Spaces:
Sleeping
Sleeping
File size: 21,290 Bytes
c08f175 8aee03f 9b24ddd a82e0c6 8aee03f a82e0c6 9301734 5cdf2bf 4e02325 45077a2 636d339 5cdf2bf 3af2469 aa87123 e15902b 5cdf2bf 3a131d6 78a7fa2 b4e6504 e15902b c260091 e15902b fc163b0 e4398dd 9301734 c108159 4e02325 9301734 4e02325 9301734 a82e0c6 e4398dd a82e0c6 9301734 a82e0c6 9301734 a82e0c6 31bd509 9301734 7b9755f 651e9be 9b24ddd 1cda55b e3e38c6 d27bfa8 7ae5e3a d27bfa8 7ae5e3a d27bfa8 7ae5e3a d27bfa8 7ae5e3a d27bfa8 7ae5e3a d27bfa8 e3e38c6 d27bfa8 e3e38c6 d27bfa8 e3e38c6 d27bfa8 7ae5e3a d27bfa8 e3e38c6 7ae5e3a d27bfa8 7ae5e3a d27bfa8 7ae5e3a d27bfa8 7ae5e3a d27bfa8 f6738b1 e4398dd 45077a2 e4398dd aa87123 e4398dd 4e02325 3af2469 5cdf2bf 3af2469 5cdf2bf 3af2469 dc26431 2f52f6c 651e9be 9b24ddd 2f52f6c e3e38c6 2f52f6c e3e38c6 2f52f6c e3e38c6 2f52f6c e3e38c6 2f52f6c e3e38c6 2f52f6c e3e38c6 2f52f6c e3e38c6 2f52f6c e3e38c6 7b9755f 1cda55b 7b9755f 1cda55b 7b9755f 1cda55b e3e38c6 f6738b1 e3e38c6 1cda55b e3e38c6 1cda55b e3e38c6 1cda55b e3e38c6 1cda55b e3e38c6 d27bfa8 e3e38c6 d27bfa8 e3e38c6 d27bfa8 e3e38c6 d27bfa8 e3e38c6 1cda55b e3e38c6 1cda55b e3e38c6 1cda55b e3e38c6 1cda55b e3e38c6 2f52f6c d27bfa8 98f6048 e3e38c6 98f6048 d27bfa8 e3e38c6 2f52f6c 987f28e d27bfa8 e3e38c6 987f28e e3e38c6 987f28e e3e38c6 2f52f6c e3e38c6 2f52f6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
import gradio as gr
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
import numpy as np
import tempfile
import os
import noisereduce as nr
import json
import torch
from demucs import pretrained
from demucs.apply import apply_model
import torchaudio
from pathlib import Path
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import zipfile
import datetime
import librosa
import warnings
from faster_whisper import WhisperModel
from mutagen.mp3 import MP3
from mutagen.id3 import ID3, TIT2, TPE1, TALB, TYER
from TTS.api import TTS
import pickle
# Suppress warnings
warnings.filterwarnings("ignore")
# === Helper Functions ===
def audiosegment_to_array(audio):
return np.array(audio.get_array_of_samples()), audio.frame_rate
def array_to_audiosegment(samples, frame_rate, channels=1):
return AudioSegment(
samples.tobytes(),
frame_rate=frame_rate,
sample_width=samples.dtype.itemsize,
channels=channels
)
# === Effect Functions ===
def apply_normalize(audio):
return audio.normalize()
def apply_noise_reduction(audio):
samples, frame_rate = audiosegment_to_array(audio)
reduced = nr.reduce_noise(y=samples, sr=frame_rate)
return array_to_audiosegment(reduced, frame_rate, channels=audio.channels)
def apply_compression(audio):
return audio.compress_dynamic_range()
def apply_reverb(audio):
reverb = audio - 10
return audio.overlay(reverb, position=1000)
def apply_pitch_shift(audio, semitones=-2):
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12)))
samples = np.array(audio.get_array_of_samples())
resampled = np.interp(
np.arange(0, len(samples), 2 ** (semitones / 12)),
np.arange(len(samples)),
samples
).astype(np.int16)
return AudioSegment(
resampled.tobytes(),
frame_rate=new_frame_rate,
sample_width=audio.sample_width,
channels=audio.channels
)
def apply_echo(audio, delay_ms=500, decay=0.5):
echo = audio - 10
return audio.overlay(echo, position=delay_ms)
def apply_stereo_widen(audio, pan_amount=0.3):
left = audio.pan(-pan_amount)
right = audio.pan(pan_amount)
return AudioSegment.from_mono_audiosegments(left, right)
