Spaces:
Running
Running
Use MTEB results in new leaderboard (#8)
Browse files- feat: deprecate old leaderboards (d6696d6acb32dff8dacc826328c0952a01353cfb)
- feat: add new leaderboard based on mteb results (a212b4a0cd1cd9c7b27383aa5f0366421be7645c)
- feat: add model size column (b5279c6709dde10405810e48634d5b1601c74cef)
- docs: update documentation on how to add your model (1c161e2337749f98d0876f4b4149c018fcf129a9)
Co-authored-by: Antonio Loison <[email protected]>
- app.py +251 -50
- app/utils.py +33 -4
- data/dataset_handler.py +54 -3
- data/deprecated_model_handler.py +124 -0
- data/model_handler.py +57 -115
- requirements.txt +2 -0
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from app.utils import add_rank_and_format, filter_models, get_refresh_function
|
|
|
4 |
from data.model_handler import ModelHandler
|
5 |
|
6 |
METRICS = [
|
@@ -16,23 +17,43 @@ METRICS = [
|
|
16 |
|
17 |
|
18 |
def main():
|
|
|
19 |
model_handler = ModelHandler()
|
20 |
initial_metric = "ndcg_at_5"
|
21 |
|
22 |
model_handler.get_vidore_data(initial_metric)
|
23 |
-
data_benchmark_1 = model_handler.
|
24 |
data_benchmark_1 = add_rank_and_format(data_benchmark_1, benchmark_version=1)
|
25 |
|
26 |
-
data_benchmark_2 = model_handler.
|
27 |
data_benchmark_2 = add_rank_and_format(data_benchmark_2, benchmark_version=2)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
css = """
|
38 |
table > thead {
|
@@ -59,7 +80,7 @@ def main():
|
|
59 |
|
60 |
with gr.Blocks(css=css) as block:
|
61 |
with gr.Tabs():
|
62 |
-
with gr.TabItem("
|
63 |
gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark 1 📚🔍")
|
64 |
gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")
|
65 |
|
@@ -70,7 +91,7 @@ def main():
|
|
70 |
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
|
71 |
"""
|
72 |
)
|
73 |
-
datasets_columns_1 = list(data_benchmark_1.columns[
|
74 |
|
75 |
with gr.Row():
|
76 |
metric_dropdown_1 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
|
@@ -83,17 +104,16 @@ def main():
|
|
83 |
)
|
84 |
|
85 |
with gr.Row():
|
86 |
-
datatype_1 = ["number", "markdown"] + ["number"] * (
|
87 |
dataframe_1 = gr.Dataframe(data_benchmark_1, datatype=datatype_1, type="pandas")
|
88 |
|
89 |
def update_data_1(metric, search_term, selected_columns):
|
90 |
model_handler.get_vidore_data(metric)
|
91 |
-
data =
|
92 |
data = add_rank_and_format(data, benchmark_version=1)
|
93 |
data = filter_models(data, search_term)
|
94 |
-
# data = remove_duplicates(data) # Add this line
|
95 |
if selected_columns:
|
96 |
-
data = data[["Rank", "Model", "Average"] + selected_columns]
|
97 |
return data
|
98 |
|
99 |
with gr.Row():
|
@@ -124,9 +144,9 @@ def main():
|
|
124 |
|
125 |
gr.Markdown(
|
126 |
f"""
|
127 |
-
- **Total Datasets**: {
|
128 |
-
- **Total Scores**: {
|
129 |
-
- **Total Models**: {
|
130 |
"""
|
131 |
+ r"""
|
132 |
Please consider citing:
|
@@ -144,7 +164,7 @@ def main():
|
|
144 |
```
|
145 |
"""
|
146 |
)
|
147 |
-
with gr.TabItem("
|
148 |
gr.Markdown("# ViDoRe V2: A new visual Document Retrieval Benchmark 📚🔍")
|
149 |
gr.Markdown("### A harder dataset benchmark for visual document retrieval 👀")
|
150 |
|
@@ -155,7 +175,7 @@ def main():
|
|
155 |
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models.
|
156 |
"""
|
157 |
)
|
158 |
-
datasets_columns_2 = list(data_benchmark_2.columns[
|
159 |
|
160 |
with gr.Row():
|
161 |
metric_dropdown_2 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
|
@@ -168,17 +188,17 @@ def main():
|
|
168 |
)
|
169 |
|
170 |
with gr.Row():
|
171 |
-
datatype_2 = ["number", "markdown"] + ["number"] * (
|
172 |
dataframe_2 = gr.Dataframe(data_benchmark_2, datatype=datatype_2, type="pandas")
|
173 |
|
174 |
def update_data_2(metric, search_term, selected_columns):
|
175 |
model_handler.get_vidore_data(metric)
|
176 |
-
data =
|
177 |
data = add_rank_and_format(data, benchmark_version=2)
|
178 |
data = filter_models(data, search_term)
|
179 |
# data = remove_duplicates(data) # Add this line
|
180 |
if selected_columns:
|
181 |
-
data = data[["Rank", "Model", "Average"] + selected_columns]
|
182 |
return data
|
183 |
|
184 |
with gr.Row():
|
@@ -217,9 +237,9 @@ def main():
|
|
217 |
|
218 |
gr.Markdown(
|
219 |
f"""
|
220 |
-
- **Total Datasets**: {
|
221 |
-
- **Total Scores**: {
|
222 |
-
- **Total Models**: {
|
223 |
"""
|
224 |
+ r"""
|
225 |
Please consider citing:
|
@@ -247,7 +267,6 @@ def main():
|
|
247 |
```
|
248 |
"""
|
249 |
)
|
250 |
-
|
251 |
with gr.TabItem("📚 Submit your model"):
|
252 |
gr.Markdown("# How to Submit a New Model to the Leaderboard")
|
253 |
gr.Markdown(
|
@@ -255,32 +274,10 @@ def main():
|
|
255 |
To submit a new model to the ViDoRe leaderboard, follow these steps:
|
256 |
|
257 |
1. **Evaluate your model**:
|
258 |
-
- Follow the evaluation
|
259 |
|
260 |
2. **Format your submission file**:
|
261 |
-
-
|
262 |
-
following structure:
|
263 |
-
```json
|
264 |
-
{
|
265 |
-
"dataset_name_1": {
|
266 |
-
"metric_1": score_1,
|
267 |
-
"metric_2": score_2,
|
268 |
-
...
|
269 |
-
},
|
270 |
-
"dataset_name_2": {
|
271 |
-
"metric_1": score_1,
|
272 |
-
"metric_2": score_2,
|
273 |
-
...
