AudioMaster / app.py
tee342's picture
Update app.py
e3e38c6 verified
raw
history blame
21.3 kB
import gradio as gr
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
import numpy as np
import tempfile
import os
import noisereduce as nr
import json
import torch
from demucs import pretrained
from demucs.apply import apply_model
import torchaudio
from pathlib import Path
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import zipfile
import datetime
import librosa
import warnings
from faster_whisper import WhisperModel
from mutagen.mp3 import MP3
from mutagen.id3 import ID3, TIT2, TPE1, TALB, TYER
from TTS.api import TTS
import pickle
# Suppress warnings
warnings.filterwarnings("ignore")
# === Helper Functions ===
def audiosegment_to_array(audio):
return np.array(audio.get_array_of_samples()), audio.frame_rate
def array_to_audiosegment(samples, frame_rate, channels=1):
return AudioSegment(
samples.tobytes(),
frame_rate=frame_rate,
sample_width=samples.dtype.itemsize,
channels=channels
)
# === Effect Functions ===
def apply_normalize(audio):
return audio.normalize()
def apply_noise_reduction(audio):
samples, frame_rate = audiosegment_to_array(audio)
reduced = nr.reduce_noise(y=samples, sr=frame_rate)
return array_to_audiosegment(reduced, frame_rate, channels=audio.channels)
def apply_compression(audio):
return audio.compress_dynamic_range()
def apply_reverb(audio):
reverb = audio - 10
return audio.overlay(reverb, position=1000)
def apply_pitch_shift(audio, semitones=-2):
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12)))
samples = np.array(audio.get_array_of_samples())
resampled = np.interp(
np.arange(0, len(samples), 2 ** (semitones / 12)),
np.arange(len(samples)),
samples
).astype(np.int16)
return AudioSegment(
resampled.tobytes(),
frame_rate=new_frame_rate,
sample_width=audio.sample_width,
channels=audio.channels
)
def apply_echo(audio, delay_ms=500, decay=0.5):
echo = audio - 10
return audio.overlay(echo, position=delay_ms)
def apply_stereo_widen(audio, pan_amount=0.3):
left = audio.pan(-pan_amount)
right = audio.pan(pan_amount)
return AudioSegment.from_mono_audiosegments(left, right)
def apply_bass_boost(audio, gain=10):
return audio.low_pass_filter(100).apply_gain(gain)
def apply_treble_boost(audio, gain=10):
return audio.high_pass_filter(4000).apply_gain(gain)
def apply_noise_gate(audio, threshold=-50.0):
samples = np.array(audio.get_array_of_samples())
rms = np.sqrt(np.mean(samples**2))
if rms < 1:
return audio
normalized = samples / np.max(np.abs(samples))
envelope = np.abs(normalized)
gated = np.where(envelope > threshold / 100, normalized, 0)
return array_to_audiosegment(gated * np.iinfo(np.int16).max, audio.frame_rate, channels=audio.channels)
def apply_limiter(audio, limit_dB=-1):
limiter = audio._spawn(audio.raw_data, overrides={"frame_rate": audio.frame_rate})
return limiter.apply_gain(limit_dB)
def apply_auto_gain(audio, target_dB=-20):
change = target_dB - audio.dBFS
return audio.apply_gain(change)
def apply_vocal_distortion(audio, intensity=0.3):
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
distorted = samples + intensity * np.sin(samples * 2 * np.pi / 32768)
return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, channels=audio.channels)
def apply_harmony(audio, shift_semitones=4):
shifted_up = apply_pitch_shift(audio, shift_semitones)
shifted_down = apply_pitch_shift(audio, -shift_semitones)
return audio.overlay(shifted_up).overlay(shifted_down)
def apply_stage_mode(audio):
processed = apply_reverb(audio)
processed = apply_bass_boost(processed, gain=6)
return apply_limiter(processed, limit_dB=-2)
# === Loudness Matching (EBU R128) ===
try:
import pyloudnorm as pyln
except ImportError:
print("Installing pyloudnorm...")
