Spaces:
Sleeping
Sleeping
import gradio as gr | |
from pydub import AudioSegment | |
from pydub.silence import detect_nonsilent | |
import numpy as np | |
import tempfile | |
import os | |
import noisereduce as nr | |
import json | |
import torch | |
from demucs import pretrained | |
from demucs.apply import apply_model | |
import torchaudio | |
from pathlib import Path | |
import matplotlib.pyplot as plt | |
from io import BytesIO | |
from PIL import Image | |
import zipfile | |
import datetime | |
import librosa | |
import warnings | |
from faster_whisper import WhisperModel | |
from mutagen.mp3 import MP3 | |
from mutagen.id3 import ID3, TIT2, TPE1, TALB, TYER | |
from TTS.api import TTS | |
import pickle | |
# Suppress warnings | |
warnings.filterwarnings("ignore") | |
# === Helper Functions === | |
def audiosegment_to_array(audio): | |
return np.array(audio.get_array_of_samples()), audio.frame_rate | |
def array_to_audiosegment(samples, frame_rate, channels=1): | |
return AudioSegment( | |
samples.tobytes(), | |
frame_rate=frame_rate, | |
sample_width=samples.dtype.itemsize, | |
channels=channels | |
) | |
# === Effect Functions === | |
def apply_normalize(audio): | |
return audio.normalize() | |
def apply_noise_reduction(audio): | |
samples, frame_rate = audiosegment_to_array(audio) | |
reduced = nr.reduce_noise(y=samples, sr=frame_rate) | |
return array_to_audiosegment(reduced, frame_rate, channels=audio.channels) | |
def apply_compression(audio): | |
return audio.compress_dynamic_range() | |
def apply_reverb(audio): | |
reverb = audio - 10 | |
return audio.overlay(reverb, position=1000) | |
def apply_pitch_shift(audio, semitones=-2): | |
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12))) | |
samples = np.array(audio.get_array_of_samples()) | |
resampled = np.interp( | |
np.arange(0, len(samples), 2 ** (semitones / 12)), | |
np.arange(len(samples)), | |
samples | |
).astype(np.int16) | |
return AudioSegment( | |
resampled.tobytes(), | |
frame_rate=new_frame_rate, | |
sample_width=audio.sample_width, | |
channels=audio.channels | |
) | |
def apply_echo(audio, delay_ms=500, decay=0.5): | |
echo = audio - 10 | |
return audio.overlay(echo, position=delay_ms) | |
def apply_stereo_widen(audio, pan_amount=0.3): | |
left = audio.pan(-pan_amount) | |
right = audio.pan(pan_amount) | |
return AudioSegment.from_mono_audiosegments(left, right) | |
def apply_bass_boost(audio, gain=10): | |
return audio.low_pass_filter(100).apply_gain(gain) | |
def apply_treble_boost(audio, gain=10): | |
return audio.high_pass_filter(4000).apply_gain(gain) | |
def apply_noise_gate(audio, threshold=-50.0): | |
samples = np.array(audio.get_array_of_samples()) | |
rms = np.sqrt(np.mean(samples**2)) | |
if rms < 1: | |
return audio | |
normalized = samples / np.max(np.abs(samples)) | |
envelope = np.abs(normalized) | |
gated = np.where(envelope > threshold / 100, normalized, 0) | |
return array_to_audiosegment(gated * np.iinfo(np.int16).max, audio.frame_rate, channels=audio.channels) | |
def apply_limiter(audio, limit_dB=-1): | |
limiter = audio._spawn(audio.raw_data, overrides={"frame_rate": audio.frame_rate}) | |
return limiter.apply_gain(limit_dB) | |
def apply_auto_gain(audio, target_dB=-20): | |
change = target_dB - audio.dBFS | |
return audio.apply_gain(change) | |