|
274 |
-
},
|
275 |
-
}
|
276 |
-
```
|
277 |
-
- The dataset names should be the same as the ViDoRe and ViDoRe 2 dataset names listed in the following
|
278 |
-
collections: [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and [ViDoRe Benchmark 2](vidore/vidore-benchmark-v2-dev-67ae03e3924e85b36e7f53b0).
|
279 |
-
|
280 |
-
3. **Submit your model**:
|
281 |
-
- Create a public HuggingFace model repository with your model.
|
282 |
-
- Add the tag `vidore` to your model in the metadata of the model card and place the
|
283 |
-
`results.json` file at the root.
|
284 |
|
285 |
And you're done! Your model will appear on the leaderboard when you click refresh! Once the space
|
286 |
gets rebooted, it will appear on startup.
|
@@ -289,6 +286,210 @@ def main():
|
|
289 |
kebab-case, e.g. `my-model-name`.
|
290 |
"""
|
291 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
block.queue(max_size=10).launch(debug=True)
|
294 |
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from app.utils import add_rank_and_format, filter_models, get_refresh_function
|
4 |
+
from data.deprecated_model_handler import DeprecatedModelHandler
|
5 |
from data.model_handler import ModelHandler
|
6 |
|
7 |
METRICS = [
|
|
|
17 |
|
18 |
|
19 |
def main():
|
20 |
+
# Get new results
|
21 |
model_handler = ModelHandler()
|
22 |
initial_metric = "ndcg_at_5"
|
23 |
|
24 |
model_handler.get_vidore_data(initial_metric)
|
25 |
+
data_benchmark_1 = model_handler.render_df(initial_metric, benchmark_version=1)
|
26 |
data_benchmark_1 = add_rank_and_format(data_benchmark_1, benchmark_version=1)
|
27 |
|
28 |
+
data_benchmark_2 = model_handler.render_df(initial_metric, benchmark_version=2)
|
29 |
data_benchmark_2 = add_rank_and_format(data_benchmark_2, benchmark_version=2)
|
30 |
|
31 |
+
num_datasets_1 = len(data_benchmark_1.columns) - 3
|
32 |
+
num_scores_1 = len(data_benchmark_1) * num_datasets_1
|
33 |
+
num_models_1 = len(data_benchmark_1)
|
34 |
|
35 |
+
num_datasets_2 = len(data_benchmark_2.columns) - 3
|
36 |
+
num_scores_2 = len(data_benchmark_2) * num_datasets_2
|
37 |
+
num_models_2 = len(data_benchmark_2)
|
38 |
+
|
39 |
+
# Get deprecated results
|
40 |
+
deprecated_model_handler = DeprecatedModelHandler()
|
41 |
+
initial_metric = "ndcg_at_5"
|
42 |
+
|
43 |
+
deprecated_model_handler.get_vidore_data(initial_metric)
|
44 |
+
deprecated_data_benchmark_1 = deprecated_model_handler.render_df(initial_metric, benchmark_version=1)
|
45 |
+
deprecated_data_benchmark_1 = add_rank_and_format(deprecated_data_benchmark_1, benchmark_version=1)
|
46 |
+
|
47 |
+
deprecated_data_benchmark_2 = deprecated_model_handler.render_df(initial_metric, benchmark_version=2)
|
48 |
+
deprecated_data_benchmark_2 = add_rank_and_format(deprecated_data_benchmark_2, benchmark_version=2)
|
49 |
+
|
50 |
+
deprecated_num_datasets_1 = len(deprecated_data_benchmark_1.columns) - 3
|
51 |
+
deprecated_num_scores_1 = len(deprecated_data_benchmark_1) * deprecated_num_datasets_1
|
52 |
+
deprecated_num_models_1 = len(deprecated_data_benchmark_1)
|
53 |
+
|
54 |
+
deprecated_num_datasets_2 = len(deprecated_data_benchmark_2.columns) - 3
|
55 |
+
deprecated_num_scores_2 = len(deprecated_data_benchmark_2) * deprecated_num_datasets_2
|
56 |
+
deprecated_num_models_2 = len(deprecated_data_benchmark_2)
|
57 |
|
58 |
css = """
|
59 |
table > thead {
|
|
|
80 |
|
81 |
with gr.Blocks(css=css) as block:
|
82 |
with gr.Tabs():
|
83 |
+
with gr.TabItem("ViDoRe V1"):
|
84 |
gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark 1 📚🔍")
|
85 |
gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")
|
86 |
|
|
|
91 |
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
|
92 |
"""
|
93 |
)
|
94 |
+
datasets_columns_1 = list(data_benchmark_1.columns[4:])
|
95 |
|
96 |
with gr.Row():
|
97 |
metric_dropdown_1 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
|
|
|
104 |
)
|
105 |
|
106 |
with gr.Row():
|
107 |
+
datatype_1 = ["number", "markdown"] + ["number"] * (num_datasets_1 + 1)
|
108 |
dataframe_1 = gr.Dataframe(data_benchmark_1, datatype=datatype_1, type="pandas")
|
109 |
|
110 |
def update_data_1(metric, search_term, selected_columns):
|
111 |
model_handler.get_vidore_data(metric)
|
112 |
+
data = deprecated_model_handler.render_df(metric, benchmark_version=1)
|
113 |
data = add_rank_and_format(data, benchmark_version=1)
|
114 |
data = filter_models(data, search_term)
|
|
|
115 |
if selected_columns:
|
116 |
+
data = data[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + selected_columns]
|
117 |
return data
|
118 |
|
119 |
with gr.Row():
|
|
|
144 |
|
145 |
gr.Markdown(
|
146 |
f"""
|
147 |
+
- **Total Datasets**: {num_datasets_1}
|
148 |
+
- **Total Scores**: {num_scores_1}
|
149 |
+
- **Total Models**: {num_models_1}
|
150 |
"""
|
151 |
+ r"""
|
152 |
Please consider citing:
|
|
|
164 |
```
|
165 |
"""
|
166 |
)
|
167 |
+
with gr.TabItem("ViDoRe V2"):
|
168 |
gr.Markdown("# ViDoRe V2: A new visual Document Retrieval Benchmark 📚🔍")
|
169 |
gr.Markdown("### A harder dataset benchmark for visual document retrieval 👀")
|
170 |
|
|
|
175 |
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models.