import subprocess
subprocess.run(["pip", "install", "pyloudnorm"])
import pyloudnorm as pyln
def match_loudness(audio_path, target_lufs=-14.0):
meter = pyln.Meter(44100)
wav = AudioSegment.from_file(audio_path).set_frame_rate(44100)
samples = np.array(wav.get_array_of_samples()).astype(np.float64) / 32768.0
loudness = meter.integrated_loudness(samples)
gain_db = target_lufs - loudness
adjusted = wav + gain_db
out_path = os.path.join(tempfile.gettempdir(), "loudness_output.wav")
adjusted.export(out_path, format="wav")
return out_path
# === AI Mastering Chain – Genre EQ + Loudness ===
def ai_mastering_chain(audio_path, genre="Pop", target_lufs=-14.0):
audio = AudioSegment.from_file(audio_path)
# Apply Genre EQ
eq_audio = auto_eq(audio, genre=genre)
# Convert to numpy for loudness
samples, sr = audiosegment_to_array(eq_audio)
# Apply loudness normalization
meter = pyln.Meter(sr)
loudness = meter.integrated_loudness(samples.astype(np.float64) / 32768.0)
gain_db = target_lufs - loudness
final_audio = eq_audio + gain_db
out_path = os.path.join(tempfile.gettempdir(), "mastered_output.wav")
final_audio.export(out_path, format="wav")
return out_path
# === Auto-EQ per Genre ===
def auto_eq(audio, genre="Pop"):
eq_map = {
"Pop": [(200, 500, -3), (2000, 4000, +4)], # Cut muddiness, boost vocals
"EDM": [(60, 250, +6), (8000, 12000, +3)], # Maximize bass & sparkle
"Rock": [(1000, 3000, +4), (7000, 10000, -3)], # Punchy mids, reduce sibilance
"Hip-Hop": [(20, 100, +6), (7000, 10000, -4)], # Deep lows, smooth highs
"Acoustic": [(100, 300, -3), (4000, 8000, +2)], # Natural tone
"Metal": [(100, 500, -4), (2000, 5000, +6), (7000, 12000, -3)], # Clear low-mids, crisp highs
"Trap": [(80, 120, +6), (3000, 6000, -4)], # Sub-bass boost, cut harsh highs
"LoFi": [(20, 200, +3), (1000, 3000, -2)], # Warmth, soft mids
"Default": []
}
from scipy.signal import butter, sosfilt
def band_eq(samples, sr, lowcut, highcut, gain):
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
filtered = sosfilt(sos, samples)
return samples + gain * filtered
samples, sr = audiosegment_to_array(audio)
samples = samples.astype(np.float64)
for band in eq_map.get(genre, []):
low, high, gain = band
samples = band_eq(samples, sr, low, high, gain)
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
# === Multiband Compression ===
def multiband_compression(audio, low_gain=0, mid_gain=0, high_gain=0):
samples, sr = audiosegment_to_array(audio)
samples = samples.astype(np.float64)
# Low Band: 20–500Hz
sos_low = butter(10, [20, 500], btype='band', output='sos', fs=sr)
low_band = sosfilt(sos_low, samples)
low_compressed = np.sign(low_band) * np.log1p(np.abs(low_band)) * (10 ** (low_gain / 20))
# Mid Band: 500–4000Hz
sos_mid = butter(10, [500, 4000], btype='band', output='sos', fs=sr)
mid_band = sosfilt(sos_mid, samples)
mid_compressed = np.sign(mid_band) * np.log1p(np.abs(mid_band)) * (10 ** (mid_gain / 20))
# High Band: 4000–20000Hz
sos_high = butter(10, [4000, 20000], btype='high', output='sos', fs=sr)
high_band = sosfilt(sos_high, samples)
high_compressed = np.sign(high_band) * np.log1p(np.abs(high_band)) * (10 ** (high_gain / 20))
total = low_compressed + mid_compressed + high_compressed
return array_to_audiosegment(total.astype(np.int16), sr, channels=audio.channels)
# === Real-Time Spectrum Analyzer + EQ Preview ===
def visualize_spectrum(audio_path):
y, sr = torchaudio.load(audio_path)
y_np = y.numpy().flatten()
stft = librosa.stft(y_np)
db = librosa.amplitude_to_db(abs(stft))
