Spaces:
Sleeping
Sleeping
File size: 37,925 Bytes
d9349e6 f53539b 7b55c47 f53539b db35bd8 f53539b db35bd8 f53539b bbb2948 f53539b bbb2948 8cdf67b bbb2948 f53539b db35bd8 bbb2948 f4c2426 bbb2948 f4c2426 7b55c47 f4c2426 ab33098 f4c2426 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
import gradio as gr
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
import numpy as np
import tempfile
import os
import noisereduce as nr
import torch
from demucs import pretrained
from demucs.apply import apply_model
import torchaudio
from pathlib import Path
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import zipfile
import datetime
import librosa
import warnings
# from faster_whisper import WhisperModel
# from TTS.api import TTS
import base64
import pickle
import json
import soundfile as SF
print("Gradio version:", gr.__version__)
warnings.filterwarnings("ignore")
# Helper to convert file to base64
def file_to_base64_audio(file_path, mime_type="audio/wav"):
with open(file_path, "rb") as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f"data:{mime_type};base64,{b64}"
# === Effects Definitions ===
def apply_normalize(audio):
return audio.normalize()
def apply_noise_reduction(audio):
samples, frame_rate = audiosegment_to_array(audio)
reduced = nr.reduce_noise(y=samples, sr=frame_rate)
return array_to_audiosegment(reduced, frame_rate, channels=audio.channels)
def apply_compression(audio):
return audio.compress_dynamic_range()
def apply_reverb(audio):
reverb = audio - 10
return audio.overlay(reverb, position=1000)
def apply_pitch_shift(audio, semitones=-2):
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12)))
samples = np.array(audio.get_array_of_samples())
resampled = np.interp(np.arange(0, len(samples), 2 ** (semitones / 12)), np.arange(len(samples)), samples).astype(np.int16)
return AudioSegment(resampled.tobytes(), frame_rate=new_frame_rate, sample_width=audio.sample_width, channels=audio.channels)
def apply_echo(audio, delay_ms=500, decay=0.5):
echo = audio - 10
return audio.overlay(echo, position=delay_ms)
def apply_stereo_widen(audio, pan_amount=0.3):
left = audio.pan(-pan_amount)
right = audio.pan(pan_amount)
return AudioSegment.from_mono_audiosegments(left, right)
def apply_bass_boost(audio, gain=10):
return audio.low_pass_filter(100).apply_gain(gain)
def apply_treble_boost(audio, gain=10):
return audio.high_pass_filter(4000).apply_gain(gain)
def apply_limiter(audio, limit_dB=-1):
limiter = audio._spawn(audio.raw_data, overrides={"frame_rate": audio.frame_rate})
return limiter.apply_gain(limit_dB)
def apply_auto_gain(audio, target_dB=-20):
change = target_dB - audio.dBFS
return audio.apply_gain(change)
def apply_vocal_distortion(audio, intensity=0.3):
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
distorted = samples + intensity * np.sin(samples * 2 * np.pi / 32768)
return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, channels=audio.channels)
def apply_harmony(audio, shift_semitones=4):
shifted_up = apply_pitch_shift(audio, shift_semitones)
shifted_down = apply_pitch_shift(audio, -shift_semitones)
return audio.overlay(shifted_up).overlay(shifted_down)
def apply_stage_mode(audio):
processed = apply_reverb(audio)
processed = apply_bass_boost(processed, gain=6)
return apply_limiter(processed, limit_dB=-2)
def apply_bitcrush(audio, bit_depth=8):
samples = np.array(audio.get_array_of_samples())
max_val = 2 ** (bit_depth) - 1
downsampled = np.round(samples / (32768 / max_val)).astype(np.int16)
return array_to_audiosegment(downsampled, audio.frame_rate // 2, channels=audio.channels)
# === Helper Functions ===
def audiosegment_to_array(audio):
return np.array(audio.get_array_of_samples()), audio.frame_rate
def array_to_audiosegment(samples, frame_rate, channels=1):
return AudioSegment(
samples.tobytes(),
frame_rate=int(frame_rate),
sample_width=samples.dtype.itemsize,
channels=channels
)
# === Loudness Matching (EBU R128) ===
try:
import pyloudnorm as pyln
except ImportError:
print("Installing pyloudnorm...")