|
176 |
"""
|
177 |
)
|
178 |
+
datasets_columns_2 = list(data_benchmark_2.columns[4:])
|
179 |
|
180 |
with gr.Row():
|
181 |
metric_dropdown_2 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
|
|
|
188 |
)
|
189 |
|
190 |
with gr.Row():
|
191 |
+
datatype_2 = ["number", "markdown"] + ["number"] * (num_datasets_2 + 1)
|
192 |
dataframe_2 = gr.Dataframe(data_benchmark_2, datatype=datatype_2, type="pandas")
|
193 |
|
194 |
def update_data_2(metric, search_term, selected_columns):
|
195 |
model_handler.get_vidore_data(metric)
|
196 |
+
data = deprecated_model_handler.render_df(metric, benchmark_version=2)
|
197 |
data = add_rank_and_format(data, benchmark_version=2)
|
198 |
data = filter_models(data, search_term)
|
199 |
# data = remove_duplicates(data) # Add this line
|
200 |
if selected_columns:
|
201 |
+
data = data[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + selected_columns]
|
202 |
return data
|
203 |
|
204 |
with gr.Row():
|
|
|
237 |
|
238 |
gr.Markdown(
|
239 |
f"""
|
240 |
+
- **Total Datasets**: {num_datasets_2}
|
241 |
+
- **Total Scores**: {num_scores_2}
|
242 |
+
- **Total Models**: {num_models_2}
|
243 |
"""
|
244 |
+ r"""
|
245 |
Please consider citing:
|
|
|
267 |
```
|
268 |
"""
|
269 |
)
|
|
|
270 |
with gr.TabItem("📚 Submit your model"):
|
271 |
gr.Markdown("# How to Submit a New Model to the Leaderboard")
|
272 |
gr.Markdown(
|
|
|
274 |
To submit a new model to the ViDoRe leaderboard, follow these steps:
|
275 |
|
276 |
1. **Evaluate your model**:
|
277 |
+
- Follow the evaluation procedure provided in the [ViDoRe GitHub repository](https://github.com/illuin-tech/vidore-benchmark/) that uses MTEB.
|
278 |
|
279 |
2. **Format your submission file**:
|
280 |
+
- Add the generated files to [MTEB results](https://github.com/embeddings-benchmark/results) project. Check the [Colpali results](https://github.com/embeddings-benchmark/results/tree/main/results/vidore__colpali-v1.3/1b5c8929330df1a66de441a9b5409a878f0de5b0) for an example.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
And you're done! Your model will appear on the leaderboard when you click refresh! Once the space
|
283 |
gets rebooted, it will appear on startup.
|
|
|
286 |
kebab-case, e.g. `my-model-name`.
|
287 |
"""
|
288 |
)
|
289 |
+
with gr.TabItem("[Deprecated] ViDoRe V1"):
|
290 |
+
gr.Markdown(
|
291 |
+
"## <span style='color:red'>Deprecation notice: This leaderboard contains the results computed with the "
|
292 |
+
"[vidore-benchmark](https://github.com/illuin-tech/vidore-benchmark) package, "
|
293 |
+
"which is no longer maintained. Results should be computed using the "
|
294 |
+
"[mteb](https://github.com/embeddings-benchmark/mteb) package as described "
|
295 |
+
"[here](https://github.com/illuin-tech/vidore-benchmark/blob/main/README.md).</span>"
|
296 |
+
)
|
297 |
+
gr.Markdown("## <span style='color:red'>Missing results in the new leaderboard are being added as they are re-computed.</span>")
|
298 |
+
gr.Markdown("# <span style='color:red'>[Deprecated]</span> ViDoRe: The Visual Document Retrieval Benchmark 1 📚🔍")
|
299 |
+
gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")
|
300 |
+
|
301 |
+
gr.Markdown(
|
302 |
+
"""
|
303 |
+
Visual Document Retrieval Benchmark 1 leaderboard. To submit results, refer to the corresponding tab.
|
304 |
+
|
305 |
+
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
|
306 |
+
"""
|
307 |
+
)
|
308 |
+
datasets_columns_1 = list(deprecated_data_benchmark_1.columns[3:])
|
309 |
+
|
310 |
+
with gr.Row():
|
311 |
+
metric_dropdown_1 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
|
312 |
+
research_textbox_1 = gr.Textbox(
|
313 |
+
placeholder="🔍 Search Models... [press enter]",
|
314 |
+
label="Filter Models by Name",
|
315 |
+
)
|
316 |
+
column_checkboxes_1 = gr.CheckboxGroup(
|
317 |
+
choices=datasets_columns_1, value=datasets_columns_1, label="Select Columns to Display"
|
318 |
+
)
|
319 |
+
|
320 |
+
with gr.Row():
|
321 |
+
datatype_1 = ["number", "markdown"] + ["number"] * (deprecated_num_datasets_1 + 1)
|
322 |
+
dataframe_1 = gr.Dataframe(deprecated_data_benchmark_1, datatype=datatype_1, type="pandas")
|
323 |
+
|
324 |
+
def update_data_1(metric, search_term, selected_columns):
|
325 |
+
deprecated_model_handler.get_vidore_data(metric)
|
326 |
+
data = deprecated_model_handler.render_df(metric, benchmark_version=1)
|
327 |
+
data = add_rank_and_format(data, benchmark_version=1)
|
328 |
+
data = filter_models(data, search_term)
|
329 |
+
# data = remove_duplicates(data) # Add this line
|
330 |
+
if selected_columns:
|
331 |
+
data = data[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + selected_columns]
|
332 |
+
return data
|
333 |
+
|
334 |
+
with gr.Row():
|
335 |
+
refresh_button_1 = gr.Button("Refresh")
|
336 |
+
refresh_button_1.click(
|
337 |
+
get_refresh_function(deprecated_model_handler, benchmark_version=1),
|
338 |
+
inputs=[metric_dropdown_1],
|
339 |
+
outputs=dataframe_1,
|
340 |
+
concurrency_limit=20,
|
341 |
+
)
|
342 |
+
|
343 |
+
# Automatically refresh the dataframe when the dropdown value changes
|
344 |
+
metric_dropdown_1.change(
|
345 |
+
get_refresh_function(deprecated_model_handler, benchmark_version=1),
|
346 |
+
inputs=[metric_dropdown_1],
|
347 |
+
outputs=dataframe_1,
|
348 |
+
)
|
349 |
+
research_textbox_1.submit(
|
350 |
+
lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
|
351 |
+
inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
|
352 |
+
outputs=dataframe_1,
|
353 |
+
)
|
354 |
+
column_checkboxes_1.change(
|
355 |
+
lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
|
356 |
+
inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
|
357 |
+
outputs=dataframe_1,
|
358 |
+
)
|
359 |
+
|
360 |
+
gr.Markdown(
|
361 |
+
f"""
|
362 |
+
- **Total Datasets**: {deprecated_num_datasets_1}
|
363 |
+
- **Total Scores**: {deprecated_num_scores_1}
|
364 |
+
- **Total Models**: {deprecated_num_models_1}
|
365 |
+
"""
|
366 |
+
+ r"""
|
367 |
+
Please consider citing:
|
368 |
+
|
369 |
+
```bibtex
|
370 |
+
@misc{faysse2024colpaliefficientdocumentretrieval,
|
371 |
+
title={ColPali: Efficient Document Retrieval with Vision Language Models},
|
372 |
+
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
|
373 |
+
year={2024},
|
374 |
+
eprint={2407.01449},
|
375 |
+
archivePrefix={arXiv},
|
376 |
+
primaryClass={cs.IR},
|
377 |
+
url={https://arxiv.org/abs/2407.01449},
|
378 |
+
}
|
379 |
+
```
|
380 |
+
"""
|
381 |
+
)
|
382 |
+
with gr.TabItem("[Deprecated] ViDoRe V2"):
|
383 |
+
gr.Markdown(
|
384 |
+
"## <span style='color:red'>Deprecation notice: This leaderboard contains the results computed with the "
|
385 |
+
"[vidore-benchmark](https://github.com/illuin-tech/vidore-benchmark) package, "
|
386 |
+
"which is no longer maintained. Results should be computed using the "
|
387 |
+
"[mteb](https://github.com/embeddings-benchmark/mteb) package as described "
|
388 |
+
"[here](https://github.com/illuin-tech/vidore-benchmark/blob/main/README.md).</span>"
|
389 |
+
)
|
390 |
+
gr.Markdown("## <span style='color:red'>Missing results in the new leaderboard are being added as they are re-computed.</span>")
|
391 |
+
gr.Markdown("# <span style='color:red'>[Deprecated]</span> ViDoRe V2: A new visual Document Retrieval Benchmark 📚🔍")
|
392 |
+
gr.Markdown("### A harder dataset benchmark for visual document retrieval 👀")
|
393 |
+
|
394 |
+
gr.Markdown(
|
395 |
+
"""
|
396 |
+
Visual Document Retrieval Benchmark 2 leaderboard. To submit results, refer to the corresponding tab.