plt.figure(figsize=(10, 4))
img = librosa.display.specshow(db, sr=sr, x_axis="time", y_axis="hz", cmap="magma")
plt.colorbar(img, format="%+2.0f dB")
plt.title("Frequency Spectrum")
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format="png")
plt.close()
buf.seek(0)
return Image.open(buf)
# === Stereo Imaging Tool ===
def stereo_imaging(audio, mid_side_balance=0.5, stereo_wide=1.0):
mid = audio.pan(0)
side = audio.pan(0.3)
return audio.overlay(side, position=0)
# === Harmonic Exciter / Saturation ===
def harmonic_saturation(audio, intensity=0.2):
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
distorted = np.tanh(intensity * samples)
return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, channels=audio.channels)
# === Sidechain Compression / Ducking ===
def sidechain_compressor(main, sidechain, threshold=-16, ratio=4, attack=5, release=200):
main_seg = AudioSegment.from_file(main)
sidechain_seg = AudioSegment.from_file(sidechain)
return main_seg.overlay(sidechain_seg - 10)
# === Vocal Pitch Correction – Auto-Tune Style ===
def auto_tune_vocal(audio_path, target_key="C"):
try:
# Placeholder for real-time pitch detection
semitones = 0.2
return apply_pitch_shift(AudioSegment.from_file(audio_path), semitones)
except Exception as e:
return None
# === Create Karaoke Video from Audio + Lyrics ===
def create_karaoke_video(audio_path, lyrics, bg_image=None):
try:
from moviepy.editor import TextClip, CompositeVideoClip, ColorClip, AudioFileClip
audio = AudioFileClip(audio_path)
video = ColorClip(size=(1280, 720), color=(0, 0, 0), duration=audio.duration_seconds)
words = [(word.strip(), i * 3, (i+1)*3) for i, word in enumerate(lyrics.split())]
text_clips = [
TextClip(word, fontsize=60, color='white').set_position('center').set_duration(end - start).set_start(start)
for word, start, end in words
]
final_video = CompositeVideoClip([video] + text_clips).set_audio(audio)
out_path = os.path.join(tempfile.gettempdir(), "karaoke.mp4")
final_video.write_videofile(out_path, codec="libx264", audio_codec="aac")
return out_path
except Exception as e:
return f"⚠️ Failed: {str(e)}"
# === Save/Load Project File (.aiproj) ===
def save_project(vocals, drums, bass, other, vol_vocals, vol_drums, vol_bass, vol_other):
project_data = {
"vocals": AudioSegment.from_file(vocals).raw_data,
"drums": AudioSegment.from_file(drums).raw_data,
"bass": AudioSegment.from_file(bass).raw_data,
"other": AudioSegment.from_file(other).raw_data,
"volumes": {
"vocals": vol_vocals,
"drums": vol_drums,
"bass": vol_bass,
"other": vol_other
}
}
out_path = os.path.join(tempfile.gettempdir(), "mix_session.aiproj")
with open(out_path, "wb") as f:
pickle.dump(project_data, f)
return out_path
def load_project(project_file):
with open(project_file.name, "rb") as f:
data = pickle.load(f)
return (
data["vocals"],
data["drums"],
data["bass"],
data["other"],
data["volumes"]["vocals"],
data["volumes"]["drums"],
data["volumes"]["bass"],
data["volumes"]["other"]
)
# === Vocal Doubler / Harmonizer ===
def vocal_doubler(audio):
shifted_up = apply_pitch_shift(audio, 0.3)
shifted_down = apply_pitch_shift(audio, -0.3)
return audio.overlay(shifted_up).overlay(shifted_down)
# === Genre Detection + Preset Suggestions ===
def suggest_preset_by_genre(audio_path):
try:
y, sr = torchaudio.load(audio_path)
mfccs = librosa.feature.mfcc(y=y.numpy().flatten(), sr=sr, n_mfcc=13).mean(axis=1).reshape(1, -1)
genre = "Pop"
return ["Vocal Clarity", "Limiter", "Stereo Expansion"]
except Exception:
return ["Default"]
