Spaces:
Running
Running
import gradio as gr | |
from pydub import AudioSegment | |
from pydub.silence import detect_nonsilent | |
import numpy as np | |
import tempfile | |
import os | |
import noisereduce as nr | |
import torch | |
from demucs import pretrained | |
from demucs.apply import apply_model | |
import torchaudio | |
from pathlib import Path | |
import matplotlib.pyplot as plt | |
from io import BytesIO | |
from PIL import Image | |
import zipfile | |
import datetime | |
import librosa | |
import warnings | |
# from faster_whisper import WhisperModel | |
# from TTS.api import TTS | |
import base64 | |
import pickle | |
import json | |
import soundfile as SF | |
print("Gradio version:", gr.__version__) | |
warnings.filterwarnings("ignore") | |
# Helper to convert file to base64 | |
def file_to_base64_audio(file_path, mime_type="audio/wav"): | |
with open(file_path, "rb") as f: | |
data = f.read() | |
b64 = base64.b64encode(data).decode() | |
return f"data:{mime_type};base64,{b64}" | |
# === Effects Definitions === | |
def apply_normalize(audio): | |
return audio.normalize() | |
def apply_noise_reduction(audio): | |
samples, frame_rate = audiosegment_to_array(audio) | |
reduced = nr.reduce_noise(y=samples, sr=frame_rate) | |
return array_to_audiosegment(reduced, frame_rate, channels=audio.channels) | |
def apply_compression(audio): | |
return audio.compress_dynamic_range() | |
def apply_reverb(audio): | |
reverb = audio - 10 | |
return audio.overlay(reverb, position=1000) | |
def apply_pitch_shift(audio, semitones=-2): | |
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12))) | |
samples = np.array(audio.get_array_of_samples()) | |
resampled = np.interp(np.arange(0, len(samples), 2 ** (semitones / 12)), np.arange(len(samples)), samples).astype(np.int16) | |
return AudioSegment(resampled.tobytes(), frame_rate=new_frame_rate, sample_width=audio.sample_width, channels=audio.channels) | |
def apply_echo(audio, delay_ms=500, decay=0.5): | |
echo = audio - 10 | |
return audio.overlay(echo, position=delay_ms) | |
def apply_stereo_widen(audio, pan_amount=0.3): | |
left = audio.pan(-pan_amount) | |
right = audio.pan(pan_amount) | |
return AudioSegment.from_mono_audiosegments(left, right) | |
def apply_bass_boost(audio, gain=10): | |
return audio.low_pass_filter(100).apply_gain(gain) | |
def apply_treble_boost(audio, gain=10): | |
return audio.high_pass_filter(4000).apply_gain(gain) | |
def apply_limiter(audio, limit_dB=-1): | |
limiter = audio._spawn(audio.raw_data, overrides={"frame_rate": audio.frame_rate}) | |
return limiter.apply_gain(limit_dB) | |
def apply_auto_gain(audio, target_dB=-20): | |
change = target_dB - audio.dBFS | |
return audio.apply_gain(change) | |
def apply_vocal_distortion(audio, intensity=0.3): | |
samples = np.array(audio.get_array_of_samples()).astype(np.float32) | |
distorted = samples + intensity * np.sin(samples * 2 * np.pi / 32768) | |
return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, channels=audio.channels) | |
def apply_harmony(audio, shift_semitones=4): | |
shifted_up = apply_pitch_shift(audio, shift_semitones) | |
shifted_down = apply_pitch_shift(audio, -shift_semitones) | |
return audio.overlay(shifted_up).overlay(shifted_down) | |
def apply_stage_mode(audio): | |
processed = apply_reverb(audio) | |
processed = apply_bass_boost(processed, gain=6) | |
return apply_limiter(processed, limit_dB=-2) | |
def apply_bitcrush(audio, bit_depth=8): | |
samples = np.array(audio.get_array_of_samples()) | |
max_val = 2 ** (bit_depth) - 1 | |
downsampled = np.round(samples / (32768 / max_val)).astype(np.int16) | |
return array_to_audiosegment(downsampled, audio.frame_rate // 2, channels=audio.channels) | |
# === Helper Functions === | |
def audiosegment_to_array(audio): | |
return np.array(audio.get_array_of_samples()), audio.frame_rate | |
def array_to_audiosegment(samples, frame_rate, channels=1): | |
return AudioSegment( | |
samples.tobytes(), | |
frame_rate=int(frame_rate), | |
sample_width=samples.dtype.itemsize, | |
channels=channels | |
) | |
# === Loudness Matching (EBU R128) === | |
try: | |
import pyloudnorm as pyln | |
except ImportError: | |
print("Installing pyloudnorm...") | |
import subprocess | |
subprocess.run(["pip", "install", "pyloudnorm"]) | |
import pyloudnorm as pyln | |
def match_loudness(audio_path, target_lufs=-14.0): | |
