AudioMaster / app.py
tee342's picture
Update app.py
40f9427 verified
import gradio as gr
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
import numpy as np
import tempfile
import os
import noisereduce as nr
import torch
from demucs import pretrained
from demucs.apply import apply_model
import torchaudio
from pathlib import Path
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import zipfile
import datetime
import librosa
import warnings
# from faster_whisper import WhisperModel
# from TTS.api import TTS
import base64
import pickle
import json
import soundfile as SF
print("Gradio version:", gr.__version__)
warnings.filterwarnings("ignore")
# Helper to convert file to base64
def file_to_base64_audio(file_path, mime_type="audio/wav"):
with open(file_path, "rb") as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f"data:{mime_type};base64,{b64}"
# === Effects Definitions ===
def apply_normalize(audio):
return audio.normalize()
def apply_noise_reduction(audio):
samples, frame_rate = audiosegment_to_array(audio)
reduced = nr.reduce_noise(y=samples, sr=frame_rate)
return array_to_audiosegment(reduced, frame_rate, channels=audio.channels)
def apply_compression(audio):
return audio.compress_dynamic_range()
def apply_reverb(audio):
reverb = audio - 10
return audio.overlay(reverb, position=1000)
def apply_pitch_shift(audio, semitones=-2):
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12)))
samples = np.array(audio.get_array_of_samples())
resampled = np.interp(np.arange(0, len(samples), 2 ** (semitones / 12)), np.arange(len(samples)), samples).astype(np.int16)
return AudioSegment(resampled.tobytes(), frame_rate=new_frame_rate, sample_width=audio.sample_width, channels=audio.channels)
def apply_echo(audio, delay_ms=500, decay=0.5):
echo = audio - 10
return audio.overlay(echo, position=delay_ms)
def apply_stereo_widen(audio, pan_amount=0.3):
left = audio.pan(-pan_amount)
right = audio.pan(pan_amount)
return AudioSegment.from_mono_audiosegments(left, right)
def apply_bass_boost(audio, gain=10):
return audio.low_pass_filter(100).apply_gain(gain)
def apply_treble_boost(audio, gain=10):
return audio.high_pass_filter(4000).apply_gain(gain)
def apply_limiter(audio, limit_dB=-1):
limiter = audio._spawn(audio.raw_data, overrides={"frame_rate": audio.frame_rate})
return limiter.apply_gain(limit_dB)
def apply_auto_gain(audio, target_dB=-20):
change = target_dB - audio.dBFS
return audio.apply_gain(change)
def apply_vocal_distortion(audio, intensity=0.3):
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
distorted = samples + intensity * np.sin(samples * 2 * np.pi / 32768)
return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, channels=audio.channels)
def apply_harmony(audio, shift_semitones=4):
shifted_up = apply_pitch_shift(audio, shift_semitones)
shifted_down = apply_pitch_shift(audio, -shift_semitones)
return audio.overlay(shifted_up).overlay(shifted_down)
def apply_stage_mode(audio):
processed = apply_reverb(audio)
processed = apply_bass_boost(processed, gain=6)
return apply_limiter(processed, limit_dB=-2)
def apply_bitcrush(audio, bit_depth=8):
samples = np.array(audio.get_array_of_samples())
max_val = 2 ** (bit_depth) - 1
downsampled = np.round(samples / (32768 / max_val)).astype(np.int16)
return array_to_audiosegment(downsampled, audio.frame_rate // 2, channels=audio.channels)
# === Helper Functions ===
def audiosegment_to_array(audio):
return np.array(audio.get_array_of_samples()), audio.frame_rate
def array_to_audiosegment(samples, frame_rate, channels=1):
return AudioSegment(
samples.tobytes(),
frame_rate=int(frame_rate),
sample_width=samples.dtype.itemsize,
channels=channels
)
# === Loudness Matching (EBU R128) ===
try:
import pyloudnorm as pyln
except ImportError:
print("Installing pyloudnorm...")
