A newer version of the Gradio SDK is available:
5.21.0
title: AI Tutor Chatbot
emoji: π§π»βπ«
colorFrom: gray
colorTo: pink
sdk: gradio
sdk_version: 5.20.1
app_file: scripts/main.py
pinned: false
Gradio UI Chatbot
A Gradio UI for the chatbot is available in scripts/main.py.
The Gradio demo is deployed on Hugging Face Spaces at: AI Tutor Chatbot on Hugging Face.
Note: A GitHub Action automatically deploys the Gradio demo when changes are pushed to the main branch (excluding documentation and scripts in the data/scraping_scripts
directory).
Installation (for Gradio UI)
Create a new Python environment:
python -m venv .venv
Activate the environment:
For macOS and Linux:
source .venv/bin/activate
For Windows:
.venv\Scripts\activate
Install the dependencies:
pip install -r requirements.txt
Usage (for Gradio UI)
Set environment variables:
Before running the application, set up the required API keys:
For macOS and Linux:
export OPENAI_API_KEY=your_openai_api_key_here export COHERE_API_KEY=your_cohere_api_key_here
For Windows:
set OPENAI_API_KEY=your_openai_api_key_here set COHERE_API_KEY=your_cohere_api_key_here
Run the application:
python scripts/main.py
This command starts the Gradio interface for the AI Tutor chatbot.
Updating Data Sources
This application uses a RAG (Retrieval Augmented Generation) system with multiple data sources, including documentation and courses. To update these sources:
For adding new courses or updating documentation:
- See the detailed instructions in data/scraping_scripts/README.md
- Automated workflows are available for both course addition and documentation updates
Available workflows:
add_course_workflow.py
- For adding new course contentupdate_docs_workflow.py
- For updating documentation from GitHub repositoriesupload_data_to_hf.py
- For uploading data files to HuggingFace
These scripts streamline the process of adding new content to the AI Tutor and ensure consistency across team members.