import subprocess
subprocess.run(["pip", "install", "pyloudnorm"])
import pyloudnorm as pyln
def match_loudness(audio_path, target_lufs=-14.0):
meter = pyln.Meter(44100)
wav = AudioSegment.from_file(audio_path).set_frame_rate(44100)
samples = np.array(wav.get_array_of_samples()).astype(np.float64) / 32768.0
loudness = meter.integrated_loudness(samples)
gain_db = target_lufs - loudness
adjusted = wav + gain_db
out_path = os.path.join(tempfile.gettempdir(), "loudness_output.wav")
adjusted.export(out_path, format="wav")
return out_path
# Define eq_map at the global scope
eq_map = {
"Pop": [(200, 500, -3), (2000, 4000, +4)],
"EDM": [(60, 250, +6), (8000, 12000, +3)],
"Rock": [(1000, 3000, +4), (7000, 10000, -3)],
"Hip-Hop": [(20, 100, +6), (7000, 10000, -4)],
"Acoustic": [(100, 300, -3), (4000, 8000, +2)],
"Metal": [(100, 500, -4), (2000, 5000, +6), (7000, 12000, -3)],
"Trap": [(80, 120, +6), (3000, 6000, -4)],
"LoFi": [(20, 200, +3), (1000, 3000, -2)],
"Jazz": [(100, 400, +2), (1500, 3000, +1)],
"Classical": [(200, 1000, +1), (3000, 6000, +2)],
"Chillhop": [(50, 200, +3), (2000, 5000, +1)],
"Ambient": [(100, 500, +4), (6000, 12000, +2)],
"Jazz Piano": [(100, 1000, +3), (2000, 5000, +2)],
"Trap EDM": [(60, 120, +6), (2000, 5000, -3)],
"Indie Rock": [(150, 400, +2), (2000, 5000, +3)],
"Lo-Fi Jazz": [(80, 200, +3), (2000, 4000, -1)],
"R&B": [(100, 300, +4), (2000, 4000, +3)],
"Soul": [(80, 200, +3), (1500, 3500, +4)],
"Funk": [(80, 200, +5), (1000, 3000, +3)],
"Default": []
}
# Auto-EQ per Genre function
def auto_eq(audio, genre="Pop"):
from scipy.signal import butter, sosfilt
def band_eq(samples, sr, lowcut, highcut, gain):
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
filtered = sosfilt(sos, samples)
return samples + gain * filtered
samples, sr = audiosegment_to_array(audio)
samples = samples.astype(np.float64)
for band in eq_map.get(genre, []):
low, high, gain = band
samples = band_eq(samples, sr, low, high, gain)
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
from scipy.signal import butter, sosfilt
def band_eq(samples, sr, lowcut, highcut, gain):
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
filtered = sosfilt(sos, samples)
return samples + gain * filtered
samples, sr = audiosegment_to_array(audio)
samples = samples.astype(np.float64)
for band in eq_map.get(genre, []):
low, high, gain = band
samples = band_eq(samples, sr, low, high, gain)
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
# === Load Track Helpers ===
def load_track_local(path, sample_rate, channels=2):
sig, rate = torchaudio.load(path)
if rate != sample_rate:
sig = torchaudio.functional.resample(sig, rate, sample_rate)
if channels == 1:
sig = sig.mean(0)
return sig
def save_track(path, wav, sample_rate):
path = Path(path)
torchaudio.save(str(path), wav, sample_rate)
# === Vocal Isolation Helpers ===
def apply_vocal_isolation(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
ref = wav.mean(0)
wav -= ref[:, None]
sources = apply_model(model, wav[None])[0]
wav += ref[:, None]
vocal_track = sources[3].cpu()
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
save_track(out_path, vocal_track, model.samplerate)
return out_path
# === Stem Splitting Function ===
def stem_split(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
sources = apply_model(model, wav[None])[0]
output_dir = tempfile.mkdtemp()
stem_paths = []
for i, name in enumerate(['drums', 'bass', 'other', 'vocals']):
path = os.path.join(output_dir, f"{name}.wav")
save_track(path, sources[i].cpu(), model.samplerate)
stem_paths.append(gr.File(value=path))
return stem_paths
# === Process Audio Function โ Fully Featured ===
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
status = "๐ Loading audio..."
try:
# Load input audio file
audio = AudioSegment.from_file(audio_file)
status = "๐ Applying effects..."
effect_map_real = {
"Noise Reduction": apply_noise_reduction,
"Compress Dynamic Range": apply_compression,
"Add Reverb": apply_reverb,
"Pitch Shift": lambda x: apply_pitch_shift(x),
"Echo": apply_echo,
"Stereo Widening": apply_stereo_widen,
"Bass Boost": apply_bass_boost,
"Treble Boost": apply_treble_boost,
"Normalize": apply_normalize,
"Limiter": lambda x: apply_limiter(x, limit_dB=-1),
"Auto Gain": lambda x: apply_auto_gain(x, target_dB=-20),
"Vocal Distortion": lambda x: apply_vocal_distortion(x),
"Stage Mode": apply_stage_mode
}
history = [audio] # For undo functionality
for effect_name in selected_effects:
if effect_name in effect_map_real:
audio = effect_map_real[effect_name](audio)
history.append(audio)
status = "๐พ Saving final audio..."