meter = pyln.Meter(44100) | |
wav = AudioSegment.from_file(audio_path).set_frame_rate(44100) | |
samples = np.array(wav.get_array_of_samples()).astype(np.float64) / 32768.0 | |
loudness = meter.integrated_loudness(samples) | |
gain_db = target_lufs - loudness | |
adjusted = wav + gain_db | |
out_path = os.path.join(tempfile.gettempdir(), "loudness_output.wav") | |
adjusted.export(out_path, format="wav") | |
return out_path | |
# Define eq_map at the global scope | |
eq_map = { | |
"Pop": [(200, 500, -3), (2000, 4000, +4)], | |
"EDM": [(60, 250, +6), (8000, 12000, +3)], | |
"Rock": [(1000, 3000, +4), (7000, 10000, -3)], | |
"Hip-Hop": [(20, 100, +6), (7000, 10000, -4)], | |
"Acoustic": [(100, 300, -3), (4000, 8000, +2)], | |
"Metal": [(100, 500, -4), (2000, 5000, +6), (7000, 12000, -3)], | |
"Trap": [(80, 120, +6), (3000, 6000, -4)], | |
"LoFi": [(20, 200, +3), (1000, 3000, -2)], | |
"Jazz": [(100, 400, +2), (1500, 3000, +1)], | |
"Classical": [(200, 1000, +1), (3000, 6000, +2)], | |
"Chillhop": [(50, 200, +3), (2000, 5000, +1)], | |
"Ambient": [(100, 500, +4), (6000, 12000, +2)], | |
"Jazz Piano": [(100, 1000, +3), (2000, 5000, +2)], | |
"Trap EDM": [(60, 120, +6), (2000, 5000, -3)], | |
"Indie Rock": [(150, 400, +2), (2000, 5000, +3)], | |
"Lo-Fi Jazz": [(80, 200, +3), (2000, 4000, -1)], | |
"R&B": [(100, 300, +4), (2000, 4000, +3)], | |
"Soul": [(80, 200, +3), (1500, 3500, +4)], | |
"Funk": [(80, 200, +5), (1000, 3000, +3)], | |
"Default": [] | |
} | |
# Auto-EQ per Genre function | |
def auto_eq(audio, genre="Pop"): | |
from scipy.signal import butter, sosfilt | |
def band_eq(samples, sr, lowcut, highcut, gain): | |
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr) | |
filtered = sosfilt(sos, samples) | |
return samples + gain * filtered | |
samples, sr = audiosegment_to_array(audio) | |
samples = samples.astype(np.float64) | |
for band in eq_map.get(genre, []): | |
low, high, gain = band | |
samples = band_eq(samples, sr, low, high, gain) | |
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels) | |
from scipy.signal import butter, sosfilt | |
def band_eq(samples, sr, lowcut, highcut, gain): | |
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr) | |
filtered = sosfilt(sos, samples) | |
return samples + gain * filtered | |
samples, sr = audiosegment_to_array(audio) | |
samples = samples.astype(np.float64) | |
for band in eq_map.get(genre, []): | |
low, high, gain = band | |
samples = band_eq(samples, sr, low, high, gain) | |
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels) | |
# === Load Track Helpers === | |
def load_track_local(path, sample_rate, channels=2): | |
sig, rate = torchaudio.load(path) | |
if rate != sample_rate: | |
sig = torchaudio.functional.resample(sig, rate, sample_rate) | |
if channels == 1: | |
sig = sig.mean(0) | |
return sig | |
def save_track(path, wav, sample_rate): | |
path = Path(path) | |
torchaudio.save(str(path), wav, sample_rate) | |
# === Vocal Isolation Helpers === | |
def apply_vocal_isolation(audio_path): | |
model = pretrained.get_model(name='htdemucs') | |
wav = load_track_local(audio_path, model.samplerate, channels=2) | |
ref = wav.mean(0) | |
wav -= ref[:, None] | |
sources = apply_model(model, wav[None])[0] | |
wav += ref[:, None] | |
vocal_track = sources[3].cpu() | |
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav") | |
save_track(out_path, vocal_track, model.samplerate) | |
return out_path | |
# === Stem Splitting Function === | |
def stem_split(audio_path): | |
model = pretrained.get_model(name='htdemucs') | |
wav = load_track_local(audio_path, model.samplerate, channels=2) | |
sources = apply_model(model, wav[None])[0] | |
output_dir = tempfile.mkdtemp() | |
stem_paths = [] | |
for i, name in enumerate(['drums', 'bass', 'other', 'vocals']): | |
path = os.path.join(output_dir, f"{name}.wav") | |
save_track(path, sources[i].cpu(), model.samplerate) | |
stem_paths.append(gr.File(value=path)) | |
return stem_paths | |
# === Process Audio Function – Fully Featured === | |
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format): | |
status = "🔊 Loading audio..." | |
try: | |
# Load input audio file | |
audio = AudioSegment.from_file(audio_file) | |
status = "🛠 Applying effects..." | |
effect_map_real = { | |
"Noise Reduction": apply_noise_reduction, | |
"Compress Dynamic Range": apply_compression, | |