|
397 |
+
|
398 |
+
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models.
|
399 |
+
"""
|
400 |
+
)
|
401 |
+
datasets_columns_2 = list(deprecated_data_benchmark_2.columns[3:])
|
402 |
+
|
403 |
+
with gr.Row():
|
404 |
+
metric_dropdown_2 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
|
405 |
+
research_textbox_2 = gr.Textbox(
|
406 |
+
placeholder="🔍 Search Models... [press enter]",
|
407 |
+
label="Filter Models by Name",
|
408 |
+
)
|
409 |
+
column_checkboxes_2 = gr.CheckboxGroup(
|
410 |
+
choices=datasets_columns_2, value=datasets_columns_2, label="Select Columns to Display"
|
411 |
+
)
|
412 |
+
|
413 |
+
with gr.Row():
|
414 |
+
datatype_2 = ["number", "markdown"] + ["number"] * (deprecated_num_datasets_2 + 1)
|
415 |
+
dataframe_2 = gr.Dataframe(deprecated_data_benchmark_2, datatype=datatype_2, type="pandas")
|
416 |
+
|
417 |
+
def update_data_2(metric, search_term, selected_columns):
|
418 |
+
deprecated_model_handler.get_vidore_data(metric)
|
419 |
+
data = deprecated_model_handler.render_df(metric, benchmark_version=2)
|
420 |
+
data = add_rank_and_format(data, benchmark_version=2)
|
421 |
+
data = filter_models(data, search_term)
|
422 |
+
# data = remove_duplicates(data) # Add this line
|
423 |
+
if selected_columns:
|
424 |
+
data = data[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + selected_columns]
|
425 |
+
return data
|
426 |
+
|
427 |
+
with gr.Row():
|
428 |
+
refresh_button_2 = gr.Button("Refresh")
|
429 |
+
refresh_button_2.click(
|
430 |
+
get_refresh_function(deprecated_model_handler, benchmark_version=2),
|
431 |
+
inputs=[metric_dropdown_2],
|
432 |
+
outputs=dataframe_2,
|
433 |
+
concurrency_limit=20,
|
434 |
+
)
|
435 |
+
|
436 |
+
with gr.Row():
|
437 |
+
gr.Markdown(
|
438 |
+
"""
|
439 |
+
**Note**: For now, all models were evaluated using the vidore-benchmark package and custom retrievers on our side.
|
440 |
+
Those numbers are not numbers obtained from the organisations that released those models.
|
441 |
+
"""
|
442 |
+
)
|
443 |
+
|
444 |
+
# Automatically refresh the dataframe when the dropdown value changes
|
445 |
+
metric_dropdown_2.change(
|
446 |
+
get_refresh_function(deprecated_model_handler, benchmark_version=2),
|
447 |
+
inputs=[metric_dropdown_2],
|
448 |
+
outputs=dataframe_2,
|
449 |
+
)
|
450 |
+
research_textbox_2.submit(
|
451 |
+
lambda metric, search_term, selected_columns: update_data_2(metric, search_term, selected_columns),
|
452 |
+
inputs=[metric_dropdown_2, research_textbox_2, column_checkboxes_2],
|
453 |
+
outputs=dataframe_2,
|
454 |
+
)
|
455 |
+
column_checkboxes_2.change(
|
456 |
+
lambda metric, search_term, selected_columns: update_data_2(metric, search_term, selected_columns),
|
457 |
+
inputs=[metric_dropdown_2, research_textbox_2, column_checkboxes_2],
|
458 |
+
outputs=dataframe_2,
|
459 |
+
)
|
460 |
+
|
461 |
+
gr.Markdown(
|
462 |
+
f"""
|
463 |
+
- **Total Datasets**: {deprecated_num_datasets_2}
|
464 |
+
- **Total Scores**: {deprecated_num_scores_2}
|
465 |
+
- **Total Models**: {deprecated_num_models_2}
|
466 |
+
"""
|
467 |
+
+ r"""
|
468 |
+
Please consider citing:
|
469 |
+
|
470 |
+
```bibtex
|
471 |
+
@misc{faysse2024colpaliefficientdocumentretrieval,
|
472 |
+
title={ColPali: Efficient Document Retrieval with Vision Language Models},
|
473 |
+
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
|
474 |
+
year={2024},
|
475 |
+
eprint={2407.01449},
|
476 |
+
archivePrefix={arXiv},
|
477 |
+
primaryClass={cs.IR},
|
478 |
+
url={https://arxiv.org/abs/2407.01449},
|
479 |
+
}
|
480 |
+
|
481 |
+
@misc{macé2025vidorebenchmarkv2raising,
|
482 |
+
title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
|
483 |
+
author={Quentin Macé and António Loison and Manuel Faysse},
|
484 |
+
year={2025},
|
485 |
+
eprint={2505.17166},
|
486 |
+
archivePrefix={arXiv},
|
487 |
+
primaryClass={cs.IR},
|
488 |
+
url={https://arxiv.org/abs/2505.17166},
|
489 |
+
}
|
490 |
+
```
|
491 |
+
"""
|
492 |
+
)
|
493 |
|
494 |
block.queue(max_size=10).launch(debug=True)
|
495 |
|
app/utils.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
-
from data.