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{export_format.lower()}") as f:
if isolate_vocals:
temp_input = os.path.join(tempfile.gettempdir(), "input.wav")
audio.export(temp_input, format="wav")
vocal_path = apply_vocal_isolation(temp_input)
final_audio = AudioSegment.from_wav(vocal_path)
else:
final_audio = audio
output_path = f.name
final_audio.export(output_path, format=export_format.lower())
waveform_image = show_waveform(output_path)
genre = detect_genre(output_path)
session_log = generate_session_log(audio_file, selected_effects, isolate_vocals, export_format, genre)
status = "๐ Done!"
return output_path, waveform_image, session_log, genre, status, history
except Exception as e:
status = f"โ Error: {str(e)}"
return None, None, status, "", status, []
# Waveform preview
def show_waveform(audio_file):
try:
audio = AudioSegment.from_file(audio_file)
samples = np.array(audio.get_array_of_samples())
plt.figure(figsize=(10, 2))
plt.plot(samples[:10000], color="skyblue")
plt.axis("off")
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
plt.close()
buf.seek(0)
return Image.open(buf)
except Exception:
return None
# Genre detection stub
def detect_genre(audio_path):
try:
y, sr = torchaudio.load(audio_path)
return "Speech"
except Exception:
return "Unknown"
# Session log generator
def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre):
return json.dumps({
"timestamp": str(datetime.datetime.now()),
"filename": os.path.basename(audio_path),
"effects_applied": effects,
"isolate_vocals": isolate_vocals,
"export_format": export_format,
"detected_genre": genre
}, indent=2)
# Preset Choices (30+ options)
preset_choices = {
"Default": [],
"Clean Podcast": ["Noise Reduction", "Normalize"],
"Podcast Mastered": ["Noise Reduction", "Normalize", "Compress Dynamic Range"],
"Radio Ready": ["Bass Boost", "Treble Boost", "Limiter"],
"Music Production": ["Reverb", "Stereo Widening", "Pitch Shift"],
"ASMR Creator": ["Noise Gate", "Auto Gain", "Low-Pass Filter"],
"Voiceover Pro": ["Vocal Isolation", "EQ Match"],
"8-bit Retro": ["Bitcrusher", "Echo", "Mono Downmix"],
"๐ Clean Vocal": ["Noise Reduction", "Normalize", "High Pass Filter (80Hz)"],
"๐งช Vocal Distortion": ["Vocal Distortion", "Reverb", "Compress Dynamic Range"],
"๐ถ Singer's Harmony": ["Harmony", "Stereo Widening", "Pitch Shift"],
"๐ซ ASMR Vocal": ["Auto Gain", "Low-Pass Filter (3000Hz)", "Noise Gate"],
"๐ผ Stage Mode": ["Reverb", "Bass Boost", "Limiter"],
"๐ต Auto-Tune Style": ["Pitch Shift (+1 semitone)", "Normalize", "Treble Boost"],
"๐ค R&B Vocal": ["Noise Reduction", "Bass Boost (100-300Hz)", "Treble Boost (2000-4000Hz)"],
"๐ Soul Vocal": ["Noise Reduction", "Bass Boost (80-200Hz)", "Treble Boost (1500-3500Hz)"],
"๐บ Funk Groove": ["Bass Boost (80-200Hz)", "Treble Boost (1000-3000Hz)"],
"Studio Master": ["Noise Reduction", "Normalize", "Bass Boost", "Treble Boost", "Limiter"],
"Podcast Voice": ["Noise Reduction", "Auto Gain", "High Pass Filter (85Hz)"],
"Lo-Fi Chill": ["Noise Gate", "Low-Pass Filter (3000Hz)", "Mono Downmix", "Bitcrusher"],
"Vocal Clarity": ["Noise Reduction", "EQ Match", "Reverb", "Auto Gain"],
"Retro Game Sound": ["Bitcrusher", "Echo", "Mono Downmix"],
"Live Stream Optimized": ["Noise Reduction", "Auto Gain", "Saturation", "Normalize"],
"Deep Bass Trap": ["Bass Boost (60-120Hz)", "Low-Pass Filter (200Hz)", "Limiter"],
"8-bit Voice": ["Bitcrusher", "Pitch Shift (-4 semitones)", "Mono Downmix"],
"Pop Vocal": ["Noise Reduction", "Normalize", "EQ Match (Pop)", "Auto Gain"],
"EDM Lead": ["Noise Reduction", "Tape Saturation", "Stereo Widening", "Limiter"],
"Hip-Hop Beat": ["Bass Boost (60-200Hz)", "Treble Boost (7000-10000Hz)", "Compression"],
