File size: 7,008 Bytes
32519eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import json
import pandas as pd
from pathlib import Path
import logging
from collections import defaultdict
import matplotlib.pyplot as plt
import seaborn as sns
from typing import Dict, List, Any
import re

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class DataQualityAnalyzer:
    def __init__(self, data_dir: str = "data/raw"):
        self.data_dir = Path(data_dir)
        self.stats = defaultdict(dict)
        
    def load_dataset(self, file_path: Path) -> List[Dict]:
        """Load a dataset from JSON file"""
        try:
            with open(file_path, 'r', encoding='utf-8') as f:
                return json.load(f)
        except Exception as e:
            logger.error(f"Error loading {file_path}: {str(e)}")
            return []
    
    def analyze_text_quality(self, text: str) -> Dict[str, Any]:
        """Analyze quality metrics for a text"""
        if not text:
            return {
                "length": 0,
                "word_count": 0,
                "avg_word_length": 0,
                "has_numbers": False,
                "has_special_chars": False
            }
        
        words = text.split()
        return {
            "length": len(text),
            "word_count": len(words),
            "avg_word_length": sum(len(w) for w in words) / len(words) if words else 0,
            "has_numbers": bool(re.search(r'\d', text)),
            "has_special_chars": bool(re.search(r'[^a-zA-Z0-9\s.,!?-]', text))
        }
    
    def analyze_dataset(self, dataset_name: str, data: List[Dict]):
        """Analyze a single dataset"""
        if not data:
            logger.warning(f"No data found in {dataset_name}")
            return
        
        # Basic stats
        self.stats[dataset_name]["total_samples"] = len(data)
        
        # Text quality metrics
        title_metrics = []
        abstract_metrics = []
        
        for item in data:
            if "title" in item:
                title_metrics.append(self.analyze_text_quality(item["title"]))
            if "abstract" in item:
                abstract_metrics.append(self.analyze_text_quality(item["abstract"]))
        
        # Aggregate metrics
        if title_metrics:
            self.stats[dataset_name]["title"] = {
                "avg_length": sum(m["length"] for m in title_metrics) / len(title_metrics),
                "avg_word_count": sum(m["word_count"] for m in title_metrics) / len(title_metrics),
                "avg_word_length": sum(m["avg_word_length"] for m in title_metrics) / len(title_metrics),
                "has_numbers_ratio": sum(1 for m in title_metrics if m["has_numbers"]) / len(title_metrics),
                "has_special_chars_ratio": sum(1 for m in title_metrics if m["has_special_chars"]) / len(title_metrics)
            }
        
        if abstract_metrics:
            self.stats[dataset_name]["abstract"] = {
                "avg_length": sum(m["length"] for m in abstract_metrics) / len(abstract_metrics),
                "avg_word_count": sum(m["word_count"] for m in abstract_metrics) / len(abstract_metrics),
                "avg_word_length": sum(m["avg_word_length"] for m in abstract_metrics) / len(abstract_metrics),
                "has_numbers_ratio": sum(1 for m in abstract_metrics if m["has_numbers"]) / len(abstract_metrics),
                "has_special_chars_ratio": sum(1 for m in abstract_metrics if m["has_special_chars"]) / len(abstract_metrics)
            }
        
        # Field presence
        fields = set()
        for item in data:
            fields.update(item.keys())
        self.stats[dataset_name]["fields"] = list(fields)
        
        # Year distribution (if available)
        if "year" in fields:
            years = [item["year"] for item in data if "year" in item]
            self.stats[dataset_name]["year_distribution"] = pd.Series(years).value_counts().to_dict()
    
    def analyze_all_datasets(self):
        """Analyze all datasets in the data directory"""
        for file_path in self.data_dir.glob("*.json"):
            dataset_name = file_path.stem
            logger.info(f"Analyzing dataset: {dataset_name}")
            data = self.load_dataset(file_path)
            self.analyze_dataset(dataset_name, data)
    
    def generate_report(self):
        """Generate a comprehensive report"""
        report = {
            "summary": {},
            "datasets": self.stats
        }
        
        # Overall summary
        total_samples = sum(stats["total_samples"] for stats in self.stats.values())
        report["summary"]["total_samples"] = total_samples
        report["summary"]["total_datasets"] = len(self.stats)
        
        # Save report
        report_file = self.data_dir.parent / "reports" / "data_quality_report.json"
        report_file.parent.mkdir(exist_ok=True)
        
        with open(report_file, 'w', encoding='utf-8') as f:
            json.dump(report, f, indent=2, ensure_ascii=False)
        
        logger.info(f"Quality report saved to {report_file}")
        return report
    
    def plot_metrics(self):
        """Generate plots for key metrics"""
        plots_dir = self.data_dir.parent / "reports" / "plots"
        plots_dir.mkdir(exist_ok=True)
        
        # Sample distribution
        plt.figure(figsize=(10, 6))
        samples = {name: stats["total_samples"] for name, stats in self.stats.items()}
        plt.bar(samples.keys(), samples.values())
        plt.xticks(rotation=45)
        plt.title("Sample Distribution Across Datasets")
        plt.tight_layout()
        plt.savefig(plots_dir / "sample_distribution.png")
        plt.close()
        
        # Text length distribution
        for dataset_name, stats in self.stats.items():
            if "abstract" in stats:
                plt.figure(figsize=(10, 6))
                plt.hist([m["length"] for m in stats["abstract"]], bins=50)
                plt.title(f"Abstract Length Distribution - {dataset_name}")
                plt.xlabel("Length")
                plt.ylabel("Count")
                plt.tight_layout()
                plt.savefig(plots_dir / f"abstract_length_{dataset_name}.png")
                plt.close()

def main():
    analyzer = DataQualityAnalyzer()
    analyzer.analyze_all_datasets()
    report = analyzer.generate_report()
    analyzer.plot_metrics()
    
    # Print summary
    print("\nData Quality Summary:")
    print(f"Total samples: {report['summary']['total_samples']}")
    print(f"Total datasets: {report['summary']['total_datasets']}")
    print("\nPer Dataset Summary:")
    for dataset_name, stats in report["datasets"].items():
        print(f"\n{dataset_name}:")
        print(f"  Samples: {stats['total_samples']}")
        if "abstract" in stats:
            print(f"  Avg abstract length: {stats['abstract']['avg_length']:.1f}")
            print(f"  Avg words per abstract: {stats['abstract']['avg_word_count']:.1f}")

if __name__ == "__main__":
    main()