import subprocess
subprocess.run(["pip", "install", "pyloudnorm"])
import pyloudnorm as pyln
def match_loudness(audio_path, target_lufs=-14.0):
meter = pyln.Meter(44100)
wav = AudioSegment.from_file(audio_path).set_frame_rate(44100)
samples = np.array(wav.get_array_of_samples()).astype(np.float64) / 32768.0
loudness = meter.integrated_loudness(samples)
gain_db = target_lufs - loudness
adjusted = wav + gain_db
out_path = os.path.join(tempfile.gettempdir(), "loudness_output.wav")
adjusted.export(out_path, format="wav")
return out_path
# Define eq_map at the global scope
eq_map = {
"Pop": [(200, 500, -3), (2000, 4000, +4)],
"EDM": [(60, 250, +6), (8000, 12000, +3)],
"Rock": [(1000, 3000, +4), (7000, 10000, -3)],
"Hip-Hop": [(20, 100, +6), (7000, 10000, -4)],
"Acoustic": [(100, 300, -3), (4000, 8000, +2)],
"Metal": [(100, 500, -4), (2000, 5000, +6), (7000, 12000, -3)],
"Trap": [(80, 120, +6), (3000, 6000, -4)],
"LoFi": [(20, 200, +3), (1000, 3000, -2)],
"Jazz": [(100, 400, +2), (1500, 3000, +1)],
"Classical": [(200, 1000, +1), (3000, 6000, +2)],
"Chillhop": [(50, 200, +3), (2000, 5000, +1)],
"Ambient": [(100, 500, +4), (6000, 12000, +2)],
"Jazz Piano": [(100, 1000, +3), (2000, 5000, +2)],
"Trap EDM": [(60, 120, +6), (2000, 5000, -3)],
"Indie Rock": [(150, 400, +2), (2000, 5000, +3)],
"Lo-Fi Jazz": [(80, 200, +3), (2000, 4000, -1)],
"R&B": [(100, 300, +4), (2000, 4000, +3)],
"Soul": [(80, 200, +3), (1500, 3500, +4)],
"Funk": [(80, 200, +5), (1000, 3000, +3)],
"Default": []
}
# Auto-EQ per Genre function
def auto_eq(audio, genre="Pop"):
from scipy.signal import butter, sosfilt
def band_eq(samples, sr, lowcut, highcut, gain):
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
filtered = sosfilt(sos, samples)
return samples + gain * filtered
samples, sr = audiosegment_to_array(audio)
samples = samples.astype(np.float64)
for band in eq_map.get(genre, []):
low, high, gain = band
samples = band_eq(samples, sr, low, high, gain)
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
from scipy.signal import butter, sosfilt
def band_eq(samples, sr, lowcut, highcut, gain):
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
filtered = sosfilt(sos, samples)
return samples + gain * filtered
samples, sr = audiosegment_to_array(audio)
samples = samples.astype(np.float64)
for band in eq_map.get(genre, []):
low, high, gain = band
samples = band_eq(samples, sr, low, high, gain)
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
# === Load Track Helpers ===
def load_track_local(path, sample_rate, channels=2):
sig, rate = torchaudio.load(path)
if rate != sample_rate:
sig = torchaudio.functional.resample(sig, rate, sample_rate)
if channels == 1:
sig = sig.mean(0)
return sig
def save_track(path, wav, sample_rate):
path = Path(path)
torchaudio.save(str(path), wav, sample_rate)
# === Vocal Isolation Helpers ===
def apply_vocal_isolation(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
ref = wav.mean(0)
wav -= ref[:, None]
sources = apply_model(model, wav[None])[0]
wav += ref[:, None]
vocal_track = sources[3].cpu()
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
save_track(out_path, vocal_track, model.samplerate)
return out_path
# === Stem Splitting Function ===
def stem_split(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
sources = apply_model(model, wav[None])[0]
output_dir = tempfile.mkdtemp()
stem_paths = []
for i, name in enumerate(['drums', 'bass', 'other', 'vocals']):
path = os.path.join(output_dir, f"{name}.wav")
save_track(path, sources[i].cpu(), model.samplerate)
stem_paths.append(gr.File(value=path))
return stem_paths
# === Process Audio Function – Fully Featured ===
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
status = "🔊 Loading audio..."
try:
# Load input audio file
audio = AudioSegment.from_file(audio_file)
status = "🛠 Applying effects..."
effect_map_real = {
"Noise Reduction": apply_noise_reduction,
"Compress Dynamic Range": apply_compression,
"Add Reverb": apply_reverb,
"Pitch Shift": lambda x: apply_pitch_shift(x),
"Echo": apply_echo,
"Stereo Widening": apply_stereo_widen,
"Bass Boost": apply_bass_boost,
"Treble Boost": apply_treble_boost,
"Normalize": apply_normalize,
"Limiter": lambda x: apply_limiter(x, limit_dB=-1),
"Auto Gain": lambda x: apply_auto_gain(x, target_dB=-20),
"Vocal Distortion": lambda x: apply_vocal_distortion(x),
"Stage Mode": apply_stage_mode
}
history = [audio] # For undo functionality
for effect_name in selected_effects:
if effect_name in effect_map_real:
audio = effect_map_real[effect_name](audio)
history.append(audio)
status = "💾 Saving final audio..."
