formosan-f5-tts / app.py
txya900619's picture
feat: language show all language in g2p_object and change to dropdown
039f399
import tempfile
from importlib.resources import files
import gradio as gr
import soundfile as sf
import torch
import torchaudio
from cached_path import cached_path
from omegaconf import OmegaConf
from ipa.ipa import g2p_object, text_to_ipa
try:
import spaces
USING_SPACES = True
except ImportError:
USING_SPACES = False
from f5_tts.infer.utils_infer import (
device,
hop_length,
infer_process,
load_checkpoint,
load_vocoder,
mel_spec_type,
n_fft,
n_mel_channels,
ode_method,
preprocess_ref_audio_text,
remove_silence_for_generated_wav,
save_spectrogram,
target_sample_rate,
win_length,
)
from f5_tts.model import CFM, DiT
from f5_tts.model.utils import get_tokenizer
def gpu_decorator(func):
if USING_SPACES:
return spaces.GPU(func)
else:
return func
vocoder = load_vocoder()
def load_model(
model_cls,
model_cfg,
ckpt_path,
mel_spec_type=mel_spec_type,
vocab_file="",
ode_method=ode_method,
use_ema=True,
device=device,
fp16=False,
):
if vocab_file == "":
vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt"))
tokenizer = "custom"
print("\nvocab : ", vocab_file)
print("token : ", tokenizer)
print("model : ", ckpt_path, "\n")
vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer)
model = CFM(
transformer=model_cls(
**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
),
mel_spec_kwargs=dict(
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
n_mel_channels=n_mel_channels,
target_sample_rate=target_sample_rate,
mel_spec_type=mel_spec_type,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=vocab_char_map,
).to(device)
dtype = torch.float32 if mel_spec_type == "bigvgan" or not fp16 else None
model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
return model
def load_f5tts(ckpt_path, vocab_path, old=False, fp16=False):
ckpt_path = str(cached_path(ckpt_path))
F5TTS_model_cfg = dict(
dim=1024,
depth=22,
heads=16,
ff_mult=2,
text_dim=512,
conv_layers=4,
text_mask_padding=not old,
pe_attn_head=1 if old else None,
)
vocab_path = str(cached_path(vocab_path))
return load_model(
DiT,
F5TTS_model_cfg,
ckpt_path,
vocab_file=vocab_path,
use_ema=old,
fp16=fp16,
)
OmegaConf.register_new_resolver("load_f5tts", load_f5tts)
models_config = OmegaConf.to_object(OmegaConf.load("configs/models.yaml"))
DEFAULT_MODEL_ID = list(models_config.keys())[0]
@gpu_decorator
def infer(
ref_audio_orig,
ref_text,
gen_text,
model,
remove_silence,
cross_fade_duration=0.15,
nfe_step=32,
speed=1,
show_info=gr.Info,
):
if not ref_audio_orig:
gr.Warning("Please provide reference audio.")
return gr.update(), gr.update(), ref_text
if not gen_text.strip():
gr.Warning("Please enter text to generate.")