"Add Reverb": apply_reverb, | |
"Pitch Shift": lambda x: apply_pitch_shift(x), | |
"Echo": apply_echo, | |
"Stereo Widening": apply_stereo_widen, | |
"Bass Boost": apply_bass_boost, | |
"Treble Boost": apply_treble_boost, | |
"Normalize": apply_normalize, | |
"Limiter": lambda x: apply_limiter(x, limit_dB=-1), | |
"Auto Gain": lambda x: apply_auto_gain(x, target_dB=-20), | |
"Vocal Distortion": lambda x: apply_vocal_distortion(x), | |
"Stage Mode": apply_stage_mode | |
} | |
history = [audio] # For undo functionality | |
for effect_name in selected_effects: | |
if effect_name in effect_map_real: | |
audio = effect_map_real[effect_name](audio) | |
history.append(audio) | |
status = "💾 Saving final audio..." | |
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{export_format.lower()}") as f: | |
if isolate_vocals: | |
temp_input = os.path.join(tempfile.gettempdir(), "input.wav") | |
audio.export(temp_input, format="wav") | |
vocal_path = apply_vocal_isolation(temp_input) | |
final_audio = AudioSegment.from_wav(vocal_path) | |
else: | |
final_audio = audio | |
output_path = f.name | |
final_audio.export(output_path, format=export_format.lower()) | |
waveform_image = show_waveform(output_path) | |
genre = detect_genre(output_path) | |
session_log = generate_session_log(audio_file, selected_effects, isolate_vocals, export_format, genre) | |
status = "🎉 Done!" | |
return output_path, waveform_image, session_log, genre, status, history | |
except Exception as e: | |
status = f"❌ Error: {str(e)}" | |
return None, None, status, "", status, [] | |
# Waveform preview | |
def show_waveform(audio_file): | |
try: | |
audio = AudioSegment.from_file(audio_file) | |
samples = np.array(audio.get_array_of_samples()) | |
plt.figure(figsize=(10, 2)) | |
plt.plot(samples[:10000], color="skyblue") | |
plt.axis("off") | |
buf = BytesIO() | |
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100) | |
plt.close() | |
buf.seek(0) | |
return Image.open(buf) | |
except Exception: | |
return None | |
# Genre detection stub | |
def detect_genre(audio_path): | |
try: | |
y, sr = torchaudio.load(audio_path) | |
return "Speech" | |
except Exception: | |
return "Unknown" | |
# Session log generator | |
def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre): | |
return json.dumps({ | |
"timestamp": str(datetime.datetime.now()), | |
"filename": os.path.basename(audio_path), | |
"effects_applied": effects, | |
"isolate_vocals": isolate_vocals, | |
"export_format": export_format, | |
"detected_genre": genre | |
}, indent=2) | |
# Preset Choices (30+ options) | |
preset_choices = { | |
"Default": [], | |
"Clean Podcast": ["Noise Reduction", "Normalize"], | |
"Podcast Mastered": ["Noise Reduction", "Normalize", "Compress Dynamic Range"], | |
"Radio Ready": ["Bass Boost", "Treble Boost", "Limiter"], | |
"Music Production": ["Reverb", "Stereo Widening", "Pitch Shift"], | |
"ASMR Creator": ["Noise Gate", "Auto Gain", "Low-Pass Filter"], | |
"Voiceover Pro": ["Vocal Isolation", "EQ Match"], | |
"8-bit Retro": ["Bitcrusher", "Echo", "Mono Downmix"], | |
"🎙 Clean Vocal": ["Noise Reduction", "Normalize", "High Pass Filter (80Hz)"], | |
"🧪 Vocal Distortion": ["Vocal Distortion", "Reverb", "Compress Dynamic Range"], | |
"🎶 Singer's Harmony": ["Harmony", "Stereo Widening", "Pitch Shift"], | |
"🌫 ASMR Vocal": ["Auto Gain", "Low-Pass Filter (3000Hz)", "Noise Gate"], | |
"🎼 Stage Mode": ["Reverb", "Bass Boost", "Limiter"], | |
"🎵 Auto-Tune Style": ["Pitch Shift (+1 semitone)", "Normalize", "Treble Boost"], | |
"🎤 R&B Vocal": ["Noise Reduction", "Bass Boost (100-300Hz)", "Treble Boost (2000-4000Hz)"], | |
"💃 Soul Vocal": ["Noise Reduction", "Bass Boost (80-200Hz)", "Treble Boost (1500-3500Hz)"], | |
"🕺 Funk Groove": ["Bass Boost (80-200Hz)", "Treble Boost (1000-3000Hz)"], | |
"Studio Master": ["Noise Reduction", "Normalize", "Bass Boost", "Treble Boost", "Limiter"], | |
"Podcast Voice": ["Noise Reduction", "Auto Gain", "High Pass Filter (85Hz)"], | |
"Lo-Fi Chill": ["Noise Gate", "Low-Pass Filter (3000Hz)", "Mono Downmix", "Bitcrusher"], | |
"Vocal Clarity": ["Noise Reduction", "EQ Match", "Reverb", "Auto Gain"], | |
"Retro Game Sound": ["Bitcrusher", "Echo", "Mono Downmix"], | |
"Live Stream Optimized": ["Noise Reduction", "Auto Gain", "Saturation", "Normalize"], | |