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{export_format.lower()}") as f:
if isolate_vocals:
temp_input = os.path.join(tempfile.gettempdir(), "input.wav")
audio.export(temp_input, format="wav")
vocal_path = apply_vocal_isolation(temp_input)
final_audio = AudioSegment.from_wav(vocal_path)
else:
final_audio = audio
output_path = f.name
final_audio.export(output_path, format=export_format.lower())
waveform_image = show_waveform(output_path)
genre = detect_genre(output_path)
session_log = generate_session_log(audio_file, selected_effects, isolate_vocals, export_format, genre)
status = "🎉 Done!"
return output_path, waveform_image, session_log, genre, status, history
except Exception as e:
status = f"❌ Error: {str(e)}"
return None, None, status, "", status, []
# Waveform preview
def show_waveform(audio_file):
try:
audio = AudioSegment.from_file(audio_file)
samples = np.array(audio.get_array_of_samples())
plt.figure(figsize=(10, 2))
plt.plot(samples[:10000], color="skyblue")
plt.axis("off")
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
plt.close()
buf.seek(0)
return Image.open(buf)
except Exception:
return None
# Genre detection stub
def detect_genre(audio_path):
try:
y, sr = torchaudio.load(audio_path)
return "Speech"
except Exception:
return "Unknown"
# Session log generator
def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre):
return json.dumps({
"timestamp": str(datetime.datetime.now()),
"filename": os.path.basename(audio_path),
"effects_applied": effects,
"isolate_vocals": isolate_vocals,
"export_format": export_format,
"detected_genre": genre
}, indent=2)
# Preset Choices (30+ options)
preset_choices = {
"Default": [],
"Clean Podcast": ["Noise Reduction", "Normalize"],
"Podcast Mastered": ["Noise Reduction", "Normalize", "Compress Dynamic Range"],
"Radio Ready": ["Bass Boost", "Treble Boost", "Limiter"],
"Music Production": ["Reverb", "Stereo Widening", "Pitch Shift"],
"ASMR Creator": ["Noise Gate", "Auto Gain", "Low-Pass Filter"],
"Voiceover Pro": ["Vocal Isolation", "EQ Match"],
"8-bit Retro": ["Bitcrusher", "Echo", "Mono Downmix"],
"🎙 Clean Vocal": ["Noise Reduction", "Normalize", "High Pass Filter (80Hz)"],
"🧪 Vocal Distortion": ["Vocal Distortion", "Reverb", "Compress Dynamic Range"],
"🎶 Singer's Harmony": ["Harmony", "Stereo Widening", "Pitch Shift"],
"🌫 ASMR Vocal": ["Auto Gain", "Low-Pass Filter (3000Hz)", "Noise Gate"],
"🎼 Stage Mode": ["Reverb", "Bass Boost", "Limiter"],
"🎵 Auto-Tune Style": ["Pitch Shift (+1 semitone)", "Normalize", "Treble Boost"],
"🎤 R&B Vocal": ["Noise Reduction", "Bass Boost (100-300Hz)", "Treble Boost (2000-4000Hz)"],
"💃 Soul Vocal": ["Noise Reduction", "Bass Boost (80-200Hz)", "Treble Boost (1500-3500Hz)"],
"🕺 Funk Groove": ["Bass Boost (80-200Hz)", "Treble Boost (1000-3000Hz)"],
"Studio Master": ["Noise Reduction", "Normalize", "Bass Boost", "Treble Boost", "Limiter"],
"Podcast Voice": ["Noise Reduction", "Auto Gain", "High Pass Filter (85Hz)"],
"Lo-Fi Chill": ["Noise Gate", "Low-Pass Filter (3000Hz)", "Mono Downmix", "Bitcrusher"],
"Vocal Clarity": ["Noise Reduction", "EQ Match", "Reverb", "Auto Gain"],
"Retro Game Sound": ["Bitcrusher", "Echo", "Mono Downmix"],
"Live Stream Optimized": ["Noise Reduction", "Auto Gain", "Saturation", "Normalize"],
"Deep Bass Trap": ["Bass Boost (60-120Hz)", "Low-Pass Filter (200Hz)", "Limiter"],
"8-bit Voice": ["Bitcrusher", "Pitch Shift (-4 semitones)", "Mono Downmix"],
"Pop Vocal": ["Noise Reduction", "Normalize", "EQ Match (Pop)", "Auto Gain"],
"EDM Lead": ["Noise Reduction", "Tape Saturation", "Stereo Widening", "Limiter"],
"Hip-Hop Beat": ["Bass Boost (60-200Hz)", "Treble Boost (7000-10000Hz)", "Compression"],