return gr.update(), gr.update(), ref_text
ref_audio, ref_text = preprocess_ref_audio_text(
ref_audio_orig, ref_text, show_info=show_info
)
final_wave, final_sample_rate, combined_spectrogram = infer_process(
ref_audio,
ref_text,
gen_text,
model,
vocoder,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
speed=speed,
show_info=show_info,
progress=gr.Progress(),
)
# Remove silence
if remove_silence:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
sf.write(f.name, final_wave, final_sample_rate)
remove_silence_for_generated_wav(f.name)
final_wave, _ = torchaudio.load(f.name)
final_wave = final_wave.squeeze().cpu().numpy()
# Save the spectrogram
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
spectrogram_path = tmp_spectrogram.name
save_spectrogram(combined_spectrogram, spectrogram_path)
return (final_sample_rate, final_wave), spectrogram_path
def get_title():
with open("DEMO.md", encoding="utf-8") as tong:
return tong.readline().strip("# ")
demo = gr.Blocks(
title=get_title(),
css="@import url(https://tauhu.tw/tauhu-oo.css);",
theme=gr.themes.Default(
font=(
"tauhu-oo",
gr.themes.GoogleFont("Source Sans Pro"),
"ui-sans-serif",
"system-ui",
"sans-serif",
)
),
)
with demo:
with open("DEMO.md") as tong:
gr.Markdown(tong.read())
with gr.Row():
with gr.Column():
model_drop_down = gr.Dropdown(
models_config.keys(),
value=DEFAULT_MODEL_ID,
label="模型",
)
language = gr.Dropdown(
choices=g2p_object.keys(),
label="語言",
value="阿美_秀姑巒",
)
ref_audio_input = gr.Audio(
type="filepath",
waveform_options=gr.WaveformOptions(
sample_rate=24000,
),
label="Reference Audio",
)
ref_text_input = gr.Textbox(
value="",
label="Reference Text",
)
gen_text_input = gr.Textbox(
label="Text to Generate",
value="",
)
generate_btn = gr.Button("Synthesize", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
remove_silence = gr.Checkbox(
label="Remove Silences",
info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
value=False,
)
speed_slider = gr.Slider(
label="Speed",
minimum=0.3,
maximum=2.0,
value=1.0,
step=0.1,
info="語速(越小越慢)",
)
nfe_slider = gr.Slider(
label="NFE Steps",
minimum=4,
maximum=64,
value=32,
step=2,
info="Set the number of denoising steps.",
)
cross_fade_duration_slider = gr.Slider(
label="Cross-Fade Duration (s)",
minimum=0.0,
maximum=1.0,
value=0.15,
step=0.01,
info="Set the duration of the cross-fade between audio clips.",
)
with gr.Column():
audio_output = gr.Audio(label="Synthesized Audio")
spectrogram_output = gr.Image(label="Spectrogram")
@gpu_decorator
def basic_tts(
model_drop_down: str,
language: str,
ref_audio_input: str,
ref_text_input: str,
gen_text_input: str,
remove_silence: bool,
cross_fade_duration_slider: float,
nfe_slider: int,
speed_slider: float,
):
ref_text_input = ref_text_input.strip()
if len(ref_text_input) == 0:
raise gr.Error("請勿輸入空字串。")
gen_text_input = gen_text_input.strip()
if len(gen_text_input) == 0:
raise gr.Error("請勿輸入空字串。")
ignore_punctuation = False
ipa_with_ng = False
ref_text_input = text_to_ipa(
ref_text_input, language, ignore_punctuation, ipa_with_ng
)
gen_text_input = text_to_ipa(
gen_text_input, language, ignore_punctuation, ipa_with_ng
)
audio_out, spectrogram_path = infer(
ref_audio_input,
ref_text_input,
gen_text_input,
models_config[model_drop_down],
remove_silence,
cross_fade_duration=cross_fade_duration_slider,
nfe_step=nfe_slider,
speed=speed_slider,
)
return audio_out, spectrogram_path
generate_btn.click(
basic_tts,
inputs=[
model_drop_down,
language,
ref_audio_input,
ref_text_input,
gen_text_input,
remove_silence,
cross_fade_duration_slider,
nfe_slider,
speed_slider,
],
outputs=[audio_output, spectrogram_output],
)
gr.Examples(
[
[
"阿美_秀姑巒",
"./ref_wav/E-PV001-0001.wav",
"o pakafanaʼ ni akong to pinangan no romiʼad.",
"Mafanaʼ kiso a misanoPangcah haw?",
],
[
"阿美_秀姑巒",
"./ref_wav/E-PV001-0001.wav",
"o pakafanaʼ ni akong to pinangan no romiʼad.",
"Kering sa masoni⌃ to ko pipahanhanan a tatokian, o fe:soc no niyam a tayra i piondoan.",
],
[
"阿美_秀姑巒",
"./ref_wav/cu_practice-0016849.wav",
"ano cikasoan to, ano o falangaw to i, malecaday to a matira.",
"Pafelien cingra to misapoeneray a falocoʼ, nanay madaʼoc matilid i falocoʼ nira konini.",
],
],
label="範例",
inputs=[
language,
ref_audio_input,
ref_text_input,
gen_text_input,
],
)
demo.launch()