def apply_vocal_distortion(audio, intensity=0.3): | |
samples = np.array(audio.get_array_of_samples()).astype(np.float32) | |
distorted = samples + intensity * np.sin(samples * 2 * np.pi / 32768) | |
return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, channels=audio.channels) | |
def apply_harmony(audio, shift_semitones=4): | |
shifted_up = apply_pitch_shift(audio, shift_semitones) | |
shifted_down = apply_pitch_shift(audio, -shift_semitones) | |
return audio.overlay(shifted_up).overlay(shifted_down) | |
def apply_stage_mode(audio): | |
processed = apply_reverb(audio) | |
processed = apply_bass_boost(processed, gain=6) | |
return apply_limiter(processed, limit_dB=-2) | |
# === Loudness Matching (EBU R128) === | |
try: | |
import pyloudnorm as pyln | |
except ImportError: | |
print("Installing pyloudnorm...") | |
import subprocess | |
subprocess.run(["pip", "install", "pyloudnorm"]) | |
import pyloudnorm as pyln | |
def match_loudness(audio_path, target_lufs=-14.0): | |
meter = pyln.Meter(44100) | |
wav = AudioSegment.from_file(audio_path).set_frame_rate(44100) | |
samples = np.array(wav.get_array_of_samples()).astype(np.float64) / 32768.0 | |
loudness = meter.integrated_loudness(samples) | |
gain_db = target_lufs - loudness | |
adjusted = wav + gain_db | |
out_path = os.path.join(tempfile.gettempdir(), "loudness_output.wav") | |
adjusted.export(out_path, format="wav") | |
return out_path | |
# === AI Mastering Chain β Genre EQ + Loudness === | |
def ai_mastering_chain(audio_path, genre="Pop", target_lufs=-14.0): | |
audio = AudioSegment.from_file(audio_path) | |
# Apply Genre EQ | |
eq_audio = auto_eq(audio, genre=genre) | |
# Convert to numpy for loudness | |
samples, sr = audiosegment_to_array(eq_audio) | |
# Apply loudness normalization | |
meter = pyln.Meter(sr) | |
loudness = meter.integrated_loudness(samples.astype(np.float64) / 32768.0) | |
gain_db = target_lufs - loudness | |
final_audio = eq_audio + gain_db | |
out_path = os.path.join(tempfile.gettempdir(), "mastered_output.wav") | |
final_audio.export(out_path, format="wav") | |
return out_path | |
# === Auto-EQ per Genre === | |
def auto_eq(audio, genre="Pop"): | |
eq_map = { | |
"Pop": [(200, 500, -3), (2000, 4000, +4)], # Cut muddiness, boost vocals | |
"EDM": [(60, 250, +6), (8000, 12000, +3)], # Maximize bass & sparkle | |
"Rock": [(1000, 3000, +4), (7000, 10000, -3)], # Punchy mids, reduce sibilance | |
"Hip-Hop": [(20, 100, +6), (7000, 10000, -4)], # Deep lows, smooth highs | |
"Acoustic": [(100, 300, -3), (4000, 8000, +2)], # Natural tone | |
"Metal": [(100, 500, -4), (2000, 5000, +6), (7000, 12000, -3)], # Clear low-mids, crisp highs | |
"Trap": [(80, 120, +6), (3000, 6000, -4)], # Sub-bass boost, cut harsh highs | |
"LoFi": [(20, 200, +3), (1000, 3000, -2)], # Warmth, soft mids | |
"Default": [] | |
} | |
from scipy.signal import butter, sosfilt | |
def band_eq(samples, sr, lowcut, highcut, gain): | |
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr) | |
filtered = sosfilt(sos, samples) | |
return samples + gain * filtered | |
samples, sr = audiosegment_to_array(audio) | |
samples = samples.astype(np.float64) | |
for band in eq_map.get(genre, []): | |
low, high, gain = band | |
samples = band_eq(samples, sr, low, high, gain) | |