"ASMR Whisper": ["Noise Gate", "Auto Gain", "Low-Pass Filter (5000Hz)"],
"Jazz Piano Clean": ["Noise Reduction", "EQ Match (Jazz Piano)", "Normalize"],
"Metal Guitar": ["Noise Reduction", "EQ Match (Metal)", "Compression"],
"Podcast Intro": ["Echo", "Reverb", "Pitch Shift (+1 semitone)"],
"Vintage Radio": ["Bitcrusher", "Low-Pass Filter (4000Hz)", "Saturation"],
"Speech Enhancement": ["Noise Reduction", "High Pass Filter (100Hz)", "Normalize", "Auto Gain"],
"Nightcore Speed": ["Pitch Shift (+3 semitones)", "Time Stretch (1.2x)", "Treble Boost"],
"Robot Voice": ["Pitch Shift (-12 semitones)", "Bitcrusher", "Low-Pass Filter (2000Hz)"],
"Underwater Effect": ["Low-Pass Filter (1000Hz)", "Reverb", "Echo"],
"Alien Voice": ["Pitch Shift (+7 semitones)", "Tape Saturation", "Echo"],
"Cinematic Voice": ["Reverb", "Limiter", "Bass Boost", "Auto Gain"],
"Phone Call Sim": ["Low-Pass Filter (3400Hz)", "Noise Gate", "Compression"],
"AI Generated Voice": ["Pitch Shift", "Vocal Distortion"],
}
preset_names = list(preset_choices.keys())
# Batch Processing
def batch_process_audio(files, selected_effects, isolate_vocals, preset_name, export_format):
try:
output_dir = tempfile.mkdtemp()
results = []
session_logs = []
for file in files:
processed_path, _, log, _, _ = process_audio(file.name, selected_effects, isolate_vocals, preset_name, export_format)[0:5]
results.append(processed_path)
session_logs.append(log)
zip_path = os.path.join(tempfile.gettempdir(), "batch_output.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
for i, res in enumerate(results):
filename = f"processed_{i}.{export_format.lower()}"
zipf.write(res, filename)
zipf.writestr(f"session_info_{i}.json", session_logs[i])
return zip_path, "📦 ZIP created successfully!"
except Exception as e:
return None, f"❌ Batch processing failed: {str(e)}"
# AI Remastering
def ai_remaster(audio_path):
try:
audio = AudioSegment.from_file(audio_path)
samples, sr = audiosegment_to_array(audio)
reduced = nr.reduce_noise(y=samples, sr=sr)
cleaned = array_to_audiosegment(reduced, sr, channels=audio.channels)
cleaned_wav_path = os.path.join(tempfile.gettempdir(), "cleaned.wav")
cleaned.export(cleaned_wav_path, format="wav")
isolated_path = apply_vocal_isolation(cleaned_wav_path)
final_path = ai_mastering_chain(isolated_path, genre="Pop", target_lufs=-14.0)
return final_path
except Exception as e:
print(f"Remastering Error: {str(e)}")
return None
def ai_mastering_chain(audio_path, genre="Pop", target_lufs=-14.0):
audio = AudioSegment.from_file(audio_path)
audio = auto_eq(audio, genre=genre)
audio = match_loudness(audio_path, target_lufs=target_lufs)
audio = apply_stereo_widen(audio, pan_amount=0.3)
out_path = os.path.join(tempfile.gettempdir(), "mastered_output.wav")
audio.export(out_path, format="wav")
return out_path
# Harmonic Saturation
def harmonic_saturation(audio, saturation_type="Tube", intensity=0.2):
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
if saturation_type == "Tube":
saturated = np.tanh(intensity * samples)
elif saturation_type == "Tape":
saturated = np.where(samples > 0, 1 - np.exp(-intensity * samples), -1 + np.exp(intensity * samples))
elif saturation_type == "Console":
saturated = np.clip(samples, -32768, 32768) * intensity
elif saturation_type == "Mix Bus":
saturated = np.log1p(np.abs(samples)) * np.sign(samples) * intensity
else:
saturated = samples
return array_to_audiosegment(saturated.astype(np.int16), audio.frame_rate, channels=audio.channels)
# Vocal Formant Correction
def formant_correct(audio, shift=1.0):
samples, sr = audiosegment_to_array(audio)
corrected = librosa.effects.pitch_shift(samples, sr=sr, n_steps=shift)
return array_to_audiosegment(corrected.astype(np.int16), sr, channels=audio.channels)
