Spaces:
Sleeping
Sleeping
Commit
·
6bf4d42
1
Parent(s):
80a7fd8
added unet files
Browse files- .gitignore +2 -0
- app.py +0 -8
- predict_unet.py +3 -10
- unet/unet.py +60 -0
- unet/unet_3plus.py +440 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
unet/__pycache__
|
app.py
CHANGED
@@ -8,14 +8,6 @@ from PIL import Image
|
|
8 |
from predict_unet import predict_model
|
9 |
|
10 |
|
11 |
-
# device = torch.device(
|
12 |
-
# "cuda"
|
13 |
-
# if torch.cuda.is_available()
|
14 |
-
# else "mps"
|
15 |
-
# if torch.backends.mps.is_available()
|
16 |
-
# else "cpu"
|
17 |
-
# )
|
18 |
-
|
19 |
title = "<center><strong><font size='8'> Medical Image Segmentation with UNet </font></strong></center>"
|
20 |
|
21 |
examples = [["examples/50494616.jpg"], ["examples/50494676.jpg"], ["examples/56399783.jpg"],
|
|
|
8 |
from predict_unet import predict_model
|
9 |
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
title = "<center><strong><font size='8'> Medical Image Segmentation with UNet </font></strong></center>"
|
12 |
|
13 |
examples = [["examples/50494616.jpg"], ["examples/50494676.jpg"], ["examples/56399783.jpg"],
|
predict_unet.py
CHANGED
@@ -1,21 +1,14 @@
|
|
1 |
|
2 |
import os
|
3 |
import numpy as np
|
4 |
-
import skimage.io as skio
|
5 |
import skimage.transform as trans
|
6 |
from skimage.color import rgb2gray
|
7 |
-
from
|
8 |
-
import
|
9 |
-
|
10 |
-
sys.path.append("/panfs/jay/groups/29/umii/mo000007/zooniverse/UNet")
|
11 |
-
|
12 |
-
from utils import *
|
13 |
-
from unet import unet
|
14 |
-
from unet_3plus import UNet_3Plus, UNet_3Plus_DeepSup, UNet_3Plus_DeepSup_CGM
|
15 |
|
16 |
|
17 |
def predict_model(input, unet_type):
|
18 |
-
model_path = "/
|
19 |
h, w = 256, 256
|
20 |
input_shape = [h, w, 1]
|
21 |
output_channels = 1
|
|
|
1 |
|
2 |
import os
|
3 |
import numpy as np
|
|
|
4 |
import skimage.transform as trans
|
5 |
from skimage.color import rgb2gray
|
6 |
+
from unet.unet import unet
|
7 |
+
from unet.unet_3plus import UNet_3Plus, UNet_3Plus_DeepSup, UNet_3Plus_DeepSup_CGM
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
def predict_model(input, unet_type):
|
11 |
+
model_path = "unet/trained_models"
|
12 |
h, w = 256, 256
|
13 |
input_shape = [h, w, 1]
|
14 |
output_channels = 1
|
unet/unet.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Build U-Net model
|
2 |
+
import tensorflow as tf
|
3 |
+
import tensorflow.keras.layers as layers
|
4 |
+
import tensorflow.keras.models as models
|
5 |
+
import tensorflow.keras.metrics as metrics
|
6 |
+
#from keras import backend as keras
|
7 |
+
|
8 |
+
|
9 |
+
def unet(pretrained_weights = None, input_size = (256,256,1)):
|
10 |
+
inputs = layers.Input(input_size)
|
11 |
+
conv1 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
|
12 |
+
conv1 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
|
13 |
+
pool1 = layers.MaxPooling2D(pool_size=(2, 2))(conv1)
|
14 |
+
|
15 |
+
conv2 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
|
16 |
+
conv2 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
|
17 |
+
pool2 = layers.MaxPooling2D(pool_size=(2, 2))(conv2)
|
18 |
+
|
19 |
+
conv3 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
|
20 |
+
conv3 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
|
21 |
+
pool3 = layers.MaxPooling2D(pool_size=(2, 2))(conv3)
|
22 |
+
|
23 |
+