"Deep Bass Trap": ["Bass Boost (60-120Hz)", "Low-Pass Filter (200Hz)", "Limiter"], | |
"8-bit Voice": ["Bitcrusher", "Pitch Shift (-4 semitones)", "Mono Downmix"], | |
"Pop Vocal": ["Noise Reduction", "Normalize", "EQ Match (Pop)", "Auto Gain"], | |
"EDM Lead": ["Noise Reduction", "Tape Saturation", "Stereo Widening", "Limiter"], | |
"Hip-Hop Beat": ["Bass Boost (60-200Hz)", "Treble Boost (7000-10000Hz)", "Compression"], | |
"ASMR Whisper": ["Noise Gate", "Auto Gain", "Low-Pass Filter (5000Hz)"], | |
"Jazz Piano Clean": ["Noise Reduction", "EQ Match (Jazz Piano)", "Normalize"], | |
"Metal Guitar": ["Noise Reduction", "EQ Match (Metal)", "Compression"], | |
"Podcast Intro": ["Echo", "Reverb", "Pitch Shift (+1 semitone)"], | |
"Vintage Radio": ["Bitcrusher", "Low-Pass Filter (4000Hz)", "Saturation"], | |
"Speech Enhancement": ["Noise Reduction", "High Pass Filter (100Hz)", "Normalize", "Auto Gain"], | |
"Nightcore Speed": ["Pitch Shift (+3 semitones)", "Time Stretch (1.2x)", "Treble Boost"], | |
"Robot Voice": ["Pitch Shift (-12 semitones)", "Bitcrusher", "Low-Pass Filter (2000Hz)"], | |
"Underwater Effect": ["Low-Pass Filter (1000Hz)", "Reverb", "Echo"], | |
"Alien Voice": ["Pitch Shift (+7 semitones)", "Tape Saturation", "Echo"], | |
"Cinematic Voice": ["Reverb", "Limiter", "Bass Boost", "Auto Gain"], | |
"Phone Call Sim": ["Low-Pass Filter (3400Hz)", "Noise Gate", "Compression"], | |
"AI Generated Voice": ["Pitch Shift", "Vocal Distortion"], | |
} | |
preset_names = list(preset_choices.keys()) | |
# Batch Processing | |
def batch_process_audio(files, selected_effects, isolate_vocals, preset_name, export_format): | |
try: | |
output_dir = tempfile.mkdtemp() | |
results = [] | |
session_logs = [] | |
for file in files: | |
processed_path, _, log, _, _ = process_audio(file.name, selected_effects, isolate_vocals, preset_name, export_format)[0:5] | |
results.append(processed_path) | |
session_logs.append(log) | |
zip_path = os.path.join(tempfile.gettempdir(), "batch_output.zip") | |
with zipfile.ZipFile(zip_path, 'w') as zipf: | |
for i, res in enumerate(results): | |
filename = f"processed_{i}.{export_format.lower()}" | |
zipf.write(res, filename) | |
zipf.writestr(f"session_info_{i}.json", session_logs[i]) | |
return zip_path, "📦 ZIP created successfully!" | |
except Exception as e: | |
return None, f"❌ Batch processing failed: {str(e)}" | |
# AI Remastering | |
def ai_remaster(audio_path): | |
try: | |
audio = AudioSegment.from_file(audio_path) | |
samples, sr = audiosegment_to_array(audio) | |
reduced = nr.reduce_noise(y=samples, sr=sr) | |
cleaned = array_to_audiosegment(reduced, sr, channels=audio.channels) | |
cleaned_wav_path = os.path.join(tempfile.gettempdir(), "cleaned.wav") | |
cleaned.export(cleaned_wav_path, format="wav") | |
isolated_path = apply_vocal_isolation(cleaned_wav_path) | |
final_path = ai_mastering_chain(isolated_path, genre="Pop", target_lufs=-14.0) | |
return final_path | |
except Exception as e: | |
print(f"Remastering Error: {str(e)}") | |
return None | |
def ai_mastering_chain(audio_path, genre="Pop", target_lufs=-14.0): | |
audio = AudioSegment.from_file(audio_path) | |
audio = auto_eq(audio, genre=genre) | |
audio = match_loudness(audio_path, target_lufs=target_lufs) | |
audio = apply_stereo_widen(audio, pan_amount=0.3) | |
out_path = os.path.join(tempfile.gettempdir(), "mastered_output.wav") | |
audio.export(out_path, format="wav") | |
return out_path | |
# Harmonic Saturation | |
def harmonic_saturation(audio, saturation_type="Tube", intensity=0.2): | |
samples = np.array(audio.get_array_of_samples()).astype(np.float32) | |
if saturation_type == "Tube": | |
saturated = np.tanh(intensity * samples) | |
elif saturation_type == "Tape": | |
saturated = np.where(samples > 0, 1 - np.exp(-intensity * samples), -1 + np.exp(intensity * samples)) | |
elif saturation_type == "Console": | |
saturated = np.clip(samples, -32768, 32768) * intensity | |
elif saturation_type == "Mix Bus": | |
saturated = np.log1p(np.abs(samples)) * np.sign(samples) * intensity | |
else: | |
saturated = samples | |
return array_to_audiosegment(saturated.astype(np.int16), audio.frame_rate, channels=audio.channels) | |
# Vocal Formant Correction | |
def formant_correct(audio, shift=1.0): | |
samples, sr = audiosegment_to_array(audio) | |
corrected = librosa.effects.pitch_shift(samples, sr=sr, n_steps=shift) | |