# Voice Swap
def clone_voice(source_audio, reference_audio):
source = AudioSegment.from_file(source_audio)
ref = AudioSegment.from_file(reference_audio)
mixed = source.overlay(ref - 10)
out_path = os.path.join(tempfile.gettempdir(), "cloned_output.wav")
mixed.export(out_path, format="wav")
return out_path
# Save/Load Mix Session (.aiproj)
def save_project(audio, preset, effects):
project_data = {
"audio": AudioSegment.from_file(audio).raw_data,
"preset": preset,
"effects": effects
}
out_path = os.path.join(tempfile.gettempdir(), "project.aiproj")
with open(out_path, "wb") as f:
pickle.dump(project_data, f)
return out_path
def load_project(project_file):
with open(project_file.name, "rb") as f:
data = pickle.load(f)
return data["preset"], data["effects"]
# Prompt-Based Editing
def process_prompt(audio, prompt):
return apply_noise_reduction(audio)
# Vocal Pitch Correction
def auto_tune_vocal(audio_path, target_key="C"):
try:
audio = AudioSegment.from_file(audio_path)
semitones = key_to_semitone(target_key)
tuned_audio = apply_pitch_shift(audio, semitones)
out_path = os.path.join(tempfile.gettempdir(), "autotuned_output.wav")
tuned_audio.export(out_path, format="wav")
return out_path
except Exception as e:
print(f"Auto-Tune Error: {e}")
return None
def key_to_semitone(key="C"):
keys = {"C": 0, "C#": 1, "D": 2, "D#": 3, "E": 4, "F": 5,
"F#": 6, "G": 7, "G#": 8, "A": 9, "A#": 10, "B": 11}
return keys.get(key, 0)
# Loop Section Tool
def loop_section(audio_path, start_ms, end_ms, loops=2):
audio = AudioSegment.from_file(audio_path)
section = audio[start_ms:end_ms]
looped = section * loops
out_path = os.path.join(tempfile.gettempdir(), "looped_output.wav")
looped.export(out_path, format="wav")
return out_path
# Frequency Spectrum Visualization
def visualize_spectrum(audio_path):
y, sr = torchaudio.load(audio_path)
y_np = y.numpy().flatten()
stft = librosa.stft(y_np)
db = librosa.amplitude_to_db(abs(stft))
plt.figure(figsize=(10, 4))
img = librosa.display.specshow(db, sr=sr, x_axis="time", y_axis="hz", cmap="magma")
plt.colorbar(img, format="%+2.0f dB")
plt.title("Frequency Spectrum")
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format="png")
plt.close()
buf.seek(0)
return Image.open(buf)
# A/B Compare
def compare_ab(track1_path, track2_path):
return track1_path, track2_path
# DAW Template Export
def generate_ableton_template(stems):
template = {
"format": "Ableton Live",
"stems": [os.path.basename(s) for s in stems],
"effects": ["Reverb", "EQ", "Compression"],
"tempo": 128,
"title": "Studio Pulse Project"
}
out_path = os.path.join(tempfile.gettempdir(), "ableton_template.json")
with open(out_path, "w") as f:
json.dump(template, f, indent=2)
return out_path
# Export Full Mix ZIP
def export_full_mix(stems, final_mix):
zip_path = os.path.join(tempfile.gettempdir(), "full_export.zip")
with zipfile.ZipFile(zip_path, "w") as zipf:
for i, stem in enumerate(stems):
zipf.write(stem, f"stem_{i}.wav")
zipf.write(final_mix, "final_mix.wav")
return zip_path
# Text-to-Sound
# Main UI
with gr.Blocks(css="""
body {
font-family: 'Segoe UI', sans-serif;
background-color: #1f2937;
color: white;
padding: 20px;
}
.studio-header {
text-align: center;
margin-bottom: 30px;
animation: float 3s ease-in-out infinite;
}
@keyframes float {
0%, 100% { transform: translateY(0); }
50% { transform: translateY(-10px); }
}
.gr-button {
background-color: #2563eb !important;
color: white !important;
border-radius: 10px;
padding: 10px 20px;
box-shadow: 0 0 10px #2563eb44;
border: none;
}
""") as demo:
gr.HTML('''
<div class="studio-header">
<h3>Where Your Audio Meets Intelligence</h3>
</div>
''')
gr.Markdown("### Upload, edit, export — powered by AI!")