"ASMR Whisper": ["Noise Gate", "Auto Gain", "Low-Pass Filter (5000Hz)"],
"Jazz Piano Clean": ["Noise Reduction", "EQ Match (Jazz Piano)", "Normalize"],
"Metal Guitar": ["Noise Reduction", "EQ Match (Metal)", "Compression"],
"Podcast Intro": ["Echo", "Reverb", "Pitch Shift (+1 semitone)"],
"Vintage Radio": ["Bitcrusher", "Low-Pass Filter (4000Hz)", "Saturation"],
"Speech Enhancement": ["Noise Reduction", "High Pass Filter (100Hz)", "Normalize", "Auto Gain"],
"Nightcore Speed": ["Pitch Shift (+3 semitones)", "Time Stretch (1.2x)", "Treble Boost"],
"Robot Voice": ["Pitch Shift (-12 semitones)", "Bitcrusher", "Low-Pass Filter (2000Hz)"],
"Underwater Effect": ["Low-Pass Filter (1000Hz)", "Reverb", "Echo"],
"Alien Voice": ["Pitch Shift (+7 semitones)", "Tape Saturation", "Echo"],
"Cinematic Voice": ["Reverb", "Limiter", "Bass Boost", "Auto Gain"],
"Phone Call Sim": ["Low-Pass Filter (3400Hz)", "Noise Gate", "Compression"],
"AI Generated Voice": ["Pitch Shift", "Vocal Distortion"],
}
preset_names = list(preset_choices.keys())
# Batch Processing
def batch_process_audio(files, selected_effects, isolate_vocals, preset_name, export_format):
try:
output_dir = tempfile.mkdtemp()
results = []
session_logs = []
for file in files:
processed_path, _, log, _, _ = process_audio(file.name, selected_effects, isolate_vocals, preset_name, export_format)[0:5]
results.append(processed_path)
session_logs.append(log)
zip_path = os.path.join(tempfile.gettempdir(), "batch_output.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
for i, res in enumerate(results):
filename = f"processed_{i}.{export_format.lower()}"
zipf.write(res, filename)
zipf.writestr(f"session_info_{i}.json", session_logs[i])
return zip_path, "๐ฆ ZIP created successfully!"
except Exception as e:
return None, f"โ Batch processing failed: {str(e)}"
# AI Remastering
def ai_remaster(audio_path):
try:
audio = AudioSegment.from_file(audio_path)
samples, sr = audiosegment_to_array(audio)
reduced = nr.reduce_noise(y=samples, sr=sr)
cleaned = array_to_audiosegment(reduced, sr, channels=audio.channels)
cleaned_wav_path = os.path.join(tempfile.gettempdir(), "cleaned.wav")
cleaned.export(cleaned_wav_path, format="wav")
isolated_path = apply_vocal_isolation(cleaned_wav_path)
final_path = ai_mastering_chain(isolated_path, genre="Pop", target_lufs=-14.0)
return final_path
except Exception as e:
print(f"Remastering Error: {str(e)}")
return None
def ai_mastering_chain(audio_path, genre="Pop", target_lufs=-14.0):
audio = AudioSegment.from_file(audio_path)
audio = auto_eq(audio, genre=genre)
audio = match_loudness(audio_path, target_lufs=target_lufs)
audio = apply_stereo_widen(audio, pan_amount=0.3)
out_path = os.path.join(tempfile.gettempdir(), "mastered_output.wav")
audio.export(out_path, format="wav")
return out_path
# Harmonic Saturation
def harmonic_saturation(audio, saturation_type="Tube", intensity=0.2):
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
if saturation_type == "Tube":
saturated = np.tanh(intensity * samples)
elif saturation_type == "Tape":
saturated = np.where(samples > 0, 1 - np.exp(-intensity * samples), -1 + np.exp(intensity * samples))
elif saturation_type == "Console":
saturated = np.clip(samples, -32768, 32768) * intensity
elif saturation_type == "Mix Bus":
saturated = np.log1p(np.abs(samples)) * np.sign(samples) * intensity
else:
saturated = samples
return array_to_audiosegment(saturated.astype(np.int16), audio.frame_rate, channels=audio.channels)
# Vocal Formant Correction
def formant_correct(audio, shift=1.0):
samples, sr = audiosegment_to_array(audio)
corrected = librosa.effects.pitch_shift(samples, sr=sr, n_steps=shift)
return array_to_audiosegment(corrected.astype(np.int16), sr, channels=audio.channels)
