syn / README.md
theaniketgiri's picture
finaly
df9f554
metadata
title: Synthex
emoji: πŸš€
colorFrom: red
colorTo: red
sdk: docker
app_port: 8000
tags:
  - fastapi
  - medical
  - ai
pinned: false

Synthex AI - Medical Text Generation Platform

A synthetic medical text generator that creates realistic medical records using AI models. The application provides both a FastAPI backend and a Streamlit interface.

Note: This Hugging Face Space runs the FastAPI version with HTML interface. For the Streamlit version, please run locally using streamlit run app.py.

Features

  • Generate various types of medical records:
    • Clinical Notes
    • Discharge Summaries
    • Lab Reports
    • Prescriptions
    • Patient Intake Forms
  • Support for multiple AI models:
    • Hugging Face models (default)
    • Google Gemini (optional)
  • Two interfaces:
    • FastAPI with HTML frontend (Hugging Face Space)
    • Streamlit interface (Local development)

API Endpoints

  • GET /: HTML interface
  • GET /record-types: List available record types
  • POST /generate: Generate medical records
    {
      "record_type": "clinical_note",
      "quantity": 1,
      "use_gemini": false,
      "include_metadata": true
    }
    

Deployment

Local Development

  1. Install dependencies:

    pip install -r requirements.txt
    
  2. Run FastAPI server:

    uvicorn src.api.app:app --reload
    
  3. Run Streamlit app (optional):

    streamlit run app.py
    

Docker Deployment

  1. Build the Docker image:

    docker build -t synthex-medical-generator .
    
  2. Run the container:

    docker run -p 8000:8000 synthex-medical-generator
    

Hugging Face Spaces Deployment

This Space runs the FastAPI version with HTML interface. The application is automatically deployed when you push to the repository.

Environment Variables

  • GEMINI_API_KEY: Google Gemini API key (optional)

License

MIT License

🏒 Enterprise Solution

Synthex AI provides enterprise-grade synthetic medical data generation with:

  • HIPAA Compliance: All generated data is synthetic and compliant with healthcare regulations
  • Enterprise Security: SOC 2 Type II certified infrastructure
  • Custom Solutions: Tailored generation for specific medical domains
  • API Access: RESTful API for integration with existing systems
  • Dedicated Support: 24/7 enterprise support and SLAs

πŸ’Ό Use Cases

Healthcare AI Development

  • Train and test AI models without real patient data
  • Generate diverse medical scenarios for model validation
  • Create synthetic datasets for research and development

Medical Software Testing

  • Test EHR systems with realistic synthetic data
  • Validate clinical decision support systems
  • QA medical software with diverse patient scenarios

Healthcare Research

  • Conduct research with privacy-compliant data
  • Generate synthetic datasets for medical studies
  • Test hypotheses without patient privacy concerns

πŸš€ Features

Core Features

  • Multiple medical record types:
    • Clinical Notes
    • Discharge Summaries
    • Lab Reports
    • Prescriptions
    • Patient Intake Forms
  • Advanced generation methods:
    • Hugging Face models (default)
    • Google Gemini API (premium)
    • Custom model integration (enterprise)
  • Enterprise-grade UI/UX
  • Multiple export formats (JSON, CSV, TXT)
  • Batch generation capabilities
  • API access (enterprise)

Enterprise Features

  • Custom model training
  • Domain-specific generation
  • Advanced data validation
  • Integration support
  • Dedicated infrastructure
  • Custom SLAs

πŸ’° Pricing

Free Tier

  • Basic medical record generation
  • Limited to 100 records/month
  • Community support
  • Basic templates

Pro Plan ($99/month)

  • Up to 10,000 records/month
  • Advanced generation features
  • Priority support
  • API access
  • Custom templates

Enterprise Plan (Custom)

  • Unlimited generation
  • Custom model training
  • Dedicated support
  • Custom integrations
  • SLA guarantees
  • On-premise deployment

πŸ› οΈ Technical Details

Architecture

synthex/
β”œβ”€β”€ app.py                 # Main Streamlit application
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ generation/        # Core generation logic
β”‚   β”œβ”€β”€ api/              # REST API endpoints
β”‚   β”œβ”€β”€ validation/       # Data validation
β”‚   └── enterprise/       # Enterprise features
β”œβ”€β”€ data/
β”‚   └── generated/        # Generated records storage
β”œβ”€β”€ tests/                # Test suite
β”œβ”€β”€ Dockerfile           # Docker configuration
└── requirements.txt     # Python dependencies

API Reference

from synthex import SynthexClient

# Initialize client
client = SynthexClient(api_key="your_api_key")

# Generate records
records = client.generate_records(
    record_type="clinical_note",
    count=100,
    options={
        "include_metadata": True,
        "custom_fields": ["patient_demographics", "vital_signs"]
    }
)

# Export data
client.export_records(
    records,
    format="json",
    destination="s3://your-bucket/path"
)

πŸ”’ Security & Compliance

  • HIPAA Compliance
  • SOC 2 Type II Certification
  • GDPR Compliance
  • Data Encryption at Rest and in Transit
  • Regular Security Audits
  • Access Control and Audit Logging

🀝 Enterprise Support

  • 24/7 Technical Support
  • Dedicated Account Manager
  • Custom Integration Support
  • Training and Onboarding
  • Regular Updates and Maintenance
  • Custom Development Services

πŸ“ž Contact

Sales Inquiries

Technical Support

🌟 Why Choose Synthex AI?

  1. Enterprise-Ready: Built for scale and security
  2. Compliance-First: HIPAA and GDPR compliant
  3. Customizable: Tailored to your needs
  4. Support: Enterprise-grade support
  5. Innovation: Cutting-edge AI technology

πŸš€ Getting Started

Quick Start

# Install Synthex CLI
pip install synthex

# Initialize client
synthex init

# Generate records
synthex generate --type clinical_note --count 10

Docker Deployment

# Pull image
docker pull synthex/synthex:latest

# Run container
docker run -p 8501:8501 synthex/synthex

πŸ“š Documentation

πŸ™ Acknowledgments


Β© 2024 Synthex AI. All rights reserved.