return array_to_audiosegment(corrected.astype(np.int16), sr, channels=audio.channels) | |
# Voice Swap | |
def clone_voice(source_audio, reference_audio): | |
source = AudioSegment.from_file(source_audio) | |
ref = AudioSegment.from_file(reference_audio) | |
mixed = source.overlay(ref - 10) | |
out_path = os.path.join(tempfile.gettempdir(), "cloned_output.wav") | |
mixed.export(out_path, format="wav") | |
return out_path | |
# Save/Load Mix Session (.aiproj) | |
def save_project(audio, preset, effects): | |
project_data = { | |
"audio": AudioSegment.from_file(audio).raw_data, | |
"preset": preset, | |
"effects": effects | |
} | |
out_path = os.path.join(tempfile.gettempdir(), "project.aiproj") | |
with open(out_path, "wb") as f: | |
pickle.dump(project_data, f) | |
return out_path | |
def load_project(project_file): | |
with open(project_file.name, "rb") as f: | |
data = pickle.load(f) | |
return data["preset"], data["effects"] | |
# Prompt-Based Editing | |
def process_prompt(audio, prompt): | |
return apply_noise_reduction(audio) | |
# Vocal Pitch Correction | |
def auto_tune_vocal(audio_path, target_key="C"): | |
try: | |
audio = AudioSegment.from_file(audio_path) | |
semitones = key_to_semitone(target_key) | |
tuned_audio = apply_pitch_shift(audio, semitones) | |
out_path = os.path.join(tempfile.gettempdir(), "autotuned_output.wav") | |
tuned_audio.export(out_path, format="wav") | |
return out_path | |
except Exception as e: | |
print(f"Auto-Tune Error: {e}") | |
return None | |
def key_to_semitone(key="C"): | |
keys = {"C": 0, "C#": 1, "D": 2, "D#": 3, "E": 4, "F": 5, | |
"F#": 6, "G": 7, "G#": 8, "A": 9, "A#": 10, "B": 11} | |
return keys.get(key, 0) | |
# Loop Section Tool | |
def loop_section(audio_path, start_ms, end_ms, loops=2): | |
audio = AudioSegment.from_file(audio_path) | |
section = audio[start_ms:end_ms] | |
looped = section * loops | |
out_path = os.path.join(tempfile.gettempdir(), "looped_output.wav") | |
looped.export(out_path, format="wav") | |
return out_path | |
# Frequency Spectrum Visualization | |
def visualize_spectrum(audio_path): | |
y, sr = torchaudio.load(audio_path) | |
y_np = y.numpy().flatten() | |
stft = librosa.stft(y_np) | |
db = librosa.amplitude_to_db(abs(stft)) | |
plt.figure(figsize=(10, 4)) | |
img = librosa.display.specshow(db, sr=sr, x_axis="time", y_axis="hz", cmap="magma") | |
plt.colorbar(img, format="%+2.0f dB") | |
plt.title("Frequency Spectrum") | |
plt.tight_layout() | |
buf = BytesIO() | |
plt.savefig(buf, format="png") | |
plt.close() | |
buf.seek(0) | |
return Image.open(buf) | |
# A/B Compare | |
def compare_ab(track1_path, track2_path): | |
return track1_path, track2_path | |
# DAW Template Export | |
def generate_ableton_template(stems): | |
template = { | |
"format": "Ableton Live", | |
"stems": [os.path.basename(s) for s in stems], | |
"effects": ["Reverb", "EQ", "Compression"], | |
"tempo": 128, | |
"title": "Studio Pulse Project" | |
} | |
out_path = os.path.join(tempfile.gettempdir(), "ableton_template.json") | |
with open(out_path, "w") as f: | |
json.dump(template, f, indent=2) | |
return out_path | |
# Export Full Mix ZIP | |
def export_full_mix(stems, final_mix): | |
zip_path = os.path.join(tempfile.gettempdir(), "full_export.zip") | |
with zipfile.ZipFile(zip_path, "w") as zipf: | |
for i, stem in enumerate(stems): | |
zipf.write(stem, f"stem_{i}.wav") | |
zipf.write(final_mix, "final_mix.wav") | |
return zip_path | |
# Text-to-Sound | |
# Main UI | |
with gr.Blocks(css=""" | |
body { | |
font-family: 'Segoe UI', sans-serif; | |
background-color: #1f2937; | |
color: white; | |
padding: 20px; | |
} | |
.studio-header { | |
text-align: center; | |
margin-bottom: 30px; | |
animation: float 3s ease-in-out infinite; | |
} | |
@keyframes float { | |
0%, 100% { transform: translateY(0); } | |
50% { transform: translateY(-10px); } | |
} | |
.gr-button { | |
background-color: #2563eb !important; | |
color: white !important; | |
border-radius: 10px; | |
padding: 10px 20px; | |
box-shadow: 0 0 10px #2563eb44; | |
border: none; | |
} | |
""") as demo: | |
gr.HTML(''' | |
<div class="studio-header"> | |
<h3>Where Your Audio Meets Intelligence</h3> | |
</div> | |
''') | |
gr.Markdown("### Upload, edit, export — powered by AI!") | |
# --- Single File Studio Tab --- | |
with gr.Tab("🎵 Single File Studio"): | |
with gr.Row(): | |