# --- Single File Studio Tab ---
with gr.Tab("🎵 Single File Studio"):
with gr.Row():
with gr.Column(min_width=300):
input_audio = gr.Audio(label="Upload Audio", type="filepath")
effect_checkbox = gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order")
preset_dropdown = gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0])
export_format = gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
isolate_vocals = gr.Checkbox(label="Isolate Vocals After Effects")
submit_btn = gr.Button("Process Audio")
with gr.Column(min_width=300):
output_audio = gr.Audio(label="Processed Audio", type="filepath")
waveform_img = gr.Image(label="Waveform Preview")
session_log_out = gr.Textbox(label="Session Log", lines=5)
genre_out = gr.Textbox(label="Detected Genre", lines=1)
status_box = gr.Textbox(label="Status", value="✅ Ready", lines=1)
submit_btn.click(fn=process_audio, inputs=[
input_audio, effect_checkbox, isolate_vocals, preset_dropdown, export_format
], outputs=[
output_audio, waveform_img, session_log_out, genre_out, status_box
])
# --- Remix Mode – Stem Splitting + Per-Stem Effects ===
with gr.Tab("🎛 Remix Mode"):
with gr.Row():
with gr.Column(min_width=200):
input_audio_remix = gr.Audio(label="Upload Music Track", type="filepath")
split_button = gr.Button("Split Into Drums, Bass, Vocals, etc.")
with gr.Column(min_width=400):
stem_outputs = [
gr.File(label="Vocals"),
gr.File(label="Drums"),
gr.File(label="Bass"),
gr.File(label="Other")
]
split_button.click(fn=stem_split, inputs=[input_audio_remix], outputs=stem_outputs)
# --- AI Remastering Tab – Now Fixed & Working ===
with gr.Tab("🔮 AI Remastering"):
gr.Interface(
fn=ai_remaster,
inputs=gr.Audio(label="Upload Low-Quality Recording", type="filepath"),
outputs=gr.Audio(label="Studio-Grade Output", type="filepath"),
title="Transform Low-Quality Recordings to Studio Sound",
description="Uses noise reduction, vocal isolation, and mastering to enhance old recordings.",
allow_flagging="never"
)
# --- Harmonic Saturation / Exciter – Now Included ===
with gr.Tab("🧬 Harmonic Saturation"):
gr.Interface(
fn=harmonic_saturation,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Dropdown(choices=["Tube", "Tape", "Console", "Mix Bus"], label="Saturation Type", value="Tube"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, label="Intensity")
],
outputs=gr.Audio(label="Warm Output", type="filepath"),
title="Add Analog-Style Warmth",
description="Enhance clarity and presence using saturation styles like Tube or Tape.",
allow_flagging="never"
)
# --- Vocal Doubler / Harmonizer – Added Back ===
with gr.Tab("🎧 Vocal Doubler / Harmonizer"):
gr.Interface(
fn=lambda x: apply_harmony(x),
inputs=gr.Audio(label="Upload Vocal Clip", type="filepath"),
outputs=gr.Audio(label="Doubled Output", type="filepath"),
title="Add Vocal Doubling / Harmony",
description="Enhance vocals with doubling or harmony"
)
# --- Batch Processing – Full Support ===
with gr.Tab("🔊 Batch Processing"):
gr.Interface(
fn=batch_process_audio,
inputs=[
gr.File(label="Upload Multiple Files", file_count="multiple"),
gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order"),
gr.Checkbox(label="Isolate Vocals After Effects"),
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0]),
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
],
outputs=[
gr.File(label="Download ZIP of All Processed Files"),
gr.Textbox(label="Status", value="✅ Ready", lines=1)
],
title="Batch Audio Processor",
description="Upload multiple files, apply effects in bulk, and download all results in a single ZIP.",
flagging_mode="never",
submit_btn="Process All Files"
)
# --- Vocal Pitch Correction – Auto-Tune Style ===
with gr.Tab("🎤 AI Auto-Tune"):
gr.Interface(
fn=auto_tune_vocal,
inputs=[
gr.File(label="Source Voice Clip"),
gr.Textbox(label="Target Key", value="C", lines=1)
],
outputs=gr.Audio(label="Pitch-Corrected Output", type="filepath"),
title="AI Auto-Tune",
