Spaces:
Sleeping
Sleeping
# Build U-Net model | |
import tensorflow as tf | |
import tensorflow.keras.layers as layers | |
import tensorflow.keras.models as models | |
import tensorflow.keras.metrics as metrics | |
#from keras import backend as keras | |
def unet(pretrained_weights = None, input_size = (256,256,1)): | |
inputs = layers.Input(input_size) | |
conv1 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs) | |
conv1 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1) | |
pool1 = layers.MaxPooling2D(pool_size=(2, 2))(conv1) | |
conv2 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1) | |
conv2 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2) | |
pool2 = layers.MaxPooling2D(pool_size=(2, 2))(conv2) | |
conv3 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2) | |
conv3 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3) | |
pool3 = layers.MaxPooling2D(pool_size=(2, 2))(conv3) | |
conv4 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3) | |
conv4 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4) | |
drop4 = layers.Dropout(0.5)(conv4) | |
pool4 = layers.MaxPooling2D(pool_size=(2, 2))(drop4) | |
conv5 = layers.Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4) | |
conv5 = layers.Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5) | |
drop5 = layers.Dropout(0.5)(conv5) | |
up6 = layers.Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(drop5)) | |
merge6 = layers.concatenate([drop4,up6], axis = 3) | |
conv6 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6) | |
conv6 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6) | |
up7 = layers.Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(conv6)) | |
merge7 = layers.concatenate([conv3,up7], axis = 3) | |
conv7 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7) | |
conv7 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7) | |
up8 = layers.Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(conv7)) | |
merge8 = layers.concatenate([conv2,up8], axis = 3) | |
conv8 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8) | |
conv8 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8) | |
up9 = layers.Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(conv8)) | |
merge9 = layers.concatenate([conv1,up9], axis = 3) | |
conv9 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9) | |
conv9 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) | |
conv9 = layers.Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) | |
conv10 = layers.Conv2D(1, 1, activation = 'sigmoid')(conv9) | |
model = models.Model(inputs=inputs, outputs=conv10) | |
if(pretrained_weights): | |
model.load_weights(pretrained_weights) | |
return model |