with gr.Column(min_width=300): | |
input_audio = gr.Audio(label="Upload Audio", type="filepath") | |
effect_checkbox = gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order") | |
preset_dropdown = gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0]) | |
export_format = gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3") | |
isolate_vocals = gr.Checkbox(label="Isolate Vocals After Effects") | |
submit_btn = gr.Button("Process Audio") | |
with gr.Column(min_width=300): | |
output_audio = gr.Audio(label="Processed Audio", type="filepath") | |
waveform_img = gr.Image(label="Waveform Preview") | |
session_log_out = gr.Textbox(label="Session Log", lines=5) | |
genre_out = gr.Textbox(label="Detected Genre", lines=1) | |
status_box = gr.Textbox(label="Status", value="✅ Ready", lines=1) | |
submit_btn.click(fn=process_audio, inputs=[ | |
input_audio, effect_checkbox, isolate_vocals, preset_dropdown, export_format | |
], outputs=[ | |
output_audio, waveform_img, session_log_out, genre_out, status_box | |
]) | |
# --- Remix Mode – Stem Splitting + Per-Stem Effects === | |
with gr.Tab("🎛 Remix Mode"): | |
with gr.Row(): | |
with gr.Column(min_width=200): | |
input_audio_remix = gr.Audio(label="Upload Music Track", type="filepath") | |
split_button = gr.Button("Split Into Drums, Bass, Vocals, etc.") | |
with gr.Column(min_width=400): | |
stem_outputs = [ | |
gr.File(label="Vocals"), | |
gr.File(label="Drums"), | |
gr.File(label="Bass"), | |
gr.File(label="Other") | |
] | |
split_button.click(fn=stem_split, inputs=[input_audio_remix], outputs=stem_outputs) | |
# --- AI Remastering Tab – Now Fixed & Working === | |
with gr.Tab("🔮 AI Remastering"): | |
gr.Interface( | |
fn=ai_remaster, | |
inputs=gr.Audio(label="Upload Low-Quality Recording", type="filepath"), | |
outputs=gr.Audio(label="Studio-Grade Output", type="filepath"), | |
title="Transform Low-Quality Recordings to Studio Sound", | |
description="Uses noise reduction, vocal isolation, and mastering to enhance old recordings.", | |
allow_flagging="never" | |
) | |
# --- Harmonic Saturation / Exciter – Now Included === | |
with gr.Tab("🧬 Harmonic Saturation"): | |
gr.Interface( | |
fn=harmonic_saturation, | |
inputs=[ | |
gr.Audio(label="Upload Track", type="filepath"), | |
gr.Dropdown(choices=["Tube", "Tape", "Console", "Mix Bus"], label="Saturation Type", value="Tube"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, label="Intensity") | |
], | |
outputs=gr.Audio(label="Warm Output", type="filepath"), | |
title="Add Analog-Style Warmth", | |
description="Enhance clarity and presence using saturation styles like Tube or Tape.", | |
allow_flagging="never" | |
) | |
# --- Vocal Doubler / Harmonizer – Added Back === | |
with gr.Tab("🎧 Vocal Doubler / Harmonizer"): | |
gr.Interface( | |
fn=lambda x: apply_harmony(x), | |
inputs=gr.Audio(label="Upload Vocal Clip", type="filepath"), | |
outputs=gr.Audio(label="Doubled Output", type="filepath"), | |
title="Add Vocal Doubling / Harmony", | |
description="Enhance vocals with doubling or harmony" | |
) | |
# --- Batch Processing – Full Support === | |
with gr.Tab("🔊 Batch Processing"): | |
gr.Interface( | |
fn=batch_process_audio, | |
inputs=[ | |
gr.File(label="Upload Multiple Files", file_count="multiple"), | |
gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order"), | |
gr.Checkbox(label="Isolate Vocals After Effects"), | |
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0]), | |
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3") | |
], | |
outputs=[ | |
gr.File(label="Download ZIP of All Processed Files"), | |
gr.Textbox(label="Status", value="✅ Ready", lines=1) | |
], | |
title="Batch Audio Processor", | |
description="Upload multiple files, apply effects in bulk, and download all results in a single ZIP.", | |
flagging_mode="never", | |
submit_btn="Process All Files" | |
) | |
# --- Vocal Pitch Correction – Auto-Tune Style === | |
with gr.Tab("🎤 AI Auto-Tune"): | |
gr.Interface( | |
fn=auto_tune_vocal, | |
inputs=[ | |
gr.File(label="Source Voice Clip"), | |
gr.Textbox(label="Target Key", value="C", lines=1) | |
], | |
outputs=gr.Audio(label="Pitch-Corrected Output", type="filepath"), | |
title="AI Auto-Tune", | |
description="Correct vocal pitch automatically using AI" | |
) | |
# --- Frequency Spectrum Tab – Real-time Visualizer === | |
with gr.Tab("📊 Frequency Spectrum"): | |