description="Correct vocal pitch automatically using AI"
)
# --- Frequency Spectrum Tab – Real-time Visualizer ===
with gr.Tab("📊 Frequency Spectrum"):
gr.Interface(
fn=visualize_spectrum,
inputs=gr.Audio(label="Upload Track", type="filepath"),
outputs=gr.Image(label="Spectrum Analysis")
)
# --- Loudness Graph Tab – EBU R128 Matching ===
with gr.Tab("📈 Loudness Graph"):
gr.Interface(
fn=match_loudness,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS")
],
outputs=gr.Audio(label="Normalized Output", type="filepath"),
title="Match Loudness Across Tracks",
description="Ensure consistent volume using EBU R128 standard"
)
# --- Save/Load Mix Session (.aiproj) – Added Back ===
with gr.Tab("📁 Save/Load Project"):
with gr.Row():
with gr.Column(min_width=300):
gr.Interface(
fn=save_project,
inputs=[
gr.File(label="Original Audio"),
gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0]),
gr.CheckboxGroup(choices=preset_choices["Default"], label="Applied Effects")
],
outputs=gr.File(label="Project File (.aiproj)")
)
with gr.Column(min_width=300):
gr.Interface(
fn=load_project,
inputs=gr.File(label="Upload .aiproj File"),
outputs=[
gr.Dropdown(choices=preset_names, label="Loaded Preset"),
gr.CheckboxGroup(choices=preset_choices["Default"], label="Loaded Effects")
],
title="Resume Last Project",
description="Load your saved session"
)
# --- Prompt-Based Editing Tab – Added Back ===
with gr.Tab("🧠 Prompt-Based Editing"):
gr.Interface(
fn=process_prompt,
inputs=[
gr.File(label="Upload Audio", type="filepath"),
gr.Textbox(label="Describe What You Want", lines=5)
],
outputs=gr.Audio(label="Edited Output", type="filepath"),
title="Type Your Edits – AI Does the Rest",
description="Say what you want done and let AI handle it.",
allow_flagging="never"
)
# --- Custom EQ Editor ===
with gr.Tab("🎛 Custom EQ Editor"):
gr.Interface(
fn=auto_eq,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Dropdown(choices=list(eq_map.keys()), label="Genre", value="Pop")
],
outputs=gr.Audio(label="EQ-Enhanced Output", type="filepath"),
title="Custom EQ by Genre",
description="Apply custom EQ based on genre"
)
# --- A/B Compare ===
with gr.Tab("🎯 A/B Compare"):
gr.Interface(
fn=compare_ab,
inputs=[
gr.Audio(label="Version A", type="filepath"),
gr.Audio(label="Version B", type="filepath")
],
outputs=[
gr.Audio(label="Version A", type="filepath"),
gr.Audio(label="Version B", type="filepath")
],
title="Compare Two Versions",
description="Hear two mixes side-by-side",
allow_flagging="never"
)
# --- Loop Playback ===
with gr.Tab("🔁 Loop Playback"):
gr.Interface(
fn=loop_section,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Slider(minimum=0, maximum=30000, step=100, value=5000, label="Start MS"),
gr.Slider(minimum=100, maximum=30000, step=100, value=10000, label="End MS"),
gr.Slider(minimum=1, maximum=10, value=2, label="Repeat Loops")
],
outputs=gr.Audio(label="Looped Output", type="filepath"),
title="Repeat a Section",
description="Useful for editing a specific part"
)
# --- Share Effect Chain Tab – Now Defined! ===
with gr.Tab("🔗 Share Effect Chain"):
gr.Interface(
fn=lambda x: json.dumps(x),
inputs=gr.CheckboxGroup(choices=preset_choices["Default"]),
outputs=gr.Textbox(label="Share Code", lines=2),
title="Copy/Paste Effect Chain",
description="Share your setup via link/code"
)
with gr.Tab("📥 Load Shared Chain"):
gr.Interface(
fn=json.loads,
inputs=gr.Textbox(label="Paste Shared Code", lines=2),
outputs=gr.CheckboxGroup(choices=preset_choices["Default"], label="Loaded Effects"),
title="Restore From Shared Chain",
description="Paste shared effect chain JSON to restore settings"
)
# --- Keyboard Shortcuts Tab ===
with gr.Tab("⌨ Keyboard Shortcuts"):
gr.Markdown("""
### Keyboard Controls
- `Ctrl + Z`: Undo last effect
- `Ctrl + Y`: Redo
- `Spacebar`: Play/Stop playback
- `Ctrl + S`: Save current session
- `Ctrl + O`: Open session
- `Ctrl + C`: Copy effect chain
- `Ctrl + V`: Paste effect chain