# Voice Swap
def clone_voice(source_audio, reference_audio):
source = AudioSegment.from_file(source_audio)
ref = AudioSegment.from_file(reference_audio)
mixed = source.overlay(ref - 10)
out_path = os.path.join(tempfile.gettempdir(), "cloned_output.wav")
mixed.export(out_path, format="wav")
return out_path
# Save/Load Mix Session (.aiproj)
def save_project(audio, preset, effects):
project_data = {
"audio": AudioSegment.from_file(audio).raw_data,
"preset": preset,
"effects": effects
}
out_path = os.path.join(tempfile.gettempdir(), "project.aiproj")
with open(out_path, "wb") as f:
pickle.dump(project_data, f)
return out_path
def load_project(project_file):
with open(project_file.name, "rb") as f:
data = pickle.load(f)
return data["preset"], data["effects"]
# Prompt-Based Editing
def process_prompt(audio, prompt):
return apply_noise_reduction(audio)
# Vocal Pitch Correction
def auto_tune_vocal(audio_path, target_key="C"):
try:
audio = AudioSegment.from_file(audio_path)
semitones = key_to_semitone(target_key)
tuned_audio = apply_pitch_shift(audio, semitones)
out_path = os.path.join(tempfile.gettempdir(), "autotuned_output.wav")
tuned_audio.export(out_path, format="wav")
return out_path
except Exception as e:
print(f"Auto-Tune Error: {e}")
return None
def key_to_semitone(key="C"):
keys = {"C": 0, "C#": 1, "D": 2, "D#": 3, "E": 4, "F": 5,
"F#": 6, "G": 7, "G#": 8, "A": 9, "A#": 10, "B": 11}
return keys.get(key, 0)
# Loop Section Tool
def loop_section(audio_path, start_ms, end_ms, loops=2):
audio = AudioSegment.from_file(audio_path)
section = audio[start_ms:end_ms]
looped = section * loops
out_path = os.path.join(tempfile.gettempdir(), "looped_output.wav")
looped.export(out_path, format="wav")
return out_path
# Frequency Spectrum Visualization
def visualize_spectrum(audio_path):
y, sr = torchaudio.load(audio_path)
y_np = y.numpy().flatten()
stft = librosa.stft(y_np)
db = librosa.amplitude_to_db(abs(stft))
plt.figure(figsize=(10, 4))
img = librosa.display.specshow(db, sr=sr, x_axis="time", y_axis="hz", cmap="magma")
plt.colorbar(img, format="%+2.0f dB")
plt.title("Frequency Spectrum")
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format="png")
plt.close()
buf.seek(0)
return Image.open(buf)
# A/B Compare
def compare_ab(track1_path, track2_path):
return track1_path, track2_path
# DAW Template Export
def generate_ableton_template(stems):
template = {
"format": "Ableton Live",
"stems": [os.path.basename(s) for s in stems],
"effects": ["Reverb", "EQ", "Compression"],
"tempo": 128,
"title": "Studio Pulse Project"
}
out_path = os.path.join(tempfile.gettempdir(), "ableton_template.json")
with open(out_path, "w") as f:
json.dump(template, f, indent=2)
return out_path
# Export Full Mix ZIP
def export_full_mix(stems, final_mix):
zip_path = os.path.join(tempfile.gettempdir(), "full_export.zip")
with zipfile.ZipFile(zip_path, "w") as zipf:
for i, stem in enumerate(stems):
zipf.write(stem, f"stem_{i}.wav")
zipf.write(final_mix, "final_mix.wav")
return zip_path
# Text-to-Sound
# Main UI
with gr.Blocks(css="""
body {
font-family: 'Segoe UI', sans-serif;
background-color: #1f2937;
color: white;
padding: 20px;
}
.studio-header {
text-align: center;
margin-bottom: 30px;
animation: float 3s ease-in-out infinite;
}
@keyframes float {
0%, 100% { transform: translateY(0); }
50% { transform: translateY(-10px); }
}
.gr-button {
background-color: #2563eb !important;
color: white !important;
border-radius: 10px;
padding: 10px 20px;
box-shadow: 0 0 10px #2563eb44;
border: none;
}
""") as demo:
gr.HTML('''
<div class="studio-header">
<h3>Where Your Audio Meets Intelligence</h3>
</div>
''')
gr.Markdown("### Upload, edit, export โ powered by AI!")