conv4 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
|
24 |
+
conv4 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
|
25 |
+
drop4 = layers.Dropout(0.5)(conv4)
|
26 |
+
pool4 = layers.MaxPooling2D(pool_size=(2, 2))(drop4)
|
27 |
+
|
28 |
+
conv5 = layers.Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
|
29 |
+
conv5 = layers.Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
|
30 |
+
drop5 = layers.Dropout(0.5)(conv5)
|
31 |
+
|
32 |
+
up6 = layers.Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(drop5))
|
33 |
+
merge6 = layers.concatenate([drop4,up6], axis = 3)
|
34 |
+
conv6 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
|
35 |
+
conv6 = layers.Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)
|
36 |
+
|
37 |
+
up7 = layers.Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(conv6))
|
38 |
+
merge7 = layers.concatenate([conv3,up7], axis = 3)
|
39 |
+
conv7 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
|
40 |
+
conv7 = layers.Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)
|
41 |
+
|
42 |
+
up8 = layers.Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(conv7))
|
43 |
+
merge8 = layers.concatenate([conv2,up8], axis = 3)
|
44 |
+
conv8 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
|
45 |
+
conv8 = layers.Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)
|
46 |
+
|
47 |
+
up9 = layers.Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(layers.UpSampling2D(size = (2,2))(conv8))
|
48 |
+
merge9 = layers.concatenate([conv1,up9], axis = 3)
|
49 |
+
conv9 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
|
50 |
+
conv9 = layers.Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
|
51 |
+
conv9 = layers.Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
|
52 |
+
|
53 |
+
conv10 = layers.Conv2D(1, 1, activation = 'sigmoid')(conv9)
|
54 |
+
|
55 |
+
model = models.Model(inputs=inputs, outputs=conv10)
|
56 |
+
|
57 |
+
if(pretrained_weights):
|
58 |
+
model.load_weights(pretrained_weights)
|
59 |
+
|
60 |
+
return model
|
unet/unet_3plus.py
ADDED
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import tensorflow.keras as k
|
3 |
+
|
4 |
+
|
5 |
+
# Model Architecture
|
6 |
+
def conv_block(x, kernels, kernel_size=(3, 3), strides=(1, 1), padding='same',
|
7 |
+
is_bn=True, is_relu=True, n=2):
|
8 |
+
""" Custom function for conv2d:
|
9 |
+
Apply 3*3 convolutions with BN and relu.
|
10 |
+
"""
|
11 |
+
for i in range(1, n + 1):
|
12 |
+
x = k.layers.Conv2D(filters=kernels, kernel_size=kernel_size,
|
13 |
+
padding=padding, strides=strides,
|
14 |
+
kernel_regularizer=tf.keras.regularizers.l2(1e-4),
|
15 |
+
kernel_initializer=k.initializers.he_normal(seed=5))(x)
|
16 |
+
if is_bn:
|
17 |
+
x = k.layers.BatchNormalization()(x)
|
18 |
+
if is_relu:
|
19 |
+
x = k.activations.relu(x)
|
20 |
+
|
21 |
+
return x
|
22 |
+
|
23 |
+
|
24 |
+
def dotProduct(seg, cls):
|
25 |
+
B, H, W, N = k.backend.int_shape(seg)
|
26 |
+
seg = tf.reshape(seg, [-1, H * W, N])
|
27 |
+
final = tf.einsum("ijk,ik->ijk", seg, cls)
|
28 |
+
final = tf.reshape(final, [-1, H, W, N])
|
29 |
+
return final
|
30 |
+
|
31 |
+
|
32 |
+
""" UNet_3Plus """
|
33 |
+
def UNet_3Plus(INPUT_SHAPE, OUTPUT_CHANNELS, pretrained_weights = None):
|
34 |
+
filters = [64, 128, 256, 512, 1024]
|
35 |
+
|
36 |
+
input_layer = k.layers.Input(shape=INPUT_SHAPE, name="input_layer") # 320*320*3