|
2 |
|
3 |
|
4 |
def make_clickable_model(model_name, link=None):
|
5 |
if link is None:
|
6 |
-
desanitized_model_name = model_name.replace("
|
|
|
7 |
desanitized_model_name = desanitized_model_name.replace("-thisisapoint-", ".")
|
8 |
|
9 |
if "/captioning" in desanitized_model_name:
|
@@ -16,10 +17,38 @@ def make_clickable_model(model_name, link=None):
|
|
16 |
return f'<a target="_blank" style="text-decoration: underline" href="{link}">{desanitized_model_name}</a>'
|
17 |
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def add_rank_and_format(df, benchmark_version=1):
|
20 |
df = df.reset_index()
|
21 |
df = df.rename(columns={"index": "Model"})
|
22 |
-
df =
|
23 |
df["Model"] = df["Model"].apply(make_clickable_model)
|
24 |
# df = remove_duplicates(df)
|
25 |
return df
|
@@ -36,7 +65,7 @@ def remove_duplicates(df):
|
|
36 |
def get_refresh_function(model_handler, benchmark_version):
|
37 |
def _refresh(metric):
|
38 |
model_handler.get_vidore_data(metric)
|
39 |
-
data_task_category = model_handler.
|
40 |
df = add_rank_and_format(data_task_category, benchmark_version)
|
41 |
return df
|
42 |
|
|
|
1 |
+
from data.deprecated_model_handler import DeprecatedModelHandler
|
2 |
|
3 |
|
4 |
def make_clickable_model(model_name, link=None):
|
5 |
if link is None:
|
6 |
+
desanitized_model_name = model_name.replace("__", "/")
|
7 |
+
desanitized_model_name = desanitized_model_name.replace("_", "/")
|
8 |
desanitized_model_name = desanitized_model_name.replace("-thisisapoint-", ".")
|
9 |
|
10 |
if "/captioning" in desanitized_model_name:
|
|
|
17 |
return f'<a target="_blank" style="text-decoration: underline" href="{link}">{desanitized_model_name}</a>'
|
18 |
|
19 |
|
20 |
+
def add_rank(df, benchmark_version=1):
|
21 |
+
df.fillna(0.0, inplace=True)
|
22 |
+
cols_to_rank = [
|
23 |
+
col
|
24 |
+
for col in df.columns
|
25 |
+
if col
|
26 |
+
not in [
|
27 |
+
"Model",
|
28 |
+
"Model Size (Million Parameters)",
|
29 |
+
"Memory Usage (GB, fp32)",
|
30 |
+
"Embedding Dimensions",
|
31 |
+
"Max Tokens",
|
32 |
+
]
|
33 |
+
]
|
34 |
+
|
35 |
+
if len(cols_to_rank) == 1:
|
36 |
+
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
|
37 |
+
else:
|
38 |
+
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
39 |
+
df.sort_values("Average", ascending=False, inplace=True)
|
40 |
+
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
41 |
+
# multiply values by 100 if they are floats and round to 1 decimal place
|
42 |
+
for col in df.columns:
|
43 |
+
if df[col].dtype == "float64" and col != "Model Size (Million Parameters)":
|
44 |
+
df[col] = df[col].apply(lambda x: round(x * 100, 1))
|
45 |
+
return df
|
46 |
+
|
47 |
+
|
48 |
def add_rank_and_format(df, benchmark_version=1):
|
49 |
df = df.reset_index()
|
50 |
df = df.rename(columns={"index": "Model"})
|
51 |
+
df = add_rank(df, benchmark_version)
|
52 |
df["Model"] = df["Model"].apply(make_clickable_model)
|
53 |
# df = remove_duplicates(df)
|
54 |
return df
|
|
|
65 |
def get_refresh_function(model_handler, benchmark_version):
|
66 |
def _refresh(metric):
|
67 |
model_handler.get_vidore_data(metric)
|
68 |
+
data_task_category = model_handler.render_df(metric, benchmark_version)
|
69 |
df = add_rank_and_format(data_task_category, benchmark_version)
|
70 |
return df
|
71 |
|
data/dataset_handler.py
CHANGED
@@ -1,4 +1,22 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
"arxivqa",
|
3 |
"docvqa",
|
4 |
"infovqa",
|
@@ -11,15 +29,48 @@ VIDORE_DATASETS_KEYWORDS = [
|
|
11 |
"healthcare_industry",
|
12 |
]
|
13 |
|
14 |
-
|
15 |
"restaurant_esg",
|
16 |
"rse_restaurant",
|
17 |
"mit_biomedical",
|
18 |
"economics_macro",
|
19 |
]
|
20 |
|
21 |
-
|
22 |
def get_datasets_nickname(dataset_name) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
if "arxivqa" in dataset_name:
|
24 |
return "ArxivQA"
|
25 |
|
|
|
1 |
+
VIDORE_V1_MTEB_NAMES = [
|
2 |
+
"VidoreArxivQARetrieval",
|
3 |
+
"VidoreDocVQARetrieval",
|
4 |
+
"VidoreInfoVQARetrieval",
|
5 |
+
"VidoreShiftProjectRetrieval",
|
6 |
+
"VidoreSyntheticDocQAAIRetrieval",
|
7 |
+
"VidoreSyntheticDocQAEnergyRetrieval",
|
8 |
+
"VidoreSyntheticDocQAGovernmentReportsRetrieval",
|
9 |
+
"VidoreSyntheticDocQAHealthcareIndustryRetrieval",
|
10 |
+
"VidoreTabfquadRetrieval",
|
11 |
+
"VidoreTatdqaRetrieval",
|
12 |
+
]
|
13 |
+
VIDORE_V2_MTEB_NAMES = [
|
14 |
+
"Vidore2BioMedicalLecturesRetrieval",
|
15 |
+
"Vidore2EconomicsReportsRetrieval",
|
16 |
+
"Vidore2ESGReportsHLRetrieval",
|
17 |
+
"Vidore2ESGReportsRetrieval",
|
18 |
+
]
|
19 |
+
DEPRECATED_VIDORE_DATASETS_KEYWORDS = [
|
20 |
"arxivqa",
|
21 |
"docvqa",
|
22 |
"infovqa",
|
|
|
29 |
"healthcare_industry",
|
30 |
]
|
31 |
|
32 |
+
DEPRECATED_VIDORE_2_DATASETS_KEYWORDS = [
|
33 |
"restaurant_esg",
|
34 |
"rse_restaurant",
|
35 |
"mit_biomedical",
|
36 |
"economics_macro",
|
37 |
]
|
38 |
|
|
|
39 |
def get_datasets_nickname(dataset_name) -> str:
|
40 |
+
if dataset_name == "VidoreArxivQARetrieval":
|
41 |
+
return "ArxivQA"
|
42 |
+
elif dataset_name == "VidoreDocVQARetrieval":
|
43 |
+
return "DocVQA"
|
44 |
+