# --- Single File Studio Tab ---
with gr.Tab("๐ต Single File Studio"):
with gr.Row():
with gr.Column(min_width=300):
input_audio = gr.Audio(label="Upload Audio", type="filepath")
effect_checkbox = gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order")
preset_dropdown = gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0])
export_format = gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
isolate_vocals = gr.Checkbox(label="Isolate Vocals After Effects")
submit_btn = gr.Button("Process Audio")
with gr.Column(min_width=300):
output_audio = gr.Audio(label="Processed Audio", type="filepath")
waveform_img = gr.Image(label="Waveform Preview")
session_log_out = gr.Textbox(label="Session Log", lines=5)
genre_out = gr.Textbox(label="Detected Genre", lines=1)
status_box = gr.Textbox(label="Status", value="โ
Ready", lines=1)
submit_btn.click(fn=process_audio, inputs=[
input_audio, effect_checkbox, isolate_vocals, preset_dropdown, export_format
], outputs=[
output_audio, waveform_img, session_log_out, genre_out, status_box
])
# --- Remix Mode โ Stem Splitting + Per-Stem Effects ===
with gr.Tab("๐ Remix Mode"):
with gr.Row():
with gr.Column(min_width=200):
input_audio_remix = gr.Audio(label="Upload Music Track", type="filepath")
split_button = gr.Button("Split Into Drums, Bass, Vocals, etc.")
with gr.Column(min_width=400):
stem_outputs = [
gr.File(label="Vocals"),
gr.File(label="Drums"),
gr.File(label="Bass"),
gr.File(label="Other")
]
split_button.click(fn=stem_split, inputs=[input_audio_remix], outputs=stem_outputs)
# --- AI Remastering Tab โ Now Fixed & Working ===
with gr.Tab("๐ฎ AI Remastering"):
gr.Interface(
fn=ai_remaster,
inputs=gr.Audio(label="Upload Low-Quality Recording", type="filepath"),
outputs=gr.Audio(label="Studio-Grade Output", type="filepath"),
title="Transform Low-Quality Recordings to Studio Sound",
description="Uses noise reduction, vocal isolation, and mastering to enhance old recordings.",
allow_flagging="never"
)
# --- Harmonic Saturation / Exciter โ Now Included ===
with gr.Tab("๐งฌ Harmonic Saturation"):
gr.Interface(
fn=harmonic_saturation,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Dropdown(choices=["Tube", "Tape", "Console", "Mix Bus"], label="Saturation Type", value="Tube"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, label="Intensity")
],
outputs=gr.Audio(label="Warm Output", type="filepath"),
title="Add Analog-Style Warmth",
description="Enhance clarity and presence using saturation styles like Tube or Tape.",
allow_flagging="never"
)
# --- Vocal Doubler / Harmonizer โ Added Back ===
with gr.Tab("๐ง Vocal Doubler / Harmonizer"):
gr.Interface(
fn=lambda x: apply_harmony(x),
inputs=gr.Audio(label="Upload Vocal Clip", type="filepath"),
outputs=gr.Audio(label="Doubled Output", type="filepath"),
title="Add Vocal Doubling / Harmony",
description="Enhance vocals with doubling or harmony"
)
# --- Batch Processing โ Full Support ===
with gr.Tab("๐ Batch Processing"):
gr.Interface(
fn=batch_process_audio,
inputs=[
gr.File(label="Upload Multiple Files", file_count="multiple"),
gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order"),
gr.Checkbox(label="Isolate Vocals After Effects"),
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0]),
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
],
outputs=[
gr.File(label="Download ZIP of All Processed Files"),
gr.Textbox(label="Status", value="โ
Ready", lines=1)
],
title="Batch Audio Processor",
description="Upload multiple files, apply effects in bulk, and download all results in a single ZIP.",
flagging_mode="never",
submit_btn="Process All Files"
)
# --- Vocal Pitch Correction โ Auto-Tune Style ===
with gr.Tab("๐ค AI Auto-Tune"):
gr.Interface(
fn=auto_tune_vocal,
inputs=[
gr.File(label="Source Voice Clip"),
gr.Textbox(label="Target Key", value="C", lines=1)
],
outputs=gr.Audio(label="Pitch-Corrected Output", type="filepath"),
title="AI Auto-Tune",
