Spaces:
Running
on
Zero
Running
on
Zero
import tempfile | |
from importlib.resources import files | |
import gradio as gr | |
import soundfile as sf | |
import torch | |
import torchaudio | |
from cached_path import cached_path | |
from omegaconf import OmegaConf | |
from ipa.ipa import g2p_object, text_to_ipa | |
try: | |
import spaces | |
USING_SPACES = True | |
except ImportError: | |
USING_SPACES = False | |
from f5_tts.infer.utils_infer import ( | |
device, | |
hop_length, | |
infer_process, | |
load_checkpoint, | |
load_vocoder, | |
mel_spec_type, | |
n_fft, | |
n_mel_channels, | |
ode_method, | |
preprocess_ref_audio_text, | |
remove_silence_for_generated_wav, | |
save_spectrogram, | |
target_sample_rate, | |
win_length, | |
) | |
from f5_tts.model import CFM, DiT | |
from f5_tts.model.utils import get_tokenizer | |
def gpu_decorator(func): | |
if USING_SPACES: | |
return spaces.GPU(func) | |
else: | |
return func | |
vocoder = load_vocoder() | |
def load_model( | |
model_cls, | |
model_cfg, | |
ckpt_path, | |
mel_spec_type=mel_spec_type, | |
vocab_file="", | |
ode_method=ode_method, | |
use_ema=True, | |
device=device, | |
fp16=False, | |
): | |
if vocab_file == "": | |
vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt")) | |
tokenizer = "custom" | |
print("\nvocab : ", vocab_file) | |
print("token : ", tokenizer) | |
print("model : ", ckpt_path, "\n") | |
vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer) | |
model = CFM( | |
transformer=model_cls( | |
**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels | |
), | |
mel_spec_kwargs=dict( | |
n_fft=n_fft, | |
hop_length=hop_length, | |
win_length=win_length, | |
n_mel_channels=n_mel_channels, | |
target_sample_rate=target_sample_rate, | |
mel_spec_type=mel_spec_type, | |
), | |
odeint_kwargs=dict( | |
method=ode_method, | |
), | |
vocab_char_map=vocab_char_map, | |
).to(device) | |
dtype = torch.float32 if mel_spec_type == "bigvgan" or not fp16 else None | |
model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema) | |
return model | |
def load_f5tts(ckpt_path, vocab_path, old=False, fp16=False): | |
ckpt_path = str(cached_path(ckpt_path)) | |
F5TTS_model_cfg = dict( | |
dim=1024, | |
depth=22, | |
heads=16, | |
ff_mult=2, | |
text_dim=512, | |
conv_layers=4, | |
text_mask_padding=not old, | |
pe_attn_head=1 if old else None, | |
) | |
vocab_path = str(cached_path(vocab_path)) | |
return load_model( | |
DiT, | |
F5TTS_model_cfg, | |
ckpt_path, | |
vocab_file=vocab_path, | |
use_ema=old, | |
fp16=fp16, | |
) | |
OmegaConf.register_new_resolver("load_f5tts", load_f5tts) | |
models_config = OmegaConf.to_object(OmegaConf.load("configs/models.yaml")) | |
DEFAULT_MODEL_ID = list(models_config.keys())[0] | |
def infer( | |
ref_audio_orig, | |
ref_text, | |
gen_text, | |
model, | |
remove_silence, | |
cross_fade_duration=0.15, | |
nfe_step=32, | |
speed=1, | |
show_info=gr.Info, | |
): | |
if not ref_audio_orig: | |
gr.Warning("Please provide reference audio.") | |
return gr.update(), gr.update(), ref_text | |
if not gen_text.strip(): | |
gr.Warning("Please enter text to generate.") | |
return gr.update(), gr.update(), ref_text | |
ref_audio, ref_text = preprocess_ref_audio_text( | |
ref_audio_orig, ref_text, show_info=show_info | |
) | |
final_wave, final_sample_rate, combined_spectrogram = infer_process( | |
ref_audio, | |
ref_text, | |
gen_text, | |
model, | |
vocoder, | |
cross_fade_duration=cross_fade_duration, | |
nfe_step=nfe_step, | |
speed=speed, | |
show_info=show_info, | |
progress=gr.Progress(), | |
) | |
# Remove silence | |
if remove_silence: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: | |
sf.write(f.name, final_wave, final_sample_rate) | |
remove_silence_for_generated_wav(f.name) | |
final_wave, _ = torchaudio.load(f.name) | |
final_wave = final_wave.squeeze().cpu().numpy() | |
# Save the spectrogram | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram: | |
spectrogram_path = tmp_spectrogram.name | |
save_spectrogram(combined_spectrogram, spectrogram_path) | |
return (final_sample_rate, final_wave), spectrogram_path | |