def apply_bass_boost(audio, gain=10):
return audio.low_pass_filter(100).apply_gain(gain)
def apply_treble_boost(audio, gain=10):
return audio.high_pass_filter(4000).apply_gain(gain)
def apply_noise_gate(audio, threshold=-50.0):
samples = np.array(audio.get_array_of_samples())
rms = np.sqrt(np.mean(samples**2))
if rms < 1:
return audio
normalized = samples / np.max(np.abs(samples))
envelope = np.abs(normalized)
gated = np.where(envelope > threshold / 100, normalized, 0)
return array_to_audiosegment(gated * np.iinfo(np.int16).max, audio.frame_rate, channels=audio.channels)
def apply_limiter(audio, limit_dB=-1):
limiter = audio._spawn(audio.raw_data, overrides={"frame_rate": audio.frame_rate})
return limiter.apply_gain(limit_dB)
def apply_auto_gain(audio, target_dB=-20):
change = target_dB - audio.dBFS
return audio.apply_gain(change)
def apply_vocal_distortion(audio, intensity=0.3):
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
distorted = samples + intensity * np.sin(samples * 2 * np.pi / 32768)
return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, channels=audio.channels)
def apply_harmony(audio, shift_semitones=4):
shifted_up = apply_pitch_shift(audio, shift_semitones)
shifted_down = apply_pitch_shift(audio, -shift_semitones)
return audio.overlay(shifted_up).overlay(shifted_down)
def apply_stage_mode(audio):
processed = apply_reverb(audio)
processed = apply_bass_boost(processed, gain=6)
return apply_limiter(processed, limit_dB=-2)
# === Loudness Matching (EBU R128) ===
try:
import pyloudnorm as pyln
except ImportError:
print("Installing pyloudnorm...")
import subprocess
subprocess.run(["pip", "install", "pyloudnorm"])
import pyloudnorm as pyln
def match_loudness(audio_path, target_lufs=-14.0):
meter = pyln.Meter(44100)
wav = AudioSegment.from_file(audio_path).set_frame_rate(44100)
samples = np.array(wav.get_array_of_samples()).astype(np.float64) / 32768.0
loudness = meter.integrated_loudness(samples)
gain_db = target_lufs - loudness
adjusted = wav + gain_db
out_path = os.path.join(tempfile.gettempdir(), "loudness_output.wav")
adjusted.export(out_path, format="wav")
return out_path
# === AI Mastering Chain β Genre EQ + Loudness ===
def ai_mastering_chain(audio_path, genre="Pop", target_lufs=-14.0):
audio = AudioSegment.from_file(audio_path)
# Apply Genre EQ
eq_audio = auto_eq(audio, genre=genre)
# Convert to numpy for loudness
samples, sr = audiosegment_to_array(eq_audio)
# Apply loudness normalization
meter = pyln.Meter(sr)
loudness = meter.integrated_loudness(samples.astype(np.float64) / 32768.0)
gain_db = target_lufs - loudness
final_audio = eq_audio + gain_db
out_path = os.path.join(tempfile.gettempdir(), "mastered_output.wav")
final_audio.export(out_path, format="wav")
return out_path
# === Auto-EQ per Genre ===
def auto_eq(audio, genre="Pop"):
eq_map = {
"Pop": [(200, 500, -3), (2000, 4000, +4)], # Cut muddiness, boost vocals
"EDM": [(60, 250, +6), (8000, 12000, +3)], # Maximize bass & sparkle
"Rock": [(1000, 3000, +4), (7000, 10000, -3)], # Punchy mids, reduce sibilance
"Hip-Hop": [(20, 100, +6), (7000, 10000, -4)], # Deep lows, smooth highs
"Acoustic": [(100, 300, -3), (4000, 8000, +2)], # Natural tone
"Metal": [(100, 500, -4), (2000, 5000, +6), (7000, 12000, -3)], # Clear low-mids, crisp highs
"Trap": [(80, 120, +6), (3000, 6000, -4)], # Sub-bass boost, cut harsh highs
"LoFi": [(20, 200, +3), (1000, 3000, -2)], # Warmth, soft mids
