the new leaderboard are being added as they are re-computed.</span>")
gr.Markdown("# <span style='color:red'>[Deprecated]</span> ViDoRe V2: A new visual Document Retrieval Benchmark 📚🔍")
gr.Markdown("### A harder dataset benchmark for visual document retrieval 👀")
gr.Markdown(
"""
Visual Document Retrieval Benchmark 2 leaderboard. To submit results, refer to the corresponding tab.
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models.
"""
)
deprecated_datasets_columns_2 = list(deprecated_data_benchmark_2.columns[3:])
with gr.Row():
deprecated_metric_dropdown_2 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
deprecated_research_textbox_2 = gr.Textbox(
placeholder="🔍 Search Models... [press enter]",
label="Filter Models by Name",
)
deprecated_column_checkboxes_2 = gr.CheckboxGroup(
choices=deprecated_datasets_columns_2, value=deprecated_datasets_columns_2, label="Select Columns to Display"
)
with gr.Row():
deprecated_datatype_2 = ["number", "markdown"] + ["number"] * (deprecated_num_datasets_2 + 1)
deprecated_dataframe_2 = gr.Dataframe(deprecated_data_benchmark_2, datatype=deprecated_datatype_2, type="pandas")
def deprecated_update_data_2(metric, search_term, selected_columns):
deprecated_model_handler.get_vidore_data(metric)
data = deprecated_model_handler.render_df(metric, benchmark_version=2)
data = add_rank_and_format(data, benchmark_version=2, selected_columns=selected_columns)
data = filter_models(data, search_term)
# data = remove_duplicates(data) # Add this line
if selected_columns:
data = data[["Rank", "Model", "Average"] + selected_columns]
return data
with gr.Row():
deprecated_refresh_button_2 = gr.Button("Refresh")
deprecated_refresh_button_2.click(
deprecated_get_refresh_function(deprecated_model_handler, benchmark_version=2),
inputs=[deprecated_metric_dropdown_2],
outputs=deprecated_dataframe_2,
concurrency_limit=20,
)
with gr.Row():
gr.Markdown(
"""
**Note**: For now, all models were evaluated using the vidore-benchmark package and custom retrievers on our side.
Those numbers are not numbers obtained from the organisations that released those models.
"""
)
# Automatically refresh the dataframe when the dropdown value changes
deprecated_metric_dropdown_2.change(
deprecated_get_refresh_function(deprecated_model_handler, benchmark_version=2),
inputs=[deprecated_metric_dropdown_2],
outputs=deprecated_dataframe_2,
)
deprecated_research_textbox_2.submit(
lambda metric, search_term, selected_columns: deprecated_update_data_2(metric, search_term, selected_columns),
inputs=[deprecated_metric_dropdown_2, deprecated_research_textbox_2, deprecated_column_checkboxes_2],
outputs=deprecated_dataframe_2,
)
deprecated_column_checkboxes_2.change(
lambda metric, search_term, selected_columns: deprecated_update_data_2(metric, search_term, selected_columns),
inputs=[deprecated_metric_dropdown_2, deprecated_research_textbox_2, deprecated_column_checkboxes_2],
outputs=deprecated_dataframe_2,
)
gr.Markdown(
f"""
- **Total Datasets**: {deprecated_num_datasets_2}
- **Total Scores**: {deprecated_num_scores_2}
- **Total Models**: {deprecated_num_models_2}
"""
+ r"""
Please consider citing:
```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
year={2024},
eprint={2407.01449},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.01449},
}
@misc{macé2025vidorebenchmarkv2raising,
title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
author={Quentin Macé and António Loison and Manuel Faysse},
year={2025},
eprint={2505.17166},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2505.17166},
}
```
"""
)
block.queue(max_size=10).launch(debug=True)
if __name__ == "__main__":
main()
|