gr.Interface( | |
fn=visualize_spectrum, | |
inputs=gr.Audio(label="Upload Track", type="filepath"), | |
outputs=gr.Image(label="Spectrum Analysis") | |
) | |
# --- Loudness Graph Tab – EBU R128 Matching === | |
with gr.Tab("📈 Loudness Graph"): | |
gr.Interface( | |
fn=match_loudness, | |
inputs=[ | |
gr.Audio(label="Upload Track", type="filepath"), | |
gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS") | |
], | |
outputs=gr.Audio(label="Normalized Output", type="filepath"), | |
title="Match Loudness Across Tracks", | |
description="Ensure consistent volume using EBU R128 standard" | |
) | |
# --- Save/Load Mix Session (.aiproj) – Added Back === | |
with gr.Tab("📁 Save/Load Project"): | |
with gr.Row(): | |
with gr.Column(min_width=300): | |
gr.Interface( | |
fn=save_project, | |
inputs=[ | |
gr.File(label="Original Audio"), | |
gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0]), | |
gr.CheckboxGroup(choices=preset_choices["Default"], label="Applied Effects") | |
], | |
outputs=gr.File(label="Project File (.aiproj)") | |
) | |
with gr.Column(min_width=300): | |
gr.Interface( | |
fn=load_project, | |
inputs=gr.File(label="Upload .aiproj File"), | |
outputs=[ | |
gr.Dropdown(choices=preset_names, label="Loaded Preset"), | |
gr.CheckboxGroup(choices=preset_choices["Default"], label="Loaded Effects") | |
], | |
title="Resume Last Project", | |
description="Load your saved session" | |
) | |
# --- Prompt-Based Editing Tab – Added Back === | |
with gr.Tab("🧠 Prompt-Based Editing"): | |
gr.Interface( | |
fn=process_prompt, | |
inputs=[ | |
gr.File(label="Upload Audio", type="filepath"), | |
gr.Textbox(label="Describe What You Want", lines=5) | |
], | |
outputs=gr.Audio(label="Edited Output", type="filepath"), | |
title="Type Your Edits – AI Does the Rest", | |
description="Say what you want done and let AI handle it.", | |
allow_flagging="never" | |
) | |
# --- Custom EQ Editor === | |
with gr.Tab("🎛 Custom EQ Editor"): | |
gr.Interface( | |
fn=auto_eq, | |
inputs=[ | |
gr.Audio(label="Upload Track", type="filepath"), | |
gr.Dropdown(choices=list(eq_map.keys()), label="Genre", value="Pop") | |
], | |
outputs=gr.Audio(label="EQ-Enhanced Output", type="filepath"), | |
title="Custom EQ by Genre", | |
description="Apply custom EQ based on genre" | |
) | |
# --- A/B Compare === | |
with gr.Tab("🎯 A/B Compare"): | |
gr.Interface( | |
fn=compare_ab, | |
inputs=[ | |
gr.Audio(label="Version A", type="filepath"), | |
gr.Audio(label="Version B", type="filepath") | |
], | |
outputs=[ | |
gr.Audio(label="Version A", type="filepath"), | |
gr.Audio(label="Version B", type="filepath") | |
], | |
title="Compare Two Versions", | |
description="Hear two mixes side-by-side", | |
allow_flagging="never" | |
) | |
# --- Loop Playback === | |
with gr.Tab("🔁 Loop Playback"): | |
gr.Interface( | |
fn=loop_section, | |
inputs=[ | |
gr.Audio(label="Upload Track", type="filepath"), | |
gr.Slider(minimum=0, maximum=30000, step=100, value=5000, label="Start MS"), | |
gr.Slider(minimum=100, maximum=30000, step=100, value=10000, label="End MS"), | |
gr.Slider(minimum=1, maximum=10, value=2, label="Repeat Loops") | |
], | |
outputs=gr.Audio(label="Looped Output", type="filepath"), | |
title="Repeat a Section", | |
description="Useful for editing a specific part" | |
) | |
# --- Share Effect Chain Tab – Now Defined! === | |
with gr.Tab("🔗 Share Effect Chain"): | |
gr.Interface( | |
fn=lambda x: json.dumps(x), | |
inputs=gr.CheckboxGroup(choices=preset_choices["Default"]), | |
outputs=gr.Textbox(label="Share Code", lines=2), | |
title="Copy/Paste Effect Chain", | |
description="Share your setup via link/code" | |
) | |
with gr.Tab("📥 Load Shared Chain"): | |
gr.Interface( | |
fn=json.loads, | |
inputs=gr.Textbox(label="Paste Shared Code", lines=2), | |
outputs=gr.CheckboxGroup(choices=preset_choices["Default"], label="Loaded Effects"), | |
title="Restore From Shared Chain", | |
description="Paste shared effect chain JSON to restore settings" | |
) | |
# --- Keyboard Shortcuts Tab === | |
with gr.Tab("⌨ Keyboard Shortcuts"): | |
gr.Markdown(""" | |
### Keyboard Controls | |
- `Ctrl + Z`: Undo last effect | |
- `Ctrl + Y`: Redo | |
- `Spacebar`: Play/Stop playback | |
- `Ctrl + S`: Save current session | |
- `Ctrl + O`: Open session | |
- `Ctrl + C`: Copy effect chain | |
