syn / analyze_data_quality.py
theaniketgiri's picture
� Initial commit to Hugging Face Space
32519eb
import json
import pandas as pd
from pathlib import Path
import logging
from collections import defaultdict
import matplotlib.pyplot as plt
import seaborn as sns
from typing import Dict, List, Any
import re
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class DataQualityAnalyzer:
def __init__(self, data_dir: str = "data/raw"):
self.data_dir = Path(data_dir)
self.stats = defaultdict(dict)
def load_dataset(self, file_path: Path) -> List[Dict]:
"""Load a dataset from JSON file"""
try:
with open(file_path, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception as e:
logger.error(f"Error loading {file_path}: {str(e)}")
return []
def analyze_text_quality(self, text: str) -> Dict[str, Any]:
"""Analyze quality metrics for a text"""
if not text:
return {
"length": 0,
"word_count": 0,
"avg_word_length": 0,
"has_numbers": False,
"has_special_chars": False
}
words = text.split()
return {
"length": len(text),
"word_count": len(words),
"avg_word_length": sum(len(w) for w in words) / len(words) if words else 0,
"has_numbers": bool(re.search(r'\d', text)),
"has_special_chars": bool(re.search(r'[^a-zA-Z0-9\s.,!?-]', text))
}
def analyze_dataset(self, dataset_name: str, data: List[Dict]):
"""Analyze a single dataset"""
if not data:
logger.warning(f"No data found in {dataset_name}")
return
# Basic stats
self.stats[dataset_name]["total_samples"] = len(data)
# Text quality metrics
title_metrics = []
abstract_metrics = []
for item in data:
if "title" in item:
title_metrics.append(self.analyze_text_quality(item["title"]))
if "abstract" in item:
abstract_metrics.append(self.analyze_text_quality(item["abstract"]))
# Aggregate metrics
if title_metrics:
self.stats[dataset_name]["title"] = {
"avg_length": sum(m["length"] for m in title_metrics) / len(title_metrics),
"avg_word_count": sum(m["word_count"] for m in title_metrics) / len(title_metrics),
"avg_word_length": sum(m["avg_word_length"] for m in title_metrics) / len(title_metrics),
"has_numbers_ratio": sum(1 for m in title_metrics if m["has_numbers"]) / len(title_metrics),
"has_special_chars_ratio": sum(1 for m in title_metrics if m["has_special_chars"]) / len(title_metrics)
}
if abstract_metrics:
self.stats[dataset_name]["abstract"] = {
"avg_length": sum(m["length"] for m in abstract_metrics) / len(abstract_metrics),
"avg_word_count": sum(m["word_count"] for m in abstract_metrics) / len(abstract_metrics),
"avg_word_length": sum(m["avg_word_length"] for m in abstract_metrics) / len(abstract_metrics),
"has_numbers_ratio": sum(1 for m in abstract_metrics if m["has_numbers"]) / len(abstract_metrics),
"has_special_chars_ratio": sum(1 for m in abstract_metrics if m["has_special_chars"]) / len(abstract_metrics)
}
# Field presence
fields = set()
for item in data:
fields.update(item.keys())
self.stats[dataset_name]["fields"] = list(fields)
# Year distribution (if available)
if "year" in fields:
years = [item["year"] for item in data if "year" in item]
self.stats[dataset_name]["year_distribution"] = pd.Series(years).value_counts().to_dict()
def analyze_all_datasets(self):
"""Analyze all datasets in the data directory"""
for file_path in self.data_dir.glob("*.json"):
dataset_name = file_path.stem
logger.info(f"Analyzing dataset: {dataset_name}")
data = self.load_dataset(file_path)
self.analyze_dataset(dataset_name, data)
def generate_report(self):
"""Generate a comprehensive report"""
report = {
"summary": {},
"datasets": self.stats
}
# Overall summary
total_samples = sum(stats["total_samples"] for stats in self.stats.values())
report["summary"]["total_samples"] = total_samples
report["summary"]["total_datasets"] = len(self.stats)
# Save report
report_file = self.data_dir.parent / "reports" / "data_quality_report.json"
report_file.parent.mkdir(exist_ok=True)
with open(report_file, 'w', encoding='utf-8') as f:
json.dump(report, f, indent=2, ensure_ascii=False)
logger.info(f"Quality report saved to {report_file}")
return report
def plot_metrics(self):
"""Generate plots for key metrics"""
plots_dir = self.data_dir.parent / "reports" / "plots"
plots_dir.mkdir(exist_ok=True)
# Sample distribution
plt.figure(figsize=(10, 6))
samples = {name: stats["total_samples"] for name, stats in self.stats.items()}
plt.bar(samples.keys(), samples.values())
plt.xticks(rotation=45)
plt.title("Sample Distribution Across Datasets")
plt.tight_layout()
plt.savefig(plots_dir / "sample_distribution.png")
plt.close()
# Text length distribution
for dataset_name, stats in self.stats.items():
if "abstract" in stats:
plt.figure(figsize=(10, 6))
plt.hist([m["length"] for m in stats["abstract"]], bins=50)
plt.title(f"Abstract Length Distribution - {dataset_name}")
plt.xlabel("Length")
plt.ylabel("Count")
plt.tight_layout()
plt.savefig(plots_dir / f"abstract_length_{dataset_name}.png")
plt.close()
def main():
analyzer = DataQualityAnalyzer()
analyzer.analyze_all_datasets()
report = analyzer.generate_report()
analyzer.plot_metrics()
# Print summary
print("\nData Quality Summary:")
print(f"Total samples: {report['summary']['total_samples']}")
print(f"Total datasets: {report['summary']['total_datasets']}")
print("\nPer Dataset Summary:")
for dataset_name, stats in report["datasets"].items():
print(f"\n{dataset_name}:")
print(f" Samples: {stats['total_samples']}")
if "abstract" in stats:
print(f" Avg abstract length: {stats['abstract']['avg_length']:.1f}")
print(f" Avg words per abstract: {stats['abstract']['avg_word_count']:.1f}")
if __name__ == "__main__":
main()