"Default": []
}
from scipy.signal import butter, sosfilt
def band_eq(samples, sr, lowcut, highcut, gain):
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
filtered = sosfilt(sos, samples)
return samples + gain * filtered
samples, sr = audiosegment_to_array(audio)
samples = samples.astype(np.float64)
for band in eq_map.get(genre, []):
low, high, gain = band
samples = band_eq(samples, sr, low, high, gain)
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
# === Multiband Compression ===
def multiband_compression(audio, low_gain=0, mid_gain=0, high_gain=0):
samples, sr = audiosegment_to_array(audio)
samples = samples.astype(np.float64)
# Low Band: 20β500Hz
sos_low = butter(10, [20, 500], btype='band', output='sos', fs=sr)
low_band = sosfilt(sos_low, samples)
low_compressed = np.sign(low_band) * np.log1p(np.abs(low_band)) * (10 ** (low_gain / 20))
# Mid Band: 500β4000Hz
sos_mid = butter(10, [500, 4000], btype='band', output='sos', fs=sr)
mid_band = sosfilt(sos_mid, samples)
mid_compressed = np.sign(mid_band) * np.log1p(np.abs(mid_band)) * (10 ** (mid_gain / 20))
# High Band: 4000β20000Hz
sos_high = butter(10, [4000, 20000], btype='high', output='sos', fs=sr)
high_band = sosfilt(sos_high, samples)
high_compressed = np.sign(high_band) * np.log1p(np.abs(high_band)) * (10 ** (high_gain / 20))
total = low_compressed + mid_compressed + high_compressed
return array_to_audiosegment(total.astype(np.int16), sr, channels=audio.channels)
# === Real-Time Spectrum Analyzer + EQ Preview ===
def visualize_spectrum(audio_path):
y, sr = torchaudio.load(audio_path)
y_np = y.numpy().flatten()
stft = librosa.stft(y_np)
db = librosa.amplitude_to_db(abs(stft))
plt.figure(figsize=(10, 4))
img = librosa.display.specshow(db, sr=sr, x_axis="time", y_axis="hz", cmap="magma")
plt.colorbar(img, format="%+2.0f dB")
plt.title("Frequency Spectrum")
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format="png")
plt.close()
buf.seek(0)
return Image.open(buf)
# === Stereo Imaging Tool ===
def stereo_imaging(audio, mid_side_balance=0.5, stereo_wide=1.0):
mid = audio.pan(0)
side = audio.pan(0.3)
return audio.overlay(side, position=0)
# === Harmonic Exciter / Saturation ===
def harmonic_saturation(audio, intensity=0.2):
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
distorted = np.tanh(intensity * samples)
return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, channels=audio.channels)
# === Sidechain Compression / Ducking ===
def sidechain_compressor(main, sidechain, threshold=-16, ratio=4, attack=5, release=200):
main_seg = AudioSegment.from_file(main)
sidechain_seg = AudioSegment.from_file(sidechain)
return main_seg.overlay(sidechain_seg - 10)
# === Vocal Pitch Correction β Auto-Tune Style ===
def auto_tune_vocal(audio_path, target_key="C"):
try:
# Placeholder for real-time pitch detection
semitones = 0.2
return apply_pitch_shift(AudioSegment.from_file(audio_path), semitones)
except Exception as e:
return None
# === Create Karaoke Video from Audio + Lyrics ===
def create_karaoke_video(audio_path, lyrics, bg_image=None):
try:
from moviepy.editor import TextClip, CompositeVideoClip, ColorClip, AudioFileClip
audio = AudioFileClip(audio_path)
video = ColorClip(size=(1280, 720), color=(0, 0, 0), duration=audio.duration_seconds)
words = [(word.strip(), i * 3, (i+1)*3) for i, word in enumerate(lyrics.split())]
text_clips = [
TextClip(word, fontsize=60