Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,008 Bytes
0c074b9 14f96db 0c074b9 14f96db 0c074b9 039f399 0c074b9 14f96db 0c074b9 14f96db 0c074b9 14f96db 0c074b9 14f96db 0c074b9 14f96db 0c074b9 14f96db f357dd6 14f96db 0c074b9 f357dd6 14f96db 0c074b9 f357dd6 14f96db f357dd6 0c074b9 c3d752c 0c074b9 c3d752c 0c074b9 443b650 0c074b9 039f399 d992f07 0c074b9 d992f07 0c074b9 443b650 43389f1 0c074b9 d992f07 0c074b9 c3d752c 0c074b9 d992f07 0c074b9 d992f07 ed43fae 14f96db 0c074b9 ae54386 0c074b9 d992f07 be9c172 14f96db 0c074b9 d992f07 0c074b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import tempfile
from importlib.resources import files
import gradio as gr
import soundfile as sf
import torch
import torchaudio
from cached_path import cached_path
from omegaconf import OmegaConf
from ipa.ipa import g2p_object, text_to_ipa
try:
import spaces
USING_SPACES = True
except ImportError:
USING_SPACES = False
from f5_tts.infer.utils_infer import (
device,
hop_length,
infer_process,
load_checkpoint,
load_vocoder,
mel_spec_type,
n_fft,
n_mel_channels,
ode_method,
preprocess_ref_audio_text,
remove_silence_for_generated_wav,
save_spectrogram,
target_sample_rate,
win_length,
)
from f5_tts.model import CFM, DiT
from f5_tts.model.utils import get_tokenizer
def gpu_decorator(func):
if USING_SPACES:
return spaces.GPU(func)
else:
return func
vocoder = load_vocoder()
def load_model(
model_cls,
model_cfg,
ckpt_path,
mel_spec_type=mel_spec_type,
vocab_file="",
ode_method=ode_method,
use_ema=True,
device=device,
fp16=False,
):
if vocab_file == "":
vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt"))
tokenizer = "custom"
print("\nvocab : ", vocab_file)
print("token : ", tokenizer)
print("model : ", ckpt_path, "\n")
vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer)
model = CFM(
transformer=model_cls(
**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
),
mel_spec_kwargs=dict(
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
n_mel_channels=n_mel_channels,
target_sample_rate=target_sample_rate,
mel_spec_type=mel_spec_type,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=vocab_char_map,
).to(device)
dtype = torch.float32 if mel_spec_type == "bigvgan" or not fp16 else None
model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
return model
def load_f5tts(ckpt_path, vocab_path, old=False, fp16=False):
ckpt_path = str(cached_path(ckpt_path))
F5TTS_model_cfg = dict(
dim=1024,
depth=22,
heads=16,
ff_mult=2,
text_dim=512,
conv_layers=4,
text_mask_padding=not old,
pe_attn_head=1 if old else None,
)
vocab_path = str(cached_path(vocab_path))
return load_model(
DiT,
F5TTS_model_cfg,
ckpt_path,
vocab_file=vocab_path,
use_ema=old,
fp16=fp16,
)
OmegaConf.register_new_resolver("load_f5tts", load_f5tts)
models_config = OmegaConf.to_object(OmegaConf.load("configs/models.yaml"))
DEFAULT_MODEL_ID = list(models_config.keys())[0]
@gpu_decorator
def infer(
ref_audio_orig,
ref_text,
gen_text,
model,
remove_silence,
cross_fade_duration=0.15,
nfe_step=32,
speed=1,
show_info=gr.Info,
):
if not ref_audio_orig:
gr.Warning("Please provide reference audio.")
return gr.update(), gr.update(), ref_text
if not gen_text.strip():
gr.Warning("Please enter text to generate.")