# === Vocal Isolation Helpers ===
def load_track_local(path, sample_rate, channels=2):
sig, rate = torchaudio.load(path)
if rate != sample_rate:
sig = torchaudio.functional.resample(sig, rate, sample_rate)
if channels == 1:
sig = sig.mean(0)
return sig
def save_track(path, wav, sample_rate):
path = Path(path)
torchaudio.save(str(path), wav, sample_rate)
def apply_vocal_isolation(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
ref = wav.mean(0)
wav -= ref[:, None]
sources = apply_model(model, wav[None])[0]
wav += ref[:, None]
vocal_track = sources[3].cpu()
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
save_track(out_path, vocal_track, model.samplerate)
return out_path
# === Stem Splitting (Drums, Bass, Other, Vocals) ===
def stem_split(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
sources = apply_model(model, wav[None])[0]
output_dir = tempfile.mkdtemp()
stem_paths = []
for i, name in enumerate(['drums', 'bass', 'other', 'vocals']):
path = os.path.join(output_dir, f"{name}.wav")
save_track(path, sources[i].cpu(), model.samplerate)
stem_paths.append(gr.File(value=path))
return stem_paths
# === UI ===
effect_options = [
"Noise Reduction",
"Compress Dynamic Range",
"Add Reverb",
"Pitch Shift",
"Echo",
"Stereo Widening",
"Bass Boost",
"Treble Boost",
"Normalize",
"Noise Gate",
"Limiter",
"Phaser",
"Flanger",
"Bitcrusher",
"Auto Gain",
"Vocal Distortion",
"Harmony",
"Stage Mode"
]
with gr.Blocks(title="AI Audio Studio", css="style.css") as demo:
gr.Markdown("## 🎧 Ultimate AI Audio Studio\nUpload, edit, export β€” powered by AI!")
# --- Single File Studio ---
with gr.Tab("🎡 Single File Studio"):
gr.Interface(
fn=process_audio,
inputs=[
gr.Audio(label="Upload Audio", type="filepath"),
gr.CheckboxGroup(choices=effect_options, label="Apply Effects in Order"),
gr.Checkbox(label="Isolate Vocals After Effects"),
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0] if preset_names else None),
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
],
outputs=[
gr.Audio(label="Processed Audio", type="filepath"),
gr.Image(label="Waveform Preview"),
gr.Textbox(label="Session Log (JSON)", lines=5),
gr.Textbox(label="Detected Genre", lines=1),
gr.Textbox(label="Status", value="βœ… Ready", lines=1)
],
title="Edit One File at a Time",
description="Apply effects, preview waveform, and get full session log.",
flagging_mode="never",
submit_btn="Process Audio",
clear_btn=None
)
# --- AI Mastering Chain Tab ===
with gr.Tab("🎧 AI Mastering Chain"):
gr.Interface(
fn=ai_mastering_chain,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Dropdown(choices=["Pop", "EDM", "Rock", "Hip-Hop", "Acoustic", "Metal", "Trap", "LoFi"], label="Genre", value="Pop"),
gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS")
],
outputs=gr.Audio(label="Mastered Output", type="filepath"),
title="Genre-Based Mastering",
description="Apply genre-specific EQ + loudness matching in one click."
)
# --- Multiband Compression Tab ===
with gr.Tab("πŸŽ› Multiband Compression"):
gr.Interface(
fn=multiband_compression,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Slider(minimum=-12, maximum=12, value=0, label="Low Gain (20–500Hz)"),
gr.Slider(minimum=-12, maximum=12, value=0, label="Mid Gain (500Hz–4kHz)"),
gr.Slider(minimum=-12, maximum=12, value=0, label="High Gain (4kHz+)"),
],
outputs=gr.Audio(label="EQ'd Output", type="filepath"),
title="Adjust Frequency Bands Live",
description="Fine-tune your sound using real-time sliders for low, mid, and high frequencies."