description="Correct vocal pitch automatically using AI"
)
# --- Frequency Spectrum Tab โ Real-time Visualizer ===
with gr.Tab("๐ Frequency Spectrum"):
gr.Interface(
fn=visualize_spectrum,
inputs=gr.Audio(label="Upload Track", type="filepath"),
outputs=gr.Image(label="Spectrum Analysis")
)
# --- Loudness Graph Tab โ EBU R128 Matching ===
with gr.Tab("๐ Loudness Graph"):
gr.Interface(
fn=match_loudness,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS")
],
outputs=gr.Audio(label="Normalized Output", type="filepath"),
title="Match Loudness Across Tracks",
description="Ensure consistent volume using EBU R128 standard"
)
# --- Save/Load Mix Session (.aiproj) โ Added Back ===
with gr.Tab("๐ Save/Load Project"):
with gr.Row():
with gr.Column(min_width=300):
gr.Interface(
fn=save_project,
inputs=[
gr.File(label="Original Audio"),
gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0]),
gr.CheckboxGroup(choices=preset_choices["Default"], label="Applied Effects")
],
outputs=gr.File(label="Project File (.aiproj)")
)
with gr.Column(min_width=300):
gr.Interface(
fn=load_project,
inputs=gr.File(label="Upload .aiproj File"),
outputs=[
gr.Dropdown(choices=preset_names, label="Loaded Preset"),
gr.CheckboxGroup(choices=preset_choices["Default"], label="Loaded Effects")
],
title="Resume Last Project",
description="Load your saved session"
)
# --- Prompt-Based Editing Tab โ Added Back ===
with gr.Tab("๐ง Prompt-Based Editing"):
gr.Interface(
fn=process_prompt,
inputs=[
gr.File(label="Upload Audio", type="filepath"),
gr.Textbox(label="Describe What You Want", lines=5)
],
outputs=gr.Audio(label="Edited Output", type="filepath"),
title="Type Your Edits โ AI Does the Rest",
description="Say what you want done and let AI handle it.",
allow_flagging="never"
)
# --- Custom EQ Editor ===
with gr.Tab("๐ Custom EQ Editor"):
gr.Interface(
fn=auto_eq,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Dropdown(choices=list(eq_map.keys()), label="Genre", value="Pop")
],
outputs=gr.Audio(label="EQ-Enhanced Output", type="filepath"),
title="Custom EQ by Genre",
description="Apply custom EQ based on genre"
)
# --- A/B Compare ===
with gr.Tab("๐ฏ A/B Compare"):
gr.Interface(
fn=compare_ab,
inputs=[
gr.Audio(label="Version A", type="filepath"),
gr.Audio(label="Version B", type="filepath")
],
outputs=[
gr.Audio(label="Version A", type="filepath"),
gr.Audio(label="Version B", type="filepath")
],
title="Compare Two Versions",
description="Hear two mixes side-by-side",
allow_flagging="never"
)
# --- Loop Playback ===
with gr.Tab("๐ Loop Playback"):
gr.Interface(
fn=loop_section,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Slider(minimum=0, maximum=30000, step=100, value=5000, label="Start MS"),
gr.Slider(minimum=100, maximum=30000, step=100, value=10000, label="End MS"),
gr.Slider(minimum=1, maximum=10, value=2, label="Repeat Loops")
],
outputs=gr.Audio(label="Looped Output", type="filepath"),
title="Repeat a Section",
description="Useful for editing a specific part"
)
# --- Share Effect Chain Tab โ Now Defined! ===
with gr.Tab("๐ Share Effect Chain"):
gr.Interface(
fn=lambda x: json.dumps(x),
inputs=gr.CheckboxGroup(choices=preset_choices["Default"]),
outputs=gr.Textbox(label="Share Code", lines=2),
title="Copy/Paste Effect Chain",
description="Share your setup via link/code"
)
with gr.Tab("๐ฅ Load Shared Chain"):
gr.Interface(
fn=json.loads,
inputs=gr.Textbox(label="Paste Shared Code", lines=2),
outputs=gr.CheckboxGroup(choices=preset_choices["Default"], label="Loaded Effects"),
title="Restore From Shared Chain",
description="Paste shared effect chain JSON to restore settings"
)
# --- Keyboard Shortcuts Tab ===
with gr.Tab("โจ Keyboard Shortcuts"):
gr.Markdown("""
### Keyboard Controls
- `Ctrl + Z`: Undo last effect
- `Ctrl + Y`: Redo
- `Spacebar`: Play/Stop playback
- `Ctrl + S`: Save current session
- `Ctrl + O`: Open session
- `Ctrl + C`: Copy effect chain
- `Ctrl + V`: Paste effect chain
