Spaces:
Running
Running
### Putting it all together | |
When you use the document encoder in an indexing pipeline, the rewritten document contents are indexed: | |
<div class="pipeline"> | |
<div class="df" title="Document Frame">D</div> | |
<div class="transformer attn" title="SPLADE Indexing Transformer">SPLADE</div> | |
<div class="df" title="Document Frame">D</div> | |
<div class="transformer" title="Indexer">Indexer</div> | |
<div class="artefact" title="SPLADE Index">IDX</div> | |
</div> | |
```python | |
import pyterrier as pt | |
import pyt_splade | |
dataset = pt.get_dataset('irds:msmarco-passage') | |
splade = pyt_splade.Splade() | |
indexer = pt.IterDictIndexer('./msmarco_psg', pretokenised=True) | |
indxer_pipe = splade.doc_encoder() >> indexer | |
indxer_pipe.index(dataset.get_corpus_iter()) | |
``` | |
Once you built an index, you can build a retrieval pipeline that first encodes the query, | |
and then performs retrieval: | |
<div class="pipeline"> | |
<div class="df" title="Query Frame">Q</div> | |
<div class="transformer attn" title="SPLADE Query Transformer">SPLADE</div> | |
<div class="df" title="Query Frame">Q</div> | |
<div class="transformer" title="Term Frequency Transformer">TF Retriever <div class="artefact" title="SPLADE Index">IDX</div></div> | |
<div class="df" title="Result Frame">R</div> | |
</div> | |
```python | |
splade_retr = splade.query_encoder() >> pt.terrier.Retriever('./msmarco_psg', wmodel='Tf') | |
``` | |
### References & Credits | |
This package uses [Naver's SPLADE repository](https://github.com/naver/splade). | |
- Thibault Formal, Benjamin Piwowarski, Stéphane Clinchant. [SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking](https://arxiv.org/abs/2107.05720). SIGIR 2021. | |
- Craig Macdonald, Nicola Tonellotto, Sean MacAvaney, Iadh Ounis. [PyTerrier: Declarative Experimentation in Python from BM25 to Dense Retrieval](https://dl.acm.org/doi/abs/10.1145/3459637.3482013). CIKM 2021. | |