fatchecker / unet /unet.py
bumble-bee's picture
added unet files
6bf4d42
# Build U-Net model
import tensorflow as tf
import tensorflow.keras.layers as layers
import tensorflow.keras.models as models
import tensorflow.keras.metrics as metrics
#from keras import backend as keras
def unet(pretrained_weights = None, input_size = (256,256,1)):
inputs = layers.Input(input_size)
conv1 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
conv1 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
pool1 = layers.MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
conv2 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
pool2 = layers.MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
conv3 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
pool3 = layers.MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
conv4 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
drop4 = layers.Dropout(0.5)(conv4)
pool4 = layers.MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = layers.Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
conv5 = layers.Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
drop5 = layers.Dropout(0.5)(conv5)
up6 = layers.Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(drop5))
merge6 = layers.concatenate([drop4,up6], axis = 3)
conv6 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
conv6 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)
up7 = layers.Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(conv6))
merge7 = layers.concatenate([conv3,up7], axis = 3)
conv7 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
conv7 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)
up8 = layers.Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(conv7))
merge8 = layers.concatenate([conv2,up8], axis = 3)
conv8 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
conv8 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)
up9 = layers.Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(conv8))
merge9 = layers.concatenate([conv1,up9], axis = 3)
conv9 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
conv9 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
conv9 = layers.Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
conv10 = layers.Conv2D(1, 1, activation = 'sigmoid')(conv9)
model = models.Model(inputs=inputs, outputs=conv10)
if(pretrained_weights):
model.load_weights(pretrained_weights)
return model