|
37 |
+
|
38 |
+
""" Encoder"""
|
39 |
+
# block 1
|
40 |
+
e1 = conv_block(input_layer, filters[0]) # 320*320*64
|
41 |
+
|
42 |
+
# block 2
|
43 |
+
e2 = k.layers.MaxPool2D(pool_size=(2, 2))(e1) # 160*160*64
|
44 |
+
e2 = conv_block(e2, filters[1]) # 160*160*128
|
45 |
+
|
46 |
+
# block 3
|
47 |
+
e3 = k.layers.MaxPool2D(pool_size=(2, 2))(e2) # 80*80*128
|
48 |
+
e3 = conv_block(e3, filters[2]) # 80*80*256
|
49 |
+
|
50 |
+
# block 4
|
51 |
+
e4 = k.layers.MaxPool2D(pool_size=(2, 2))(e3) # 40*40*256
|
52 |
+
e4 = conv_block(e4, filters[3]) # 40*40*512
|
53 |
+
|
54 |
+
# block 5
|
55 |
+
# bottleneck layer
|
56 |
+
e5 = k.layers.MaxPool2D(pool_size=(2, 2))(e4) # 20*20*512
|
57 |
+
e5 = conv_block(e5, filters[4]) # 20*20*1024
|
58 |
+
|
59 |
+
""" Decoder """
|
60 |
+
cat_channels = filters[0]
|
61 |
+
cat_blocks = len(filters)
|
62 |
+
upsample_channels = cat_blocks * cat_channels
|
63 |
+
|
64 |
+
""" d4 """
|
65 |
+
e1_d4 = k.layers.MaxPool2D(pool_size=(8, 8))(e1) # 320*320*64 --> 40*40*64
|
66 |
+
e1_d4 = conv_block(e1_d4, cat_channels, n=1) # 320*320*64 --> 40*40*64
|
67 |
+
|
68 |
+
e2_d4 = k.layers.MaxPool2D(pool_size=(4, 4))(e2) # 160*160*128 --> 40*40*128
|
69 |
+
e2_d4 = conv_block(e2_d4, cat_channels, n=1) # 160*160*128 --> 40*40*64
|
70 |
+
|
71 |
+
e3_d4 = k.layers.MaxPool2D(pool_size=(2, 2))(e3) # 80*80*256 --> 40*40*256
|
72 |
+
e3_d4 = conv_block(e3_d4, cat_channels, n=1) # 80*80*256 --> 40*40*64
|
73 |
+
|
74 |
+
e4_d4 = conv_block(e4, cat_channels, n=1) # 40*40*512 --> 40*40*64
|
75 |
+
|
76 |
+
e5_d4 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(e5) # 80*80*256 --> 40*40*256
|
77 |
+
e5_d4 = conv_block(e5_d4, cat_channels, n=1) # 20*20*1024 --> 20*20*64
|
78 |
+
|
79 |
+
d4 = k.layers.concatenate([e1_d4, e2_d4, e3_d4, e4_d4, e5_d4])
|
80 |
+
d4 = conv_block(d4, upsample_channels, n=1) # 40*40*320 --> 40*40*320
|
81 |
+
|
82 |
+
""" d3 """
|
83 |
+
e1_d3 = k.layers.MaxPool2D(pool_size=(4, 4))(e1) # 320*320*64 --> 80*80*64
|
84 |
+
e1_d3 = conv_block(e1_d3, cat_channels, n=1) # 80*80*64 --> 80*80*64
|
85 |
+
|
86 |
+
e2_d3 = k.layers.MaxPool2D(pool_size=(2, 2))(e2) # 160*160*256 --> 80*80*256
|
87 |
+
e2_d3 = conv_block(e2_d3, cat_channels, n=1) # 80*80*256 --> 80*80*64
|
88 |
+
|
89 |
+
e3_d3 = conv_block(e3, cat_channels, n=1) # 80*80*512 --> 80*80*64
|
90 |
+
|
91 |
+
e4_d3 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d4) # 40*40*320 --> 80*80*320
|
92 |
+
e4_d3 = conv_block(e4_d3, cat_channels, n=1) # 80*80*320 --> 80*80*64
|
93 |
+
|
94 |
+
e5_d3 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(e5) # 20*20*320 --> 80*80*320
|
95 |
+
e5_d3 = conv_block(e5_d3, cat_channels, n=1) # 80*80*320 --> 80*80*64
|
96 |
+
|
97 |
+
d3 = k.layers.concatenate([e1_d3, e2_d3, e3_d3, e4_d3, e5_d3])
|
98 |
+
d3 = conv_block(d3, upsample_channels, n=1) # 80*80*320 --> 80*80*320
|
99 |
+
|
100 |
+
""" d2 """
|
101 |
+
e1_d2 = k.layers.MaxPool2D(pool_size=(2, 2))(e1) # 320*320*64 --> 160*160*64
|
102 |
+
e1_d2 = conv_block(e1_d2, cat_channels, n=1) # 160*160*64 --> 160*160*64
|
103 |
+
|
104 |
+
e2_d2 = conv_block(e2, cat_channels, n=1) # 160*160*256 --> 160*160*64
|
105 |
+
|
106 |
+
d3_d2 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d3) # 80*80*320 --> 160*160*320
|
107 |
+
d3_d2 = conv_block(d3_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
108 |