def get_title(): | |
with open("DEMO.md", encoding="utf-8") as tong: | |
return tong.readline().strip("# ") | |
demo = gr.Blocks( | |
title=get_title(), | |
css="@import url(https://tauhu.tw/tauhu-oo.css);", | |
theme=gr.themes.Default( | |
font=( | |
"tauhu-oo", | |
gr.themes.GoogleFont("Source Sans Pro"), | |
"ui-sans-serif", | |
"system-ui", | |
"sans-serif", | |
) | |
), | |
) | |
with demo: | |
with open("DEMO.md") as tong: | |
gr.Markdown(tong.read()) | |
with gr.Row(): | |
with gr.Column(): | |
model_drop_down = gr.Dropdown( | |
models_config.keys(), | |
value=DEFAULT_MODEL_ID, | |
label="模型", | |
) | |
language = gr.Dropdown( | |
choices=g2p_object.keys(), | |
label="語言", | |
value="阿美_秀姑巒", | |
) | |
ref_audio_input = gr.Audio( | |
type="filepath", | |
waveform_options=gr.WaveformOptions( | |
sample_rate=24000, | |
), | |
label="Reference Audio", | |
) | |
ref_text_input = gr.Textbox( | |
value="", | |
label="Reference Text", | |
) | |
gen_text_input = gr.Textbox( | |
label="Text to Generate", | |
value="", | |
) | |
generate_btn = gr.Button("Synthesize", variant="primary") | |
with gr.Accordion("Advanced Settings", open=False): | |
remove_silence = gr.Checkbox( | |
label="Remove Silences", | |
info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.", | |
value=False, | |
) | |
speed_slider = gr.Slider( | |
label="Speed", | |
minimum=0.3, | |
maximum=2.0, | |
value=1.0, | |
step=0.1, | |
info="語速(越小越慢)", | |
) | |
nfe_slider = gr.Slider( | |
label="NFE Steps", | |
minimum=4, | |
maximum=64, | |
value=32, | |
step=2, | |
info="Set the number of denoising steps.", | |
) | |
cross_fade_duration_slider = gr.Slider( | |
label="Cross-Fade Duration (s)", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.15, | |
step=0.01, | |
info="Set the duration of the cross-fade between audio clips.", | |
) | |
with gr.Column(): | |
audio_output = gr.Audio(label="Synthesized Audio") | |
spectrogram_output = gr.Image(label="Spectrogram") | |
def basic_tts( | |
model_drop_down: str, | |
language: str, | |
ref_audio_input: str, | |
ref_text_input: str, | |
gen_text_input: str, | |
remove_silence: bool, | |
cross_fade_duration_slider: float, | |
nfe_slider: int, | |
speed_slider: float, | |
): | |
ref_text_input = ref_text_input.strip() | |
if len(ref_text_input) == 0: | |
raise gr.Error("請勿輸入空字串。") | |
gen_text_input = gen_text_input.strip() | |
if len(gen_text_input) == 0: | |
raise gr.Error("請勿輸入空字串。") | |
ignore_punctuation = False | |
ipa_with_ng = False | |
ref_text_input = text_to_ipa( | |
ref_text_input, language, ignore_punctuation, ipa_with_ng | |
) | |
gen_text_input = text_to_ipa( | |
gen_text_input, language, ignore_punctuation, ipa_with_ng | |
) | |
audio_out, spectrogram_path = infer( | |
ref_audio_input, | |
ref_text_input, | |
gen_text_input, | |
models_config[model_drop_down], | |
remove_silence, | |
cross_fade_duration=cross_fade_duration_slider, | |
nfe_step=nfe_slider, | |
speed=speed_slider, | |
) | |
return audio_out, spectrogram_path | |
generate_btn.click( | |
basic_tts, | |
inputs=[ | |
model_drop_down, | |
language, | |
ref_audio_input, | |
ref_text_input, | |
gen_text_input, | |
remove_silence, | |
cross_fade_duration_slider, | |
nfe_slider, | |
speed_slider, | |
], | |
outputs=[audio_output, spectrogram_output], | |
) | |
gr.Examples( | |
[ | |
[ | |
"阿美_秀姑巒", | |
"./ref_wav/E-PV001-0001.wav", | |
"o pakafanaʼ ni akong to pinangan no romiʼad.", | |
"Mafanaʼ kiso a misanoPangcah haw?", | |
], | |
[ | |
"阿美_秀姑巒", | |
"./ref_wav/E-PV001-0001.wav", | |
"o pakafanaʼ ni akong to pinangan no romiʼad.", | |
"Kering sa masoni⌃ to ko pipahanhanan a tatokian, o fe:soc no niyam a tayra i piondoan.", | |
], | |
[ | |
"阿美_秀姑巒", | |
"./ref_wav/cu_practice-0016849.wav", | |
"ano cikasoan to, ano o falangaw to i, malecaday to a matira.", | |
"Pafelien cingra to misapoeneray a falocoʼ, nanay madaʼoc matilid i falocoʼ nira konini.", | |
], | |
], | |
label="範例", | |
inputs=[ | |
language, | |
ref_audio_input, | |
ref_text_input, | |
gen_text_input, | |
], | |
) | |
demo.launch() | |