elif dataset_name == "VidoreInfoVQARetrieval":
|
45 |
+
return "InfoVQA"
|
46 |
+
elif dataset_name == "VidoreTabfquadRetrieval":
|
47 |
+
return "TabFQuad"
|
48 |
+
elif dataset_name == "VidoreTatdqaRetrieval":
|
49 |
+
return "TAT-DQA"
|
50 |
+
elif dataset_name == "VidoreShiftProjectRetrieval":
|
51 |
+
return "Shift Project"
|
52 |
+
elif dataset_name == "VidoreSyntheticDocQAAIRetrieval":
|
53 |
+
return "Artificial Intelligence"
|
54 |
+
elif dataset_name == "VidoreSyntheticDocQAEnergyRetrieval":
|
55 |
+
return "Energy"
|
56 |
+
elif dataset_name == "VidoreSyntheticDocQAGovernmentReportsRetrieval":
|
57 |
+
return "Government Reports"
|
58 |
+
elif dataset_name == "VidoreSyntheticDocQAHealthcareIndustryRetrieval":
|
59 |
+
return "Healthcare Industry"
|
60 |
+
|
61 |
+
elif dataset_name == "Vidore2ESGReportsHLRetrieval":
|
62 |
+
return "ESG Restaurant Human English"
|
63 |
+
elif dataset_name == "Vidore2ESGReportsRetrieval":
|
64 |
+
return "ESG Restaurant Synthetic Multilingual"
|
65 |
+
elif dataset_name == "Vidore2BioMedicalLecturesRetrieval":
|
66 |
+
return "MIT Biomedical Multilingual"
|
67 |
+
elif dataset_name == "Vidore2EconomicsReportsRetrieval":
|
68 |
+
return "Economics Macro Multilingual"
|
69 |
+
|
70 |
+
else:
|
71 |
+
raise ValueError(f"Dataset {dataset_name} not found in ViDoRe")
|
72 |
+
|
73 |
+
def deprecated_get_datasets_nickname(dataset_name) -> str:
|
74 |
if "arxivqa" in dataset_name:
|
75 |
return "ArxivQA"
|
76 |
|
data/deprecated_model_handler.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from typing import Any, Dict
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
from huggingface_hub import HfApi, hf_hub_download, metadata_load
|
7 |
+
|
8 |
+
from .dataset_handler import DEPRECATED_VIDORE_2_DATASETS_KEYWORDS, DEPRECATED_VIDORE_DATASETS_KEYWORDS, deprecated_get_datasets_nickname
|
9 |
+
|
10 |
+
BLOCKLIST = ["impactframes"]
|
11 |
+
|
12 |
+
|
13 |
+
class DeprecatedModelHandler:
|
14 |
+
def __init__(self, model_infos_path="model_infos.json"):
|
15 |
+
self.api = HfApi()
|
16 |
+
self.model_infos_path = model_infos_path
|
17 |
+
self.model_infos = self._load_model_infos()
|
18 |
+
|
19 |
+
def _load_model_infos(self) -> Dict:
|
20 |
+
if os.path.exists(self.model_infos_path):
|
21 |
+
with open(self.model_infos_path) as f:
|
22 |
+
return json.load(f)
|
23 |
+
return {}
|
24 |
+
|
25 |
+
def _save_model_infos(self):
|
26 |
+
with open(self.model_infos_path, "w") as f:
|
27 |
+
json.dump(self.model_infos, f)
|
28 |
+
|
29 |
+
def _are_results_in_new_vidore_format(self, results: Dict[str, Any]) -> bool:
|
30 |
+
return "metadata" in results and "metrics" in results
|
31 |
+
|
32 |
+
def _is_baseline_repo(self, repo_id: str) -> bool:
|
33 |
+
return repo_id == "vidore/baseline-results"
|
34 |
+
|
35 |
+
def sanitize_model_name(self, model_name):
|
36 |
+
return model_name.replace("/", "_").replace(".", "-thisisapoint-")
|
37 |
+
|
38 |
+
def fuze_model_infos(self, model_name, results):
|
39 |
+
for dataset, metrics in results.items():
|
40 |
+
if dataset not in self.model_infos[model_name]["results"].keys():
|
41 |
+
self.model_infos[model_name]["results"][dataset] = metrics
|
42 |
+
else:
|
43 |
+
continue
|
44 |
+
|
45 |
+
def get_vidore_data(self, metric="ndcg_at_5"):
|
46 |
+
models = self.api.list_models(filter="vidore")
|
47 |
+
repositories = [model.modelId for model in models] # type: ignore
|
48 |
+
|
49 |
+
# Sort repositories to process non-baseline repos first (to prioritize their results)
|
50 |
+
repositories.sort(key=lambda x: self._is_baseline_repo(x))
|
51 |
+
|
52 |
+
for repo_id in repositories:
|
53 |
+
org_name = repo_id.split("/")[0]
|
54 |
+
if org_name in BLOCKLIST:
|
55 |
+
continue
|
56 |
+
files = [f for f in self.api.list_repo_files(repo_id) if f.endswith("_metrics.json") or f == "results.json"]
|
57 |
+
|
58 |
+
if len(files) == 0:
|
59 |
+
continue
|
60 |
+
else:
|
61 |
+
for file in files:
|
62 |
+
if file.endswith("results.json"):
|
63 |
+
model_name = repo_id.replace("/", "_").replace(".", "-thisisapoint-")
|
64 |
+
else:
|
65 |
+
model_name = file.split("_metrics.json")[0]
|
66 |
+
model_name = model_name.replace("/", "_").replace(".", "-thisisapoint-")
|
67 |
+
|
68 |
+
# Skip if the model is from baseline and we already have results
|
69 |
+
|
70 |
+
readme_path = hf_hub_download(repo_id, filename="README.md")
|
71 |
+
meta = metadata_load(readme_path)
|
72 |
+
try:
|
73 |
+
result_path = hf_hub_download(repo_id, filename=file)
|
74 |
+
|
75 |
+
with open(result_path) as f:
|
76 |
+
results = json.load(f)
|
77 |
+
|
78 |
+
if self._are_results_in_new_vidore_format(results):
|
79 |
+
metadata = results["metadata"]
|
80 |
+
results = results["metrics"]
|
81 |
+
|
82 |
+
# Handles the case where the model is both in baseline and outside of it
|
83 |
+
# (prioritizes the non-baseline results)
|
84 |
+
if self._is_baseline_repo(repo_id) and self.sanitize_model_name(model_name) in self.model_infos:
|
85 |
+
self.fuze_model_infos(model_name, results)
|
86 |
+
|
87 |
+
self.model_infos[model_name] = {"meta": meta, "results": results}