+
|
109 |
+
d4_d2 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(d4) # 40*40*320 --> 160*160*320
|
110 |
+
d4_d2 = conv_block(d4_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
111 |
+
|
112 |
+
e5_d2 = k.layers.UpSampling2D(size=(8, 8), interpolation='bilinear')(e5) # 20*20*320 --> 160*160*320
|
113 |
+
e5_d2 = conv_block(e5_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
114 |
+
|
115 |
+
d2 = k.layers.concatenate([e1_d2, e2_d2, d3_d2, d4_d2, e5_d2])
|
116 |
+
d2 = conv_block(d2, upsample_channels, n=1) # 160*160*320 --> 160*160*320
|
117 |
+
|
118 |
+
""" d1 """
|
119 |
+
e1_d1 = conv_block(e1, cat_channels, n=1) # 320*320*64 --> 320*320*64
|
120 |
+
|
121 |
+
d2_d1 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d2) # 160*160*320 --> 320*320*320
|
122 |
+
d2_d1 = conv_block(d2_d1, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
123 |
+
|
124 |
+
d3_d1 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(d3) # 80*80*320 --> 320*320*320
|
125 |
+
d3_d1 = conv_block(d3_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
126 |
+
|
127 |
+
d4_d1 = k.layers.UpSampling2D(size=(8, 8), interpolation='bilinear')(d4) # 40*40*320 --> 320*320*320
|
128 |
+
d4_d1 = conv_block(d4_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
129 |
+
|
130 |
+
e5_d1 = k.layers.UpSampling2D(size=(16, 16), interpolation='bilinear')(e5) # 20*20*320 --> 320*320*320
|
131 |
+
e5_d1 = conv_block(e5_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
132 |
+
|
133 |
+
d1 = k.layers.concatenate([e1_d1, d2_d1, d3_d1, d4_d1, e5_d1, ])
|
134 |
+
d1 = conv_block(d1, upsample_channels, n=1) # 320*320*320 --> 320*320*320
|
135 |
+
|
136 |
+
# last layer does not have batchnorm and relu
|
137 |
+
d = conv_block(d1, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
138 |
+
|
139 |
+
if OUTPUT_CHANNELS == 1:
|
140 |
+
output = k.activations.sigmoid(d)
|
141 |
+
else:
|
142 |
+
output = k.activations.softmax(d)
|
143 |
+
|
144 |
+
model = tf.keras.Model(inputs=input_layer, outputs=output, name='UNet_3Plus')
|
145 |
+
if(pretrained_weights):
|
146 |
+
model.load_weights(pretrained_weights)
|
147 |
+
|
148 |
+
return model
|
149 |
+
|
150 |
+
|
151 |
+
""" UNet_3Plus with Deep Supervison"""
|
152 |
+
def UNet_3Plus_DeepSup(INPUT_SHAPE, OUTPUT_CHANNELS, pretrained_weights = None):
|
153 |
+
filters = [64, 128, 256, 512, 1024]
|
154 |
+
|
155 |
+
input_layer = k.layers.Input(shape=INPUT_SHAPE, name="input_layer") # 320*320*3
|
156 |
+
|
157 |
+
""" Encoder"""
|
158 |
+
# block 1
|
159 |
+
e1 = conv_block(input_layer, filters[0]) # 320*320*64
|
160 |
+
|
161 |
+
# block 2
|
162 |
+
e2 = k.layers.MaxPool2D(pool_size=(2, 2))(e1) # 160*160*64
|
163 |
+
e2 = conv_block(e2, filters[1]) # 160*160*128
|
164 |
+
|
165 |
+
# block 3
|
166 |
+
e3 = k.layers.MaxPool2D(pool_size=(2, 2))(e2) # 80*80*128
|
167 |
+
e3 = conv_block(e3, filters[2]) # 80*80*256
|
168 |
+
|
169 |
+
# block 4
|
170 |
+
e4 = k.layers.MaxPool2D(pool_size=(2, 2))(e3) # 40*40*256
|
171 |
+
e4 = conv_block(e4, filters[3]) # 40*40*512
|
172 |
+
|
173 |
+
# block 5
|
174 |
+
# bottleneck layer
|
175 |
+
e5 = k.layers.MaxPool2D(pool_size=(2, 2))(e4) # 20*20*512
|
176 |
+
e5 = conv_block(e5, filters[4]) # 20*20*1024
|
177 |
+
|
178 |
+
""" Decoder """
|
179 |
+
cat_channels = filters[0]
|
180 |
+
cat_blocks = len(filters)
|
181 |
+