""")
# --- Vocal Formant Correction โ Now Defined! ===
with gr.Tab("๐งโ๐ค Vocal Formant Correction"):
gr.Interface(
fn=formant_correct,
inputs=[
gr.Audio(label="Upload Vocal Track", type="filepath"),
gr.Slider(minimum=-2, maximum=2, value=1.0, label="Formant Shift")
],
outputs=gr.Audio(label="Natural-Sounding Vocal", type="filepath"),
title="Preserve Vocal Quality During Pitch Shift",
description="Make pitch-shifted vocals sound more human"
)
# --- Voice Swap / Cloning โ New Tab ===
with gr.Tab("๐ Voice Swap / Cloning"):
gr.Interface(
fn=clone_voice,
inputs=[
gr.File(label="Source Voice Clip"),
gr.File(label="Reference Voice")
],
outputs=gr.Audio(label="Converted Output", type="filepath"),
title="Swap Voices Using AI",
description="Clone or convert voice from one to another"
)
# --- DAW Template Export โ Now Included ===
with gr.Tab("๐ DAW Template Export"):
gr.Interface(
fn=generate_ableton_template,
inputs=[gr.File(label="Upload Stems", file_count="multiple")],
outputs=gr.File(label="DAW Template (.json/.als/.flp)")
)
# --- Export Full Mix ZIP โ Added Back ===
with gr.Tab("๐ Export Full Mix ZIP"):
gr.Interface(
fn=export_full_mix,
inputs=[
gr.File(label="Stems", file_count="multiple"),
gr.File(label="Final Mix")
],
outputs=gr.File(label="Full Mix Archive (.zip)"),
title="Export Stems + Final Mix Together",
description="Perfect for sharing with producers or archiving"
)
# Launch Gradio App
demo.launch()
# === Hugging Face API Integration ===
def hf_api_process(audio_data_url, effects_json, isolate, preset, export_format):
try:
import base64, tempfile, json
from pydub import AudioSegment
header, base64_data = audio_data_url.split(",", 1)
audio_bytes = base64.b64decode(base64_data)
suffix = ".mp3" if "mpeg" in header else ".wav"
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as f:
f.write(audio_bytes)
input_path = f.name
effects = json.loads(effects_json) if isinstance(effects_json, str) else effects_json
output_path, *_ = process_audio(input_path, effects, isolate, preset, export_format)
with open(output_path, "rb") as f:
out_b64 = base64.b64encode(f.read()).decode("utf-8")
mime = "audio/wav" if export_format.lower() == "wav" else "audio/mpeg"
return f"data:{mime};base64,{out_b64}"
except Exception as e:
return f"Error: {str(e)}"
# Add standalone API interface for Hugging Face to access
gr.Interface(
fn=hf_api_process,
inputs=[
gr.Text(label="Audio Base64 Data URL"),
gr.Textbox(label="Effects (JSON)"),
gr.Checkbox(label="Isolate Vocals"),
gr.Textbox(label="Preset"),
gr.Textbox(label="Export Format")
],
outputs=gr.Text(label="Processed Audio as Base64 URL"),
allow_flagging="never"
).launch(inline=False, share=False)
# === Hugging Face API Integration ===
def hf_api_process(audio_data_url, effects_json, isolate, preset, export_format):
try:
import base64, tempfile, json
from pydub import AudioSegment
header, base64_data = audio_data_url.split(",", 1)
audio_bytes = base64.b64decode(base64_data)
suffix = ".mp3" if "mpeg" in header else ".wav"
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as f:
f.write(audio_bytes)
input_path = f.name
effects = json.loads(effects_json) if isinstance(effects_json, str) else effects_json
output_path, *_ = process_audio(input_path, effects, isolate, preset, export_format)
with open(output_path, "rb") as f:
out_b64 = base64.b64encode(f.read()).decode("utf-8")
mime = "audio/wav" if export_format.lower() == "wav" else "audio/mpeg"
return f"data:{mime};base64,{out_b64}"
except Exception as e:
return f"Error: {str(e)}"
# Add standalone API interface for Hugging Face to access
gr.Interface(
fn=hf_api_process,
inputs=[
gr.Text(label="Audio Base64 Data URL"),
gr.Textbox(label="Effects (JSON)"),
gr.Checkbox(label="Isolate Vocals"),
gr.Textbox(label="Preset"),
gr.Textbox(label="Export Format")
],
outputs=gr.Text(label="Processed Audio as Base64 URL"),
allow_flagging="never"
).launch(inline=False, share=False)
|