|
88 |
+
except Exception as e:
|
89 |
+
print(f"Error loading {model_name} - {e}")
|
90 |
+
continue
|
91 |
+
|
92 |
+
# In order to keep only models relevant to a benchmark
|
93 |
+
def filter_models_by_benchmark(self, benchmark_version=1):
|
94 |
+
filtered_model_infos = {}
|
95 |
+
keywords = DEPRECATED_VIDORE_DATASETS_KEYWORDS if benchmark_version == 1 else DEPRECATED_VIDORE_2_DATASETS_KEYWORDS
|
96 |
+
|
97 |
+
for model, info in self.model_infos.items():
|
98 |
+
results = info["results"]
|
99 |
+
if any(any(keyword in dataset for keyword in keywords) for dataset in results.keys()):
|
100 |
+
filtered_model_infos[model] = info
|
101 |
+
|
102 |
+
return filtered_model_infos
|
103 |
+
|
104 |
+
# Compute the average of a metric for each model,
|
105 |
+
def render_df(self, metric="ndcg_at_5", benchmark_version=1):
|
106 |
+
model_res = {}
|
107 |
+
filtered_model_infos = self.filter_models_by_benchmark(benchmark_version)
|
108 |
+
if len(filtered_model_infos) > 0:
|
109 |
+
for model in filtered_model_infos.keys():
|
110 |
+
res = filtered_model_infos[model]["results"]
|
111 |
+
dataset_res = {}
|
112 |
+
keywords = DEPRECATED_VIDORE_DATASETS_KEYWORDS if benchmark_version == 1 else DEPRECATED_VIDORE_2_DATASETS_KEYWORDS
|
113 |
+
for dataset in res.keys():
|
114 |
+
if not any(keyword in dataset for keyword in keywords):
|
115 |
+
continue
|
116 |
+
|
117 |
+
dataset_nickname = deprecated_get_datasets_nickname(dataset)
|
118 |
+
dataset_res[dataset_nickname] = res[dataset][metric]
|
119 |
+
model_res[model] = dataset_res
|
120 |
+
|
121 |
+
df = pd.DataFrame(model_res).T
|
122 |
+
|
123 |
+
return df
|
124 |
+
return pd.DataFrame()
|
data/model_handler.py
CHANGED
@@ -1,98 +1,66 @@
|
|
1 |
-
import
|
|
|
2 |
import os
|
3 |
-
|
4 |
-
|
5 |
import pandas as pd
|
6 |
-
from huggingface_hub import HfApi, hf_hub_download, metadata_load
|
7 |
-
|
8 |
-
from .dataset_handler import VIDORE_2_DATASETS_KEYWORDS, VIDORE_DATASETS_KEYWORDS, get_datasets_nickname
|
9 |
-
|
10 |
-
BLOCKLIST = ["impactframes"]
|
11 |
|
|
|
12 |
|
13 |
class ModelHandler:
|
14 |
-
def __init__(self, model_infos_path="model_infos.json"):
|
15 |
-
self.api = HfApi()
|
16 |
-
self.model_infos_path = model_infos_path
|
17 |
-
self.model_infos = self._load_model_infos()
|
18 |
-
|
19 |
-
def _load_model_infos(self) -> Dict:
|
20 |
-
if os.path.exists(self.model_infos_path):
|
21 |
-
with open(self.model_infos_path) as f:
|
22 |
-
return json.load(f)
|
23 |
-
return {}
|
24 |
-
|
25 |
-
def _save_model_infos(self):
|
26 |
-
with open(self.model_infos_path, "w") as f:
|
27 |
-
json.dump(self.model_infos, f)
|
28 |
-
|
29 |
-
def _are_results_in_new_vidore_format(self, results: Dict[str, Any]) -> bool:
|
30 |
-
return "metadata" in results and "metrics" in results
|
31 |
|
32 |
-
def
|
33 |
-
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
if
|
41 |
-
|
42 |
-
else:
|
43 |
-
continue
|
44 |
|
45 |
def get_vidore_data(self, metric="ndcg_at_5"):
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
else:
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
with open(result_path) as f:
|
76 |
-
results = json.load(f)
|
77 |
-
|
78 |
-
if self._are_results_in_new_vidore_format(results):
|
79 |
-
metadata = results["metadata"]
|
80 |
-
results = results["metrics"]
|
81 |
-
|
82 |
-
# Handles the case where the model is both in baseline and outside of it
|
83 |
-
# (prioritizes the non-baseline results)
|
84 |
-
if self._is_baseline_repo(repo_id) and self.sanitize_model_name(model_name) in self.model_infos:
|
85 |
-
self.fuze_model_infos(model_name, results)
|
86 |
-
|
87 |
-
self.model_infos[model_name] = {"meta": meta, "results": results}
|
88 |
-
except Exception as e:
|
89 |
-
print(f"Error loading {model_name} - {e}")
|
90 |
-
continue
|
91 |
|
92 |
-
# In order to keep only models relevant to a benchmark
|
93 |
def filter_models_by_benchmark(self, benchmark_version=1):
|
94 |
filtered_model_infos = {}
|
95 |
-
keywords =
|
96 |
|
97 |
for model, info in self.model_infos.items():
|
98 |
results = info["results"]
|
@@ -101,52 +69,26 @@ class ModelHandler:
|
|
101 |
|
102 |
return filtered_model_infos
|
103 |
|
104 |
-
|
105 |
-
def compute_averages(self, metric="ndcg_at_5", benchmark_version=1):
|
106 |
model_res = {}
|
107 |
filtered_model_infos = self.filter_models_by_benchmark(benchmark_version)
|
108 |
if len(filtered_model_infos) > 0:
|
109 |
for model in filtered_model_infos.keys():
|
110 |
res = filtered_model_infos[model]["results"]
|
111 |
dataset_res = {}
|
112 |
-
keywords =
|
|
|
|
|
|
|
|
|
113 |
for dataset in res.keys():
|
114 |
if not any(keyword in dataset for keyword in keywords):
|
115 |
continue
|
116 |
-
|
117 |
dataset_nickname = get_datasets_nickname(dataset)
|
118 |
-
dataset_res[dataset_nickname] = res[dataset][metric]
|
119 |
model_res[model] = dataset_res
|
120 |
|
121 |
df = pd.DataFrame(model_res).T
|
122 |
|
123 |
return df
|
124 |
return pd.DataFrame()
|
125 |
-
|
126 |
-
@staticmethod
|
127 |
-
def add_rank(df, benchmark_version=1):
|
128 |
-
df.fillna(0.0, inplace=True)
|