upsample_channels = cat_blocks * cat_channels
|
182 |
+
|
183 |
+
""" d4 """
|
184 |
+
e1_d4 = k.layers.MaxPool2D(pool_size=(8, 8))(e1) # 320*320*64 --> 40*40*64
|
185 |
+
e1_d4 = conv_block(e1_d4, cat_channels, n=1) # 320*320*64 --> 40*40*64
|
186 |
+
|
187 |
+
e2_d4 = k.layers.MaxPool2D(pool_size=(4, 4))(e2) # 160*160*128 --> 40*40*128
|
188 |
+
e2_d4 = conv_block(e2_d4, cat_channels, n=1) # 160*160*128 --> 40*40*64
|
189 |
+
|
190 |
+
e3_d4 = k.layers.MaxPool2D(pool_size=(2, 2))(e3) # 80*80*256 --> 40*40*256
|
191 |
+
e3_d4 = conv_block(e3_d4, cat_channels, n=1) # 80*80*256 --> 40*40*64
|
192 |
+
|
193 |
+
e4_d4 = conv_block(e4, cat_channels, n=1) # 40*40*512 --> 40*40*64
|
194 |
+
|
195 |
+
e5_d4 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(e5) # 80*80*256 --> 40*40*256
|
196 |
+
e5_d4 = conv_block(e5_d4, cat_channels, n=1) # 20*20*1024 --> 20*20*64
|
197 |
+
|
198 |
+
d4 = k.layers.concatenate([e1_d4, e2_d4, e3_d4, e4_d4, e5_d4])
|
199 |
+
d4 = conv_block(d4, upsample_channels, n=1) # 40*40*320 --> 40*40*320
|
200 |
+
|
201 |
+
""" d3 """
|
202 |
+
e1_d3 = k.layers.MaxPool2D(pool_size=(4, 4))(e1) # 320*320*64 --> 80*80*64
|
203 |
+
e1_d3 = conv_block(e1_d3, cat_channels, n=1) # 80*80*64 --> 80*80*64
|
204 |
+
|
205 |
+
e2_d3 = k.layers.MaxPool2D(pool_size=(2, 2))(e2) # 160*160*256 --> 80*80*256
|
206 |
+
e2_d3 = conv_block(e2_d3, cat_channels, n=1) # 80*80*256 --> 80*80*64
|
207 |
+
|
208 |
+
e3_d3 = conv_block(e3, cat_channels, n=1) # 80*80*512 --> 80*80*64
|
209 |
+
|
210 |
+
e4_d3 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d4) # 40*40*320 --> 80*80*320
|
211 |
+
e4_d3 = conv_block(e4_d3, cat_channels, n=1) # 80*80*320 --> 80*80*64
|
212 |
+
|
213 |
+
e5_d3 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(e5) # 20*20*320 --> 80*80*320
|
214 |
+
e5_d3 = conv_block(e5_d3, cat_channels, n=1) # 80*80*320 --> 80*80*64
|
215 |
+
|
216 |
+
d3 = k.layers.concatenate([e1_d3, e2_d3, e3_d3, e4_d3, e5_d3])
|
217 |
+
d3 = conv_block(d3, upsample_channels, n=1) # 80*80*320 --> 80*80*320
|
218 |
+
|
219 |
+
""" d2 """
|
220 |
+
e1_d2 = k.layers.MaxPool2D(pool_size=(2, 2))(e1) # 320*320*64 --> 160*160*64
|
221 |
+
e1_d2 = conv_block(e1_d2, cat_channels, n=1) # 160*160*64 --> 160*160*64
|
222 |
+
|
223 |
+
e2_d2 = conv_block(e2, cat_channels, n=1) # 160*160*256 --> 160*160*64
|
224 |
+
|
225 |
+
d3_d2 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d3) # 80*80*320 --> 160*160*320
|
226 |
+
d3_d2 = conv_block(d3_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
227 |
+
|
228 |
+
d4_d2 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(d4) # 40*40*320 --> 160*160*320
|
229 |
+
d4_d2 = conv_block(d4_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
230 |
+
|
231 |
+
e5_d2 = k.layers.UpSampling2D(size=(8, 8), interpolation='bilinear')(e5) # 20*20*320 --> 160*160*320
|
232 |
+
e5_d2 = conv_block(e5_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
233 |
+
|
234 |
+
d2 = k.layers.concatenate([e1_d2, e2_d2, d3_d2, d4_d2, e5_d2])
|
235 |
+
d2 = conv_block(d2, upsample_channels, n=1) # 160*160*320 --> 160*160*320
|
236 |
+
|
237 |
+
""" d1 """
|
238 |
+
e1_d1 = conv_block(e1, cat_channels, n=1) # 320*320*64 --> 320*320*64
|
239 |
+
|
240 |
+
d2_d1 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d2) # 160*160*320 --> 320*320*320
|
241 |
+
