Spaces:
Runtime error
Runtime error
import gradio as gr | |
#import peft | |
import transformers | |
import os | |
import re | |
import json | |
device = "cpu" | |
is_peft = False | |
model_id = os.environ.get("MODEL_ID") or "treadon/prompt-fungineer-355M" | |
auth_token = os.environ.get("HUB_TOKEN") or True | |
print(f"Using model {model_id}.") | |
if auth_token != True: | |
print("Using auth token.") | |
model = transformers.AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True,use_auth_token=auth_token) | |
tokenizer = transformers.AutoTokenizer.from_pretrained("gpt2") | |
def format_prompt(prompt, enhancers=True, inspiration=False, negative_prompt=False): | |
try: | |
pattern = r"(BRF:|POS:|ENH:|INS:|NEG:) (.*?)(?= (BRF:|POS:|ENH:|INS:|NEG:)|$)" | |
matches = re.findall(pattern, prompt) | |
vals = {key: value.strip() for key, value,ex in matches} | |
result = vals["POS:"] | |
if enhancers: | |
result += " " + vals["ENH:"] | |
if inspiration: | |
result += " " + vals["INS:"] | |
if negative_prompt: | |
result += "\n\n--no " + vals["NEG:"] | |
return result | |
except Exception as e: | |
return "Failed to generate prompt." | |
def generate_text(prompt, extra=False, top_k=100, top_p=0.95, temperature=0.85, enhancers = True, inpspiration = False , negative_prompt = False): | |
if not prompt.startswith("BRF:"): | |
prompt = "BRF: " + prompt | |
if not extra: | |
prompt = prompt + " POS:" | |
model.eval() | |
# SOFT SAMPLE | |
inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
samples = [] | |
try: | |
for i in range(1): | |
outputs = model.generate(**inputs, max_length=256, do_sample=True, top_k=top_k, top_p=top_p, temperature=temperature, num_return_sequences=4, pad_token_id=tokenizer.eos_token_id) | |
for output in outputs: | |
sample = tokenizer.decode(output, skip_special_tokens=True) | |
sample = format_prompt(sample, enhancers, inpspiration, negative_prompt) | |
samples.append(sample) | |
except Exception as e: | |
print(e) | |
return samples | |
with gr.Blocks() as fungineer: | |
with gr.Row(): | |
gr.Markdown("""# Midjourney / Dalle 2 / Stable Diffusion Prompt Generator | |
This is the 355M parameter model. There is also a 7B parameter model that is much better but far slower (access coming soon). | |
Just enter a basic prompt and the fungineering model will use its wildest imagination to expand the prompt in detail.""") | |
with gr.Row(): | |
with gr.Column(): | |
base_prompt = gr.Textbox(lines=5, label="Base Prompt", placeholder="An astronaut in space", info="Enter a very simple prompt that will be fungineered into something exciting!") | |
extra = gr.Checkbox(value=True, label="Extra Fungineer Imagination", info="If checked, the model will be allowed to go wild with its imagination.") | |
with gr.Accordion("Advanced Generation Settings", open=False): | |
top_k = gr.Slider( minimum=10, maximum=1000, value=100, label="Top K", info="Top K sampling") | |
top_p = gr.Slider( minimum=0.1, maximum=1, value=0.95, step=0.01, label="Top P", info="Top P sampling") | |
temperature = gr.Slider( minimum=0.1, maximum=1.2, value=0.85, step=0.01, label="Temperature", info="Temperature sampling. Higher values will make the model more creative") | |
with gr.Accordion("Advanced Output Settings", open=False): | |
enh = gr.Checkbox(value=True, label="Enhancers", info="Add image meta information such as lens type, shuffter speed, camera model, etc.") | |
insp = gr.Checkbox(value=False, label="Inpsiration", info="Include inspirational photographers that are known for this type of photography. Sometimes random people will appear here, needs more training.") | |
neg = gr.Checkbox(value=False, label="Negative Prompt", info="Include a negative prompt, more often used in Stable Diffusion. If you're a Stable Diffusion user, chances are you already have a better negative prompt you like to use.") | |
with gr.Column(): | |
outputs = [ | |
gr.Textbox(lines=2, label="Fungineered Text 1"), | |
gr.Textbox(lines=2, label="Fungineered Text 2"), | |
gr.Textbox(lines=2, label="Fungineered Text 3"), | |
gr.Textbox(lines=2, label="Fungineered Text 4"), | |
] | |
inputs = [base_prompt, extra, top_k, top_p, temperature, enh, insp, neg] | |
submit = gr.Button(label="Fungineer",variant="primary") | |
submit.click(generate_text, inputs=inputs, outputs=outputs) | |
examples = [] | |
with open("examples.json") as f: | |
examples = json.load(f) | |
for i, example in enumerate(examples): | |
with gr.Tab(f"Example {i+1}"): | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(f"### Base Prompt") | |
gr.Image(value=f"{example['base']['src']}") | |
gr.Markdown(f"{example['base']['prompt']}") | |
with gr.Column(): | |
gr.Markdown(f"### 355M Prompt Fungineered") | |
gr.Image(value=f"{example['355M']['src']}") | |
gr.Markdown(f"{example['355M']['prompt']}") | |
with gr.Column(): | |
gr.Markdown(f"### 7B Prompt Fungineered") | |
gr.Markdown(f"Coming Soon!") | |
fungineer.launch(enable_queue=True) | |