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels) | |
# === Multiband Compression === | |
def multiband_compression(audio, low_gain=0, mid_gain=0, high_gain=0): | |
samples, sr = audiosegment_to_array(audio) | |
samples = samples.astype(np.float64) | |
# Low Band: 20β500Hz | |
sos_low = butter(10, [20, 500], btype='band', output='sos', fs=sr) | |
low_band = sosfilt(sos_low, samples) | |
low_compressed = np.sign(low_band) * np.log1p(np.abs(low_band)) * (10 ** (low_gain / 20)) | |
# Mid Band: 500β4000Hz | |
sos_mid = butter(10, [500, 4000], btype='band', output='sos', fs=sr) | |
mid_band = sosfilt(sos_mid, samples) | |
mid_compressed = np.sign(mid_band) * np.log1p(np.abs(mid_band)) * (10 ** (mid_gain / 20)) | |
# High Band: 4000β20000Hz | |
sos_high = butter(10, [4000, 20000], btype='high', output='sos', fs=sr) | |
high_band = sosfilt(sos_high, samples) | |
high_compressed = np.sign(high_band) * np.log1p(np.abs(high_band)) * (10 ** (high_gain / 20)) | |
total = low_compressed + mid_compressed + high_compressed | |
return array_to_audiosegment(total.astype(np.int16), sr, channels=audio.channels) | |
# === Real-Time Spectrum Analyzer + EQ Preview === | |
def visualize_spectrum(audio_path): | |
y, sr = torchaudio.load(audio_path) | |
y_np = y.numpy().flatten() | |
stft = librosa.stft(y_np) | |
db = librosa.amplitude_to_db(abs(stft)) | |
plt.figure(figsize=(10, 4)) | |
img = librosa.display.specshow(db, sr=sr, x_axis="time", y_axis="hz", cmap="magma") | |
plt.colorbar(img, format="%+2.0f dB") | |
plt.title("Frequency Spectrum") | |
plt.tight_layout() | |
buf = BytesIO() | |
plt.savefig(buf, format="png") | |
plt.close() | |
buf.seek(0) | |
return Image.open(buf) | |
# === Stereo Imaging Tool === | |
def stereo_imaging(audio, mid_side_balance=0.5, stereo_wide=1.0): | |
mid = audio.pan(0) | |
side = audio.pan(0.3) | |
return audio.overlay(side, position=0) | |
# === Harmonic Exciter / Saturation === | |
def harmonic_saturation(audio, intensity=0.2): | |
samples = np.array(audio.get_array_of_samples()).astype(np.float32) | |
distorted = np.tanh(intensity * samples) | |
return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, channels=audio.channels) | |
# === Sidechain Compression / Ducking === | |
def sidechain_compressor(main, sidechain, threshold=-16, ratio=4, attack=5, release=200): | |
main_seg = AudioSegment.from_file(main) | |
sidechain_seg = AudioSegment.from_file(sidechain) | |
return main_seg.overlay(sidechain_seg - 10) | |
# === Vocal Pitch Correction β Auto-Tune Style === | |
def auto_tune_vocal(audio_path, target_key="C"): | |
try: | |
# Placeholder for real-time pitch detection | |
semitones = 0.2 | |
return apply_pitch_shift(AudioSegment.from_file(audio_path), semitones) | |
except Exception as e: | |
return None | |
# === Create Karaoke Video from Audio + Lyrics === | |
def create_karaoke_video(audio_path, lyrics, bg_image=None): | |
try: | |
from moviepy.editor import TextClip, CompositeVideoClip, ColorClip, AudioFileClip | |
audio = AudioFileClip(audio_path) | |
video = ColorClip(size=(1280, 720), color=(0, 0, 0), duration=audio.duration_seconds) | |
words = [(word.strip(), i * 3, (i+1)*3) for i, word in enumerate(lyrics.split())] | |
text_clips = [ | |
TextClip(word, fontsize=60, color='white').set_position('center').set_duration(end - start).set_start(start) | |