d2_d1 = conv_block(d2_d1, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
242 |
+
|
243 |
+
d3_d1 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(d3) # 80*80*320 --> 320*320*320
|
244 |
+
d3_d1 = conv_block(d3_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
245 |
+
|
246 |
+
d4_d1 = k.layers.UpSampling2D(size=(8, 8), interpolation='bilinear')(d4) # 40*40*320 --> 320*320*320
|
247 |
+
d4_d1 = conv_block(d4_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
248 |
+
|
249 |
+
e5_d1 = k.layers.UpSampling2D(size=(16, 16), interpolation='bilinear')(e5) # 20*20*320 --> 320*320*320
|
250 |
+
e5_d1 = conv_block(e5_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
251 |
+
|
252 |
+
d1 = k.layers.concatenate([e1_d1, d2_d1, d3_d1, d4_d1, e5_d1, ])
|
253 |
+
d1 = conv_block(d1, upsample_channels, n=1) # 320*320*320 --> 320*320*320
|
254 |
+
|
255 |
+
""" Deep Supervision Part"""
|
256 |
+
# last layer does not have batchnorm and relu
|
257 |
+
d1 = conv_block(d1, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
258 |
+
d2 = conv_block(d2, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
259 |
+
d3 = conv_block(d3, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
260 |
+
d4 = conv_block(d4, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
261 |
+
e5 = conv_block(e5, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
262 |
+
|
263 |
+
# d1 = no need for upsampling
|
264 |
+
d2 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d2)
|
265 |
+
d3 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(d3)
|
266 |
+
d4 = k.layers.UpSampling2D(size=(8, 8), interpolation='bilinear')(d4)
|
267 |
+
e5 = k.layers.UpSampling2D(size=(16, 16), interpolation='bilinear')(e5)
|
268 |
+
|
269 |
+
if OUTPUT_CHANNELS == 1:
|
270 |
+
d1 = k.activations.sigmoid(d1)
|
271 |
+
d2 = k.activations.sigmoid(d2)
|
272 |
+
d3 = k.activations.sigmoid(d3)
|
273 |
+
d4 = k.activations.sigmoid(d4)
|
274 |
+
e5 = k.activations.sigmoid(e5)
|
275 |
+
else:
|
276 |
+
d1 = k.activations.softmax(d1)
|
277 |
+
d2 = k.activations.softmax(d2)
|
278 |
+
d3 = k.activations.softmax(d3)
|
279 |
+
d4 = k.activations.softmax(d4)
|
280 |
+
e5 = k.activations.softmax(e5)
|
281 |
+
|
282 |
+
model = tf.keras.Model(inputs=input_layer, outputs=[d1, d2, d3, d4, e5], name='UNet_3Plus_DeepSup')
|
283 |
+
|
284 |
+
if(pretrained_weights):
|
285 |
+
model.load_weights(pretrained_weights)
|
286 |
+
|
287 |
+
return model
|
288 |
+
|
289 |
+
|
290 |
+
""" UNet_3Plus with Deep Supervison and Classification Guided Module"""
|
291 |
+
def UNet_3Plus_DeepSup_CGM(INPUT_SHAPE, OUTPUT_CHANNELS, pretrained_weights = None):
|
292 |
+
filters = [64, 128, 256, 512, 1024]
|
293 |
+
|
294 |
+
input_layer = k.layers.Input(shape=INPUT_SHAPE, name="input_layer") # 320*320*3
|
295 |
+
|
296 |
+
""" Encoder"""
|
297 |
+
# block 1
|
298 |
+
e1 = conv_block(input_layer, filters[0]) # 320*320*64
|
299 |
+
|
300 |
+
# block 2
|
301 |
+
e2 = k.layers.MaxPool2D(pool_size=(2, 2))(e1) # 160*160*64
|
302 |
+
e2 = conv_block(e2, filters[1]) # 160*160*128
|
303 |
+
|
304 |
+
# block 3
|
305 |
+
e3 = k.layers.MaxPool2D(pool_size=(2, 2))(e2) # 80*80*128
|
306 |
+
e3 = conv_block(e3, filters[2]) # 80*80*256
|
307 |
+
|
308 |
+
# block 4
|
309 |
+
e4 = k.layers.MaxPool2D(pool_size=(2, 2))(e3) # 40*40*256
|
310 |
+
e4 = conv_block(e4, filters[3]) # 40*40*512
|
311 |
+
|
312 |
+