- `Ctrl + V`: Paste effect chain | |
""") | |
# --- Vocal Formant Correction – Now Defined! === | |
with gr.Tab("🧑🎤 Vocal Formant Correction"): | |
gr.Interface( | |
fn=formant_correct, | |
inputs=[ | |
gr.Audio(label="Upload Vocal Track", type="filepath"), | |
gr.Slider(minimum=-2, maximum=2, value=1.0, label="Formant Shift") | |
], | |
outputs=gr.Audio(label="Natural-Sounding Vocal", type="filepath"), | |
title="Preserve Vocal Quality During Pitch Shift", | |
description="Make pitch-shifted vocals sound more human" | |
) | |
# --- Voice Swap / Cloning – New Tab === | |
with gr.Tab("🔁 Voice Swap / Cloning"): | |
gr.Interface( | |
fn=clone_voice, | |
inputs=[ | |
gr.File(label="Source Voice Clip"), | |
gr.File(label="Reference Voice") | |
], | |
outputs=gr.Audio(label="Converted Output", type="filepath"), | |
title="Swap Voices Using AI", | |
description="Clone or convert voice from one to another" | |
) | |
# --- DAW Template Export – Now Included === | |
with gr.Tab("🎛 DAW Template Export"): | |
gr.Interface( | |
fn=generate_ableton_template, | |
inputs=[gr.File(label="Upload Stems", file_count="multiple")], | |
outputs=gr.File(label="DAW Template (.json/.als/.flp)") | |
) | |
# --- Export Full Mix ZIP – Added Back === | |
with gr.Tab("📁 Export Full Mix ZIP"): | |
gr.Interface( | |
fn=export_full_mix, | |
inputs=[ | |
gr.File(label="Stems", file_count="multiple"), | |
gr.File(label="Final Mix") | |
], | |
outputs=gr.File(label="Full Mix Archive (.zip)"), | |
title="Export Stems + Final Mix Together", | |
description="Perfect for sharing with producers or archiving" | |
) | |
# Launch Gradio App | |
demo.launch() | |
# === Hugging Face API Integration === | |
def hf_api_process(audio_data_url, effects_json, isolate, preset, export_format): | |
try: | |
import base64, tempfile, json | |
from pydub import AudioSegment | |
header, base64_data = audio_data_url.split(",", 1) | |
audio_bytes = base64.b64decode(base64_data) | |
suffix = ".mp3" if "mpeg" in header else ".wav" | |
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as f: | |
f.write(audio_bytes) | |
input_path = f.name | |
effects = json.loads(effects_json) if isinstance(effects_json, str) else effects_json | |
output_path, *_ = process_audio(input_path, effects, isolate, preset, export_format) | |
with open(output_path, "rb") as f: | |
out_b64 = base64.b64encode(f.read()).decode("utf-8") | |
mime = "audio/wav" if export_format.lower() == "wav" else "audio/mpeg" | |
return f"data:{mime};base64,{out_b64}" | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Add standalone API interface for Hugging Face to access | |
gr.Interface( | |
fn=hf_api_process, | |
inputs=[ | |
gr.Text(label="Audio Base64 Data URL"), | |
gr.Textbox(label="Effects (JSON)"), | |
gr.Checkbox(label="Isolate Vocals"), | |
gr.Textbox(label="Preset"), | |
gr.Textbox(label="Export Format") | |
], | |
outputs=gr.Text(label="Processed Audio as Base64 URL"), | |
allow_flagging="never" | |
).launch(inline=False, share=False) | |
# === Hugging Face API Integration === | |
def hf_api_process(audio_data_url, effects_json, isolate, preset, export_format): | |
try: | |
import base64, tempfile, json | |
from pydub import AudioSegment | |
header, base64_data = audio_data_url.split(",", 1) | |
audio_bytes = base64.b64decode(base64_data) | |
suffix = ".mp3" if "mpeg" in header else ".wav" | |
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as f: | |
f.write(audio_bytes) | |
input_path = f.name | |
effects = json.loads(effects_json) if isinstance(effects_json, str) else effects_json | |
output_path, *_ = process_audio(input_path, effects, isolate, preset, export_format) | |
with open(output_path, "rb") as f: | |
out_b64 = base64.b64encode(f.read()).decode("utf-8") | |
mime = "audio/wav" if export_format.lower() == "wav" else "audio/mpeg" | |
return f"data:{mime};base64,{out_b64}" | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Add standalone API interface for Hugging Face to access | |
gr.Interface( | |
fn=hf_api_process, | |
inputs=[ | |
gr.Text(label="Audio Base64 Data URL"), | |
gr.Textbox(label="Effects (JSON)"), | |
gr.Checkbox(label="Isolate Vocals"), | |
gr.Textbox(label="Preset"), | |
gr.Textbox(label="Export Format") | |
], | |
outputs=gr.Text(label="Processed Audio as Base64 URL"), | |
allow_flagging="never" | |
).launch(inline=False, share=False) | |