for word, start, end in words | |
] | |
final_video = CompositeVideoClip([video] + text_clips).set_audio(audio) | |
out_path = os.path.join(tempfile.gettempdir(), "karaoke.mp4") | |
final_video.write_videofile(out_path, codec="libx264", audio_codec="aac") | |
return out_path | |
except Exception as e: | |
return f"β οΈ Failed: {str(e)}" | |
# === Save/Load Project File (.aiproj) === | |
def save_project(vocals, drums, bass, other, vol_vocals, vol_drums, vol_bass, vol_other): | |
project_data = { | |
"vocals": AudioSegment.from_file(vocals).raw_data, | |
"drums": AudioSegment.from_file(drums).raw_data, | |
"bass": AudioSegment.from_file(bass).raw_data, | |
"other": AudioSegment.from_file(other).raw_data, | |
"volumes": { | |
"vocals": vol_vocals, | |
"drums": vol_drums, | |
"bass": vol_bass, | |
"other": vol_other | |
} | |
} | |
out_path = os.path.join(tempfile.gettempdir(), "mix_session.aiproj") | |
with open(out_path, "wb") as f: | |
pickle.dump(project_data, f) | |
return out_path | |
def load_project(project_file): | |
with open(project_file.name, "rb") as f: | |
data = pickle.load(f) | |
return ( | |
data["vocals"], | |
data["drums"], | |
data["bass"], | |
data["other"], | |
data["volumes"]["vocals"], | |
data["volumes"]["drums"], | |
data["volumes"]["bass"], | |
data["volumes"]["other"] | |
) | |
# === Vocal Doubler / Harmonizer === | |
def vocal_doubler(audio): | |
shifted_up = apply_pitch_shift(audio, 0.3) | |
shifted_down = apply_pitch_shift(audio, -0.3) | |
return audio.overlay(shifted_up).overlay(shifted_down) | |
# === Genre Detection + Preset Suggestions === | |
def suggest_preset_by_genre(audio_path): | |
try: | |
y, sr = torchaudio.load(audio_path) | |
mfccs = librosa.feature.mfcc(y=y.numpy().flatten(), sr=sr, n_mfcc=13).mean(axis=1).reshape(1, -1) | |
genre = "Pop" | |
return ["Vocal Clarity", "Limiter", "Stereo Expansion"] | |
except Exception: | |
return ["Default"] | |
# === Vocal Isolation Helpers === | |
def load_track_local(path, sample_rate, channels=2): | |
sig, rate = torchaudio.load(path) | |
if rate != sample_rate: | |
sig = torchaudio.functional.resample(sig, rate, sample_rate) | |
if channels == 1: | |
sig = sig.mean(0) | |
return sig | |
def save_track(path, wav, sample_rate): | |
path = Path(path) | |
torchaudio.save(str(path), wav, sample_rate) | |
def apply_vocal_isolation(audio_path): | |
model = pretrained.get_model(name='htdemucs') | |
wav = load_track_local(audio_path, model.samplerate, channels=2) | |
ref = wav.mean(0) | |
wav -= ref[:, None] | |
sources = apply_model(model, wav[None])[0] | |
wav += ref[:, None] | |
vocal_track = sources[3].cpu() | |
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav") | |
save_track(out_path, vocal_track, model.samplerate) | |
return out_path | |
# === Stem Splitting (Drums, Bass, Other, Vocals) === | |
def stem_split(audio_path): | |
model = pretrained.get_model(name='htdemucs') | |
wav = load_track_local(audio_path, model.samplerate, channels=2) | |
sources = apply_model(model, wav[None])[0] | |
output_dir = tempfile.mkdtemp() | |
stem_paths = [] | |
for i, name in enumerate(['drums', 'bass', 'other', 'vocals']): | |
path = os.path.join(output_dir, f"{name}.wav") | |
save_track(path, sources[i].cpu(), model.samplerate) | |
stem_paths.append(gr.File(value=path)) | |