# block 5, bottleneck layer
|
313 |
+
e5 = k.layers.MaxPool2D(pool_size=(2, 2))(e4) # 20*20*512
|
314 |
+
e5 = conv_block(e5, filters[4]) # 20*20*1024
|
315 |
+
|
316 |
+
""" Classification Guided Module. Part 1"""
|
317 |
+
cls = k.layers.Dropout(rate=0.5)(e5)
|
318 |
+
cls = k.layers.Conv2D(2, kernel_size=(1, 1), padding="same", strides=(1, 1))(cls)
|
319 |
+
cls = k.layers.GlobalMaxPooling2D()(cls)
|
320 |
+
cls = k.activations.sigmoid(cls)
|
321 |
+
cls = tf.argmax(cls, axis=-1)
|
322 |
+
cls = cls[..., tf.newaxis]
|
323 |
+
cls = tf.cast(cls, dtype=tf.float32, )
|
324 |
+
|
325 |
+
""" Decoder """
|
326 |
+
cat_channels = filters[0]
|
327 |
+
cat_blocks = len(filters)
|
328 |
+
upsample_channels = cat_blocks * cat_channels
|
329 |
+
|
330 |
+
""" d4 """
|
331 |
+
e1_d4 = k.layers.MaxPool2D(pool_size=(8, 8))(e1) # 320*320*64 --> 40*40*64
|
332 |
+
e1_d4 = conv_block(e1_d4, cat_channels, n=1) # 320*320*64 --> 40*40*64
|
333 |
+
|
334 |
+
e2_d4 = k.layers.MaxPool2D(pool_size=(4, 4))(e2) # 160*160*128 --> 40*40*128
|
335 |
+
e2_d4 = conv_block(e2_d4, cat_channels, n=1) # 160*160*128 --> 40*40*64
|
336 |
+
|
337 |
+
e3_d4 = k.layers.MaxPool2D(pool_size=(2, 2))(e3) # 80*80*256 --> 40*40*256
|
338 |
+
e3_d4 = conv_block(e3_d4, cat_channels, n=1) # 80*80*256 --> 40*40*64
|
339 |
+
|
340 |
+
e4_d4 = conv_block(e4, cat_channels, n=1) # 40*40*512 --> 40*40*64
|
341 |
+
|
342 |
+
e5_d4 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(e5) # 80*80*256 --> 40*40*256
|
343 |
+
e5_d4 = conv_block(e5_d4, cat_channels, n=1) # 20*20*1024 --> 20*20*64
|
344 |
+
|
345 |
+
d4 = k.layers.concatenate([e1_d4, e2_d4, e3_d4, e4_d4, e5_d4])
|
346 |
+
d4 = conv_block(d4, upsample_channels, n=1) # 40*40*320 --> 40*40*320
|
347 |
+
|
348 |
+
""" d3 """
|
349 |
+
e1_d3 = k.layers.MaxPool2D(pool_size=(4, 4))(e1) # 320*320*64 --> 80*80*64
|
350 |
+
e1_d3 = conv_block(e1_d3, cat_channels, n=1) # 80*80*64 --> 80*80*64
|
351 |
+
|
352 |
+
e2_d3 = k.layers.MaxPool2D(pool_size=(2, 2))(e2) # 160*160*256 --> 80*80*256
|
353 |
+
e2_d3 = conv_block(e2_d3, cat_channels, n=1) # 80*80*256 --> 80*80*64
|
354 |
+
|
355 |
+
e3_d3 = conv_block(e3, cat_channels, n=1) # 80*80*512 --> 80*80*64
|
356 |
+
|
357 |
+
e4_d3 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d4) # 40*40*320 --> 80*80*320
|
358 |
+
e4_d3 = conv_block(e4_d3, cat_channels, n=1) # 80*80*320 --> 80*80*64
|
359 |
+
|
360 |
+
e5_d3 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(e5) # 20*20*320 --> 80*80*320
|
361 |
+
e5_d3 = conv_block(e5_d3, cat_channels, n=1) # 80*80*320 --> 80*80*64
|
362 |
+
|
363 |
+
d3 = k.layers.concatenate([e1_d3, e2_d3, e3_d3, e4_d3, e5_d3])
|
364 |
+
d3 = conv_block(d3, upsample_channels, n=1) # 80*80*320 --> 80*80*320
|
365 |
+
|
366 |
+
""" d2 """
|
367 |
+
e1_d2 = k.layers.MaxPool2D(pool_size=(2, 2))(e1) # 320*320*64 --> 160*160*64
|
368 |
+
e1_d2 = conv_block(e1_d2, cat_channels, n=1) # 160*160*64 --> 160*160*64
|
369 |
+
|
370 |
+
e2_d2 = conv_block(e2, cat_channels, n=1) # 160*160*256 --> 160*160*64
|
371 |
+
|
372 |
+
d3_d2 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d3) # 80*80*320 --> 160*160*320
|
373 |
+
d3_d2 = conv_block(d3_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
374 |
+
|
375 |
+
d4_d2 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(d4) # 40*40*320 --> 160*160*320
|
376 |
+