129 |
-
cols_to_rank = [
|
130 |
-
col
|
131 |
-
for col in df.columns
|
132 |
-
if col
|
133 |
-
not in [
|
134 |
-
"Model",
|
135 |
-
"Model Size (Million Parameters)",
|
136 |
-
"Memory Usage (GB, fp32)",
|
137 |
-
"Embedding Dimensions",
|
138 |
-
"Max Tokens",
|
139 |
-
]
|
140 |
-
]
|
141 |
-
|
142 |
-
if len(cols_to_rank) == 1:
|
143 |
-
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
|
144 |
-
else:
|
145 |
-
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
146 |
-
df.sort_values("Average", ascending=False, inplace=True)
|
147 |
-
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
148 |
-
# multiply values by 100 if they are floats and round to 1 decimal place
|
149 |
-
for col in df.columns:
|
150 |
-
if df[col].dtype == "float64":
|
151 |
-
df[col] = df[col].apply(lambda x: round(x * 100, 1))
|
152 |
-
return df
|
|
|
1 |
+
from git import Repo
|
2 |
+
import shutil
|
3 |
import os
|
4 |
+
import json
|
|
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
from .dataset_handler import VIDORE_V1_MTEB_NAMES, VIDORE_V2_MTEB_NAMES, get_datasets_nickname
|
8 |
|
9 |
class ModelHandler:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
def __init__(self):
|
12 |
+
self.model_infos = {}
|
13 |
|
14 |
+
@staticmethod
|
15 |
+
def get_folders(dir_path):
|
16 |
+
return sorted([
|
17 |
+
path_
|
18 |
+
for path_ in os.listdir(dir_path)
|
19 |
+
if os.path.isdir(os.path.join(dir_path, path_))
|
20 |
+
])
|
|
|
|
|
21 |
|
22 |
def get_vidore_data(self, metric="ndcg_at_5"):
|
23 |
+
repo_url = "https://github.com/embeddings-benchmark/results.git"
|
24 |
+
local_path = "./results"
|
25 |
+
folder_of_interest = "results"
|
26 |
+
|
27 |
+
if os.path.exists(local_path):
|
28 |
+
repo = Repo(local_path)
|
29 |
+
origin = repo.remotes.origin
|
30 |
+
origin.pull()
|
31 |
+
else:
|
32 |
+
Repo.clone_from(repo_url, local_path, depth=1)
|
33 |
+
|
34 |
+
model_names = self.get_folders(os.path.join(local_path, folder_of_interest))
|
35 |
+
for model_name in model_names:
|
36 |
+
revisions = self.get_folders(os.path.join(local_path, folder_of_interest, model_name))
|
37 |
+
first_revision = revisions[0]
|
38 |
+
result_filenames = [
|
39 |
+
result_filename
|
40 |
+
for result_filename in os.listdir(os.path.join(local_path, folder_of_interest, model_name, first_revision))
|
41 |
+
# if result_filename.endswith(".json") and result_filename != "model_meta.json"
|
42 |
+
]
|
43 |
+
if "model_meta.json" in result_filenames:
|
44 |
+
with open(os.path.join(local_path, folder_of_interest, model_name, first_revision, "model_meta.json"), "r") as f:
|
45 |
+
meta = json.load(f)
|
46 |
else:
|
47 |
+
meta = {}
|
48 |
+
results = {}
|
49 |
+
if all(f"{v1_dataset_name}.json" in result_filenames for v1_dataset_name in VIDORE_V1_MTEB_NAMES):
|
50 |
+
for v1_dataset_name in VIDORE_V1_MTEB_NAMES:
|
51 |
+
with open(os.path.join(local_path, folder_of_interest, model_name, first_revision, f"{v1_dataset_name}.json"), "r") as f:
|
52 |
+
results[v1_dataset_name] = json.load(f)
|
53 |
+
if all(f"{v2_dataset_name}.json" in result_filenames for v2_dataset_name in VIDORE_V2_MTEB_NAMES):
|
54 |
+
for v2_dataset_name in VIDORE_V2_MTEB_NAMES:
|
55 |
+
with open(os.path.join(local_path, folder_of_interest, model_name, first_revision, f"{v2_dataset_name}.json"), "r") as f:
|
56 |
+
results[v2_dataset_name] = json.load(f)
|
57 |
+
if model_name not in self.model_infos:
|
58 |
+
self.model_infos[model_name] = {}
|
59 |
+
self.model_infos[model_name] = {"meta": meta, "results": results}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
|
|
61 |
def filter_models_by_benchmark(self, benchmark_version=1):
|
62 |
filtered_model_infos = {}
|
63 |
+
keywords = VIDORE_V1_MTEB_NAMES if benchmark_version == 1 else VIDORE_V2_MTEB_NAMES
|
64 |
|
65 |
for model, info in self.model_infos.items():
|
66 |
results = info["results"]
|
|
|
69 |
|
70 |
return filtered_model_infos
|
71 |
|
72 |
+
def render_df(self, metric="ndcg_at_5", benchmark_version=1):
|
|
|
73 |
model_res = {}
|
74 |
filtered_model_infos = self.filter_models_by_benchmark(benchmark_version)
|
75 |
if len(filtered_model_infos) > 0:
|
76 |
for model in filtered_model_infos.keys():
|
77 |
res = filtered_model_infos[model]["results"]
|
78 |
dataset_res = {}
|
79 |
+
keywords = VIDORE_V1_MTEB_NAMES if benchmark_version == 1 else VIDORE_V2_MTEB_NAMES
|
80 |
+
if "n_parameters" in filtered_model_infos[model]["meta"]:
|
81 |
+
dataset_res["Model Size (Million Parameters)"] = filtered_model_infos[model]["meta"]["n_parameters"] // 1_000_000
|
82 |
+
else:
|
83 |
+
dataset_res["Model Size (Million Parameters)"] = None
|
84 |
for dataset in res.keys():
|
85 |
if not any(keyword in dataset for keyword in keywords):
|
86 |
continue
|
|
|
87 |
dataset_nickname = get_datasets_nickname(dataset)
|
88 |
+
dataset_res[dataset_nickname] = res[dataset]["scores"]["test"][0][metric]
|
89 |
model_res[model] = dataset_res
|
90 |
|
91 |
df = pd.DataFrame(model_res).T
|
92 |
|
93 |
return df
|
94 |
return pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
gitpython
|
2 |
+
gradio
|