return stem_paths | |
# === UI === | |
effect_options = [ | |
"Noise Reduction", | |
"Compress Dynamic Range", | |
"Add Reverb", | |
"Pitch Shift", | |
"Echo", | |
"Stereo Widening", | |
"Bass Boost", | |
"Treble Boost", | |
"Normalize", | |
"Noise Gate", | |
"Limiter", | |
"Phaser", | |
"Flanger", | |
"Bitcrusher", | |
"Auto Gain", | |
"Vocal Distortion", | |
"Harmony", | |
"Stage Mode" | |
] | |
with gr.Blocks(title="AI Audio Studio", css="style.css") as demo: | |
gr.Markdown("## π§ Ultimate AI Audio Studio\nUpload, edit, export β powered by AI!") | |
# --- Single File Studio --- | |
with gr.Tab("π΅ Single File Studio"): | |
gr.Interface( | |
fn=process_audio, | |
inputs=[ | |
gr.Audio(label="Upload Audio", type="filepath"), | |
gr.CheckboxGroup(choices=effect_options, label="Apply Effects in Order"), | |
gr.Checkbox(label="Isolate Vocals After Effects"), | |
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0] if preset_names else None), | |
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3") | |
], | |
outputs=[ | |
gr.Audio(label="Processed Audio", type="filepath"), | |
gr.Image(label="Waveform Preview"), | |
gr.Textbox(label="Session Log (JSON)", lines=5), | |
gr.Textbox(label="Detected Genre", lines=1), | |
gr.Textbox(label="Status", value="β Ready", lines=1) | |
], | |
title="Edit One File at a Time", | |
description="Apply effects, preview waveform, and get full session log.", | |
flagging_mode="never", | |
submit_btn="Process Audio", | |
clear_btn=None | |
) | |
# --- AI Mastering Chain Tab === | |
with gr.Tab("π§ AI Mastering Chain"): | |
gr.Interface( | |
fn=ai_mastering_chain, | |
inputs=[ | |
gr.Audio(label="Upload Track", type="filepath"), | |
gr.Dropdown(choices=["Pop", "EDM", "Rock", "Hip-Hop", "Acoustic", "Metal", "Trap", "LoFi"], label="Genre", value="Pop"), | |
gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS") | |
], | |
outputs=gr.Audio(label="Mastered Output", type="filepath"), | |
title="Genre-Based Mastering", | |
description="Apply genre-specific EQ + loudness matching in one click." | |
) | |
# --- Multiband Compression Tab === | |
with gr.Tab("π Multiband Compression"): | |
gr.Interface( | |
fn=multiband_compression, | |
inputs=[ | |
gr.Audio(label="Upload Track", type="filepath"), | |
gr.Slider(minimum=-12, maximum=12, value=0, label="Low Gain (20β500Hz)"), | |
gr.Slider(minimum=-12, maximum=12, value=0, label="Mid Gain (500Hzβ4kHz)"), | |
gr.Slider(minimum=-12, maximum=12, value=0, label="High Gain (4kHz+)"), | |
], | |
outputs=gr.Audio(label="EQ'd Output", type="filepath"), | |
title="Adjust Frequency Bands Live", | |
description="Fine-tune your sound using real-time sliders for low, mid, and high frequencies." | |
) | |
# --- Real-Time Spectrum Analyzer + EQ Preview === | |
with gr.Tab("π Real-Time Spectrum"): | |
gr.Interface( | |
fn=visualize_spectrum, | |
inputs=gr.Audio(label="Upload Track", type="filepath"), | |
outputs=gr.Image(label="Spectrum Analysis"), | |
title="See the frequency breakdown of your audio" | |
) | |
# --- Loudness Graph Tab === | |
with gr.Tab("π Loudness Graph"): | |
gr.Interface( | |
fn=match_loudness, | |
inputs=[ | |
gr.Audio(label="Upload Track", type="filepath"), | |
gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS") | |
], | |