d4_d2 = conv_block(d4_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
377 |
+
|
378 |
+
e5_d2 = k.layers.UpSampling2D(size=(8, 8), interpolation='bilinear')(e5) # 20*20*320 --> 160*160*320
|
379 |
+
e5_d2 = conv_block(e5_d2, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
380 |
+
|
381 |
+
d2 = k.layers.concatenate([e1_d2, e2_d2, d3_d2, d4_d2, e5_d2])
|
382 |
+
d2 = conv_block(d2, upsample_channels, n=1) # 160*160*320 --> 160*160*320
|
383 |
+
|
384 |
+
""" d1 """
|
385 |
+
e1_d1 = conv_block(e1, cat_channels, n=1) # 320*320*64 --> 320*320*64
|
386 |
+
|
387 |
+
d2_d1 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d2) # 160*160*320 --> 320*320*320
|
388 |
+
d2_d1 = conv_block(d2_d1, cat_channels, n=1) # 160*160*320 --> 160*160*64
|
389 |
+
|
390 |
+
d3_d1 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(d3) # 80*80*320 --> 320*320*320
|
391 |
+
d3_d1 = conv_block(d3_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
392 |
+
|
393 |
+
d4_d1 = k.layers.UpSampling2D(size=(8, 8), interpolation='bilinear')(d4) # 40*40*320 --> 320*320*320
|
394 |
+
d4_d1 = conv_block(d4_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
395 |
+
|
396 |
+
e5_d1 = k.layers.UpSampling2D(size=(16, 16), interpolation='bilinear')(e5) # 20*20*320 --> 320*320*320
|
397 |
+
e5_d1 = conv_block(e5_d1, cat_channels, n=1) # 320*320*320 --> 320*320*64
|
398 |
+
|
399 |
+
d1 = k.layers.concatenate([e1_d1, d2_d1, d3_d1, d4_d1, e5_d1, ])
|
400 |
+
d1 = conv_block(d1, upsample_channels, n=1) # 320*320*320 --> 320*320*320
|
401 |
+
|
402 |
+
""" Deep Supervision Part"""
|
403 |
+
# last layer does not have batchnorm and relu
|
404 |
+
d1 = conv_block(d1, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
405 |
+
d2 = conv_block(d2, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
406 |
+
d3 = conv_block(d3, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
407 |
+
d4 = conv_block(d4, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
408 |
+
e5 = conv_block(e5, OUTPUT_CHANNELS, n=1, is_bn=False, is_relu=False)
|
409 |
+
|
410 |
+
# d1 = no need for upsampling
|
411 |
+
d2 = k.layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(d2)
|
412 |
+
d3 = k.layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(d3)
|
413 |
+
d4 = k.layers.UpSampling2D(size=(8, 8), interpolation='bilinear')(d4)
|
414 |
+
e5 = k.layers.UpSampling2D(size=(16, 16), interpolation='bilinear')(e5)
|
415 |
+
|
416 |
+
""" Classification Guided Module. Part 2"""
|
417 |
+
d1 = dotProduct(d1, cls)
|
418 |
+
d2 = dotProduct(d2, cls)
|
419 |
+
d3 = dotProduct(d3, cls)
|
420 |
+
d4 = dotProduct(d4, cls)
|
421 |
+
e5 = dotProduct(e5, cls)
|
422 |
+
|
423 |
+
if OUTPUT_CHANNELS == 1:
|
424 |
+
d1 = k.activations.sigmoid(d1)
|
425 |
+
d2 = k.activations.sigmoid(d2)
|
426 |
+
d3 = k.activations.sigmoid(d3)
|
427 |
+
d4 = k.activations.sigmoid(d4)
|
428 |
+
e5 = k.activations.sigmoid(e5)
|
429 |
+
else:
|
430 |
+
d1 = k.activations.softmax(d1)
|
431 |
+
d2 = k.activations.softmax(d2)
|
432 |
+
d3 = k.activations.softmax(d3)
|
433 |
+
d4 = k.activations.softmax(d4)
|
434 |
+
e5 = k.activations.softmax(e5)
|
435 |
+
|
436 |
+
model = tf.keras.Model(inputs=input_layer, outputs=[d1, d2, d3, d4, e5], name='UNet_3Plus_DeepSup_CGM')
|
437 |
+
if(pretrained_weights):
|
438 |
+
model.load_weights(pretrained_weights)
|
439 |
+
|
440 |
+
return model
|