return gr.update(), gr.update(), ref_text
ref_audio, ref_text = preprocess_ref_audio_text(
ref_audio_orig, ref_text, show_info=show_info
)
final_wave, final_sample_rate, combined_spectrogram = infer_process(
ref_audio,
ref_text,
gen_text,
model,
vocoder,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
speed=speed,
show_info=show_info,
progress=gr.Progress(),
)
# Remove silence
if remove_silence:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
sf.write(f.name, final_wave, final_sample_rate)
remove_silence_for_generated_wav(f.name)
final_wave, _ = torchaudio.load(f.name)
final_wave = final_wave.squeeze().cpu().numpy()
# Save the spectrogram
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
spectrogram_path = tmp_spectrogram.name
save_spectrogram(combined_spectrogram, spectrogram_path)
return (final_sample_rate, final_wave), spectrogram_path
def get_title():
with open("DEMO.md", encoding="utf-8") as tong:
return tong.readline().strip("# ")
demo = gr.Blocks(
title=get_title(),
css="@import url(https://tauhu.tw/tauhu-oo.css);",
theme=gr.themes.Default(
font=(
"tauhu-oo",
gr.themes.GoogleFont("Source Sans Pro"),
"ui-sans-serif",
"system-ui",
"sans-serif",
)
),
)
with demo:
with open("DEMO.md") as tong:
gr.Markdown(tong.read())
with gr.Row():
with gr.Column():
model_drop_down = gr.Dropdown(
models_config.keys(),
value=DEFAULT_MODEL_ID,
label="模型",
)
language = gr.Dropdown(
choices=g2p_object.keys(),
label="語言",
value="阿美_秀姑巒",
)
ref_audio_input = gr.Audio(
type="filepath",
waveform_options=gr.WaveformOptions(
sample_rate=24000,
),
label="Reference Audio",
)
ref_text_input = gr.Textbox(
value="",
label="Reference Text",
)
gen_text_input = gr.Textbox(
label="Text to Generate",
value="",
)
generate_btn = gr.Button("Synthesize", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
remove_silence = gr.Checkbox(
label="Remove Silences",
info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
value=False,
)
speed_slider = gr.Slider(
label="Speed",
minimum=0.3,
maximum=2.0,
value=1.0,
step=0.1,
info="語速(越小越慢)",
)
nfe_slider = gr.Slider(
label="NFE Steps",
minimum=4,
maximum=64,
value=32,
step=2,
info="Set the number of denoising steps.",
)
cross_fade_duration_slider = gr.Slider(
label="Cross-Fade Duration (s)",
minimum=0.0,
maximum=1.0,
value=0.15,
step=0.01,
info="Set the duration of the cross-fade between audio clips.",
)
with gr.Column():
audio_output = gr.Audio(label="Synthesized Audio")
spectrogram_output = gr.Image(label="Spectrogram")
@gpu_decorator
def basic_tts(
model_drop_down: str,
language: str,
ref_audio_input: str,
ref_text_input: str,
gen_text_input: str,
remove_silence: bool,
cross_fade_duration_slider: float,
nfe_slider: int,
speed_slider: float,
):
ref_text_input = ref_text_input.strip()
if len(ref_text_input) == 0:
raise gr.Error("請勿輸入空字串。")
gen_text_input = gen_text_input.strip()
if len(gen_text_input) == 0:
raise gr.Error("請勿輸入空字串。")
ignore_punctuation = False
ipa_with_ng = False
ref_text_input = text_to_ipa(
ref_text_input, language, ignore_punctuation, ipa_with_ng
)
gen_text_input = text_to_ipa(
gen_text_input, language, ignore_punctuation, ipa_with_ng
)
audio_out, spectrogram_path = infer(
ref_audio_input,
ref_text_input,
gen_text_input,
models_config[model_drop_down],
remove_silence,
cross_fade_duration=cross_fade_duration_slider,
nfe_step=nfe_slider,
speed=speed_slider,
)
return audio_out, spectrogram_path
generate_btn.click(
basic_tts,
inputs=[
model_drop_down,
language,
ref_audio_input,
ref_text_input,
gen_text_input,
remove_silence,
cross_fade_duration_slider,
nfe_slider,
speed_slider,
],
outputs=[audio_output, spectrogram_output],
)
gr.Examples(
[
[
"阿美_秀姑巒",
"./ref_wav/E-PV001-0001.wav",
"o pakafanaʼ ni akong to pinangan no romiʼad.",
"Mafanaʼ kiso a misanoPangcah haw?",
],
[
"阿美_秀姑巒",
"./ref_wav/E-PV001-0001.wav",
"o pakafanaʼ ni akong to pinangan no romiʼad.",
"Kering sa masoni⌃ to ko pipahanhanan a tatokian, o fe:soc no niyam a tayra i piondoan.",
],
[
"阿美_秀姑巒",
"./ref_wav/cu_practice-0016849.wav",
"ano cikasoan to, ano o falangaw to i, malecaday to a matira.",
"Pafelien cingra to misapoeneray a falocoʼ, nanay madaʼoc matilid i falocoʼ nira konini.",
],
],
label="範例",
inputs=[
language,
ref_audio_input,
ref_text_input,
gen_text_input,
],
)
demo.launch()
|