Spaces:
Runtime error
Runtime error
File size: 5,508 Bytes
59696ca e128669 eb0afed 3b81b26 f8b495d 0fc5d6b e128669 eb0afed 8615850 3b81b26 eb0afed 59696ca f8b495d eb0afed f8b495d eb0afed f8b495d eb0afed f8b495d eb0afed f8b495d 8615850 f8b495d 863f234 f8b495d 8615850 f8b495d 0fc5d6b 863f234 0fc5d6b 863f234 0fc5d6b 863f234 0fc5d6b f8b495d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import gradio as gr
#import peft
import transformers
import os
import re
import json
device = "cpu"
is_peft = False
model_id = os.environ.get("MODEL_ID") or "treadon/prompt-fungineer-355M"
auth_token = os.environ.get("HUB_TOKEN") or True
print(f"Using model {model_id}.")
if auth_token != True:
print("Using auth token.")
model = transformers.AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True,use_auth_token=auth_token)
tokenizer = transformers.AutoTokenizer.from_pretrained("gpt2")
def format_prompt(prompt, enhancers=True, inspiration=False, negative_prompt=False):
try:
pattern = r"(BRF:|POS:|ENH:|INS:|NEG:) (.*?)(?= (BRF:|POS:|ENH:|INS:|NEG:)|$)"
matches = re.findall(pattern, prompt)
vals = {key: value.strip() for key, value,ex in matches}
result = vals["POS:"]
if enhancers:
result += " " + vals["ENH:"]
if inspiration:
result += " " + vals["INS:"]
if negative_prompt:
result += "\n\n--no " + vals["NEG:"]
return result
except Exception as e:
return "Failed to generate prompt."
def generate_text(prompt, extra=False, top_k=100, top_p=0.95, temperature=0.85, enhancers = True, inpspiration = False , negative_prompt = False):
if not prompt.startswith("BRF:"):
prompt = "BRF: " + prompt
if not extra:
prompt = prompt + " POS:"
model.eval()
# SOFT SAMPLE
inputs = tokenizer(prompt, return_tensors="pt").to(device)
samples = []
try:
for i in range(1):
outputs = model.generate(**inputs, max_length=256, do_sample=True, top_k=top_k, top_p=top_p, temperature=temperature, num_return_sequences=4, pad_token_id=tokenizer.eos_token_id)
for output in outputs:
sample = tokenizer.decode(output, skip_special_tokens=True)
sample = format_prompt(sample, enhancers, inpspiration, negative_prompt)
samples.append(sample)
except Exception as e:
print(e)
return samples
with gr.Blocks() as fungineer:
with gr.Row():
gr.Markdown("""# Midjourney / Dalle 2 / Stable Diffusion Prompt Generator
This is the 355M parameter model. There is also a 7B parameter model that is much better but far slower (access coming soon).
Just enter a basic prompt and the fungineering model will use its wildest imagination to expand the prompt in detail.""")
with gr.Row():
with gr.Column():
base_prompt = gr.Textbox(lines=5, label="Base Prompt", placeholder="An astronaut in space", info="Enter a very simple prompt that will be fungineered into something exciting!")
extra = gr.Checkbox(value=True, label="Extra Fungineer Imagination", info="If checked, the model will be allowed to go wild with its imagination.")
with gr.Accordion("Advanced Generation Settings", open=False):
top_k = gr.Slider( minimum=10, maximum=1000, value=100, label="Top K", info="Top K sampling")
top_p = gr.Slider( minimum=0.1, maximum=1, value=0.95, step=0.01, label="Top P", info="Top P sampling")
temperature = gr.Slider( minimum=0.1, maximum=1.2, value=0.85, step=0.01, label="Temperature", info="Temperature sampling. Higher values will make the model more creative")
with gr.Accordion("Advanced Output Settings", open=False):
enh = gr.Checkbox(value=True, label="Enhancers", info="Add image meta information such as lens type, shuffter speed, camera model, etc.")
insp = gr.Checkbox(value=False, label="Inpsiration", info="Include inspirational photographers that are known for this type of photography. Sometimes random people will appear here, needs more training.")
neg = gr.Checkbox(value=False, label="Negative Prompt", info="Include a negative prompt, more often used in Stable Diffusion. If you're a Stable Diffusion user, chances are you already have a better negative prompt you like to use.")
with gr.Column():
outputs = [
gr.Textbox(lines=2, label="Fungineered Text 1"),
gr.Textbox(lines=2, label="Fungineered Text 2"),
gr.Textbox(lines=2, label="Fungineered Text 3"),
gr.Textbox(lines=2, label="Fungineered Text 4"),
]
inputs = [base_prompt, extra, top_k, top_p, temperature, enh, insp, neg]
submit = gr.Button(label="Fungineer",variant="primary")
submit.click(generate_text, inputs=inputs, outputs=outputs)
examples = []
with open("examples.json") as f:
examples = json.load(f)
for i, example in enumerate(examples):
with gr.Tab(f"Example {i+1}"):
with gr.Row():
with gr.Column():
gr.Markdown(f"### Base Prompt")
gr.Image(value=f"{example['base']['src']}")
gr.Markdown(f"{example['base']['prompt']}")
with gr.Column():
gr.Markdown(f"### 355M Prompt Fungineered")
gr.Image(value=f"{example['355M']['src']}")
gr.Markdown(f"{example['355M']['prompt']}")
with gr.Column():
gr.Markdown(f"### 7B Prompt Fungineered")
gr.Markdown(f"Coming Soon!")
fungineer.launch(enable_queue=True)
|