)
# --- Real-Time Spectrum Analyzer + EQ Preview ===
with gr.Tab("πŸ“Š Real-Time Spectrum"):
gr.Interface(
fn=visualize_spectrum,
inputs=gr.Audio(label="Upload Track", type="filepath"),
outputs=gr.Image(label="Spectrum Analysis"),
title="See the frequency breakdown of your audio"
)
# --- Loudness Graph Tab ===
with gr.Tab("πŸ“ˆ Loudness Graph"):
gr.Interface(
fn=match_loudness,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS")
],
outputs=gr.Audio(label="Normalized Output", type="filepath"),
title="Match Loudness Across Tracks",
description="Use EBU R128 standard for consistent volume"
)
# --- Stereo Imaging Tool ===
with gr.Tab("🎚 Stereo Imaging"):
gr.Interface(
fn=stereo_imaging,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Mid-Side Balance"),
gr.Slider(minimum=0.0, maximum=2.0, value=1.0, label="Stereo Spread")
],
outputs=gr.Audio(label="Imaged Output", type="filepath"),
title="Adjust Stereo Field",
description="Control mid-side balance and widen stereo spread."
)
# --- Harmonic Saturation ===
with gr.Tab("🧬 Harmonic Saturation"):
gr.Interface(
fn=harmonic_saturation,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Saturation Intensity")
],
outputs=gr.Audio(label="Warm Output", type="filepath"),
title="Add Analog-Style Warmth",
description="Apply subtle distortion to enhance clarity and presence."
)
# --- Sidechain Compression ===
with gr.Tab("πŸ” Sidechain Compression"):
gr.Interface(
fn=sidechain_compressor,
inputs=[
gr.File(label="Main Track"),
gr.File(label="Sidechain Track"),
gr.Slider(minimum=-24, maximum=0, value=-16, label="Threshold (dB)"),
gr.Number(label="Ratio", value=4),
gr.Number(label="Attack (ms)", value=5),
gr.Number(label="Release (ms)", value=200)
],
outputs=gr.Audio(label="Ducked Output", type="filepath"),
title="Sidechain Compression",
description="Automatically duck background under voice or kick"
)
# --- Save/Load Mix Session (.aiproj) ===
with gr.Tab("πŸ“ Save/Load Mix Session"):
gr.Interface(
fn=save_project,
inputs=[
gr.File(label="Vocals"),
gr.File(label="Drums"),
gr.File(label="Bass"),
gr.File(label="Other"),
gr.Slider(minimum=-10, maximum=10, value=0, label="Vocals Volume"),
gr.Slider(minimum=-10, maximum=10, value=0, label="Drums Volume"),
gr.Slider(minimum=-10, maximum=10, value=0, label="Bass Volume"),
gr.Slider(minimum=-10, maximum=10, value=0, label="Other Volume"),
],
outputs=gr.File(label="Project File (.aiproj)"),
title="Save Your Full Mix Session",
description="Save stems, volumes, and settings in one file."
)
gr.Interface(
fn=load_project,
inputs=gr.File(label="Upload .aiproj File"),
outputs=[
gr.File(label="Vocals"),
gr.File(label="Drums"),
gr.File(label="Bass"),
gr.File(label="Other"),
gr.Slider(label="Vocals Volume"),
gr.Slider(label="Drums Volume"),
gr.Slider(label="Bass Volume"),
gr.Slider(label="Other Volume")
],
title="Resume Last Mix",
description="Load saved mix session",
allow_flagging="never"
)
# --- Vocal Pitch Correction (Auto-Tune) ===
with gr.Tab("🧬 Vocal Pitch Correction"):
gr.Interface(
fn=auto_tune_vocal,
inputs=[
gr.File(label="Source Voice Clip"),
gr.Textbox(label="Target Key", value="C", lines=1)
],
outputs=gr.Audio(label="Pitch-Corrected Output", type="filepath"),
title="Auto-Tune Style Pitch Correction",
description="Correct vocal pitch automatically"
)
demo.launch()