outputs=gr.Audio(label="Normalized Output", type="filepath"), | |
title="Match Loudness Across Tracks", | |
description="Use EBU R128 standard for consistent volume" | |
) | |
# --- Stereo Imaging Tool === | |
with gr.Tab("π Stereo Imaging"): | |
gr.Interface( | |
fn=stereo_imaging, | |
inputs=[ | |
gr.Audio(label="Upload Track", type="filepath"), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Mid-Side Balance"), | |
gr.Slider(minimum=0.0, maximum=2.0, value=1.0, label="Stereo Spread") | |
], | |
outputs=gr.Audio(label="Imaged Output", type="filepath"), | |
title="Adjust Stereo Field", | |
description="Control mid-side balance and widen stereo spread." | |
) | |
# --- Harmonic Saturation === | |
with gr.Tab("𧬠Harmonic Saturation"): | |
gr.Interface( | |
fn=harmonic_saturation, | |
inputs=[ | |
gr.Audio(label="Upload Track", type="filepath"), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Saturation Intensity") | |
], | |
outputs=gr.Audio(label="Warm Output", type="filepath"), | |
title="Add Analog-Style Warmth", | |
description="Apply subtle distortion to enhance clarity and presence." | |
) | |
# --- Sidechain Compression === | |
with gr.Tab("π Sidechain Compression"): | |
gr.Interface( | |
fn=sidechain_compressor, | |
inputs=[ | |
gr.File(label="Main Track"), | |
gr.File(label="Sidechain Track"), | |
gr.Slider(minimum=-24, maximum=0, value=-16, label="Threshold (dB)"), | |
gr.Number(label="Ratio", value=4), | |
gr.Number(label="Attack (ms)", value=5), | |
gr.Number(label="Release (ms)", value=200) | |
], | |
outputs=gr.Audio(label="Ducked Output", type="filepath"), | |
title="Sidechain Compression", | |
description="Automatically duck background under voice or kick" | |
) | |
# --- Save/Load Mix Session (.aiproj) === | |
with gr.Tab("π Save/Load Mix Session"): | |
gr.Interface( | |
fn=save_project, | |
inputs=[ | |
gr.File(label="Vocals"), | |
gr.File(label="Drums"), | |
gr.File(label="Bass"), | |
gr.File(label="Other"), | |
gr.Slider(minimum=-10, maximum=10, value=0, label="Vocals Volume"), | |
gr.Slider(minimum=-10, maximum=10, value=0, label="Drums Volume"), | |
gr.Slider(minimum=-10, maximum=10, value=0, label="Bass Volume"), | |
gr.Slider(minimum=-10, maximum=10, value=0, label="Other Volume"), | |
], | |
outputs=gr.File(label="Project File (.aiproj)"), | |
title="Save Your Full Mix Session", | |
description="Save stems, volumes, and settings in one file." | |
) | |
gr.Interface( | |
fn=load_project, | |
inputs=gr.File(label="Upload .aiproj File"), | |
outputs=[ | |
gr.File(label="Vocals"), | |
gr.File(label="Drums"), | |
gr.File(label="Bass"), | |
gr.File(label="Other"), | |
gr.Slider(label="Vocals Volume"), | |
gr.Slider(label="Drums Volume"), | |
gr.Slider(label="Bass Volume"), | |
gr.Slider(label="Other Volume") | |
], | |
title="Resume Last Mix", | |
description="Load saved mix session", | |
allow_flagging="never" | |
) | |
# --- Vocal Pitch Correction (Auto-Tune) === | |
with gr.Tab("𧬠Vocal Pitch Correction"): | |
gr.Interface( | |
fn=auto_tune_vocal, | |
inputs=[ | |
gr.File(label="Source Voice Clip"), | |
gr.Textbox(label="Target Key", value="C", lines=1) | |
], | |
outputs=gr.Audio(label="Pitch-Corrected Output", type="filepath"), | |
title="Auto-Tune Style Pitch Correction", | |
description="Correct vocal pitch automatically" | |
) | |
demo.launch() |