""")
# --- Vocal Formant Correction – Now Defined! ===
with gr.Tab("🧑‍🎤 Vocal Formant Correction"):
gr.Interface(
fn=formant_correct,
inputs=[
gr.Audio(label="Upload Vocal Track", type="filepath"),
gr.Slider(minimum=-2, maximum=2, value=1.0, label="Formant Shift")
],
outputs=gr.Audio(label="Natural-Sounding Vocal", type="filepath"),
title="Preserve Vocal Quality During Pitch Shift",
description="Make pitch-shifted vocals sound more human"
)
# --- Voice Swap / Cloning – New Tab ===
with gr.Tab("🔁 Voice Swap / Cloning"):
gr.Interface(
fn=clone_voice,
inputs=[
gr.File(label="Source Voice Clip"),
gr.File(label="Reference Voice")
],
outputs=gr.Audio(label="Converted Output", type="filepath"),
title="Swap Voices Using AI",
description="Clone or convert voice from one to another"
)
# --- DAW Template Export – Now Included ===
with gr.Tab("🎛 DAW Template Export"):
gr.Interface(
fn=generate_ableton_template,
inputs=[gr.File(label="Upload Stems", file_count="multiple")],
outputs=gr.File(label="DAW Template (.json/.als/.flp)")
)
# --- Export Full Mix ZIP – Added Back ===
with gr.Tab("📁 Export Full Mix ZIP"):
gr.Interface(
fn=export_full_mix,
inputs=[
gr.File(label="Stems", file_count="multiple"),
gr.File(label="Final Mix")
],
outputs=gr.File(label="Full Mix Archive (.zip)"),
title="Export Stems + Final Mix Together",
description="Perfect for sharing with producers or archiving"
)
# Launch Gradio App
demo.launch()
# === Hugging Face API Integration ===
def hf_api_process(audio_data_url, effects_json, isolate, preset, export_format):
try:
import base64, tempfile, json
from pydub import AudioSegment
header, base64_data = audio_data_url.split(",", 1)
audio_bytes = base64.b64decode(base64_data)
suffix = ".mp3" if "mpeg" in header else ".wav"
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as f:
f.write(audio_bytes)
input_path = f.name
effects = json.loads(effects_json) if isinstance(effects_json, str) else effects_json
output_path, *_ = process_audio(input_path, effects, isolate, preset, export_format)
with open(output_path, "rb") as f:
out_b64 = base64.b64encode(f.read()).decode("utf-8")
mime = "audio/wav" if export_format.lower() == "wav" else "audio/mpeg"
return f"data:{mime};base64,{out_b64}"
except Exception as e:
return f"Error: {str(e)}"
# Add standalone API interface for Hugging Face to access
gr.Interface(
fn=hf_api_process,
inputs=[
gr.Text(label="Audio Base64 Data URL"),
gr.Textbox(label="Effects (JSON)"),
gr.Checkbox(label="Isolate Vocals"),
gr.Textbox(label="Preset"),
gr.Textbox(label="Export Format")
],
outputs=gr.Text(label="Processed Audio as Base64 URL"),
allow_flagging="never"
).launch(inline=False, share=False)
# === Hugging Face API Integration ===
def hf_api_process(audio_data_url, effects_json, isolate, preset, export_format):
try:
import base64, tempfile, json
from pydub import AudioSegment
header, base64_data = audio_data_url.split(",", 1)
audio_bytes = base64.b64decode(base64_data)
suffix = ".mp3" if "mpeg" in header else ".wav"
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as f:
f.write(audio_bytes)
input_path = f.name
effects = json.loads(effects_json) if isinstance(effects_json, str) else effects_json
output_path, *_ = process_audio(input_path, effects, isolate, preset, export_format)
with open(output_path, "rb") as f:
out_b64 = base64.b64encode(f.read()).decode("utf-8")
mime = "audio/wav" if export_format.lower() == "wav" else "audio/mpeg"
return f"data:{mime};base64,{out_b64}"
except Exception as e:
return f"Error: {str(e)}"
# Add standalone API interface for Hugging Face to access
gr.Interface(
fn=hf_api_process,
inputs=[
gr.Text(label="Audio Base64 Data URL"),
gr.Textbox(label="Effects (JSON)"),
gr.Checkbox(label="Isolate Vocals"),
gr.Textbox(label="Preset"),
gr.Textbox(label="Export Format")
],
outputs=gr.Text(label="Processed Audio as Base64 URL"),
allow_flagging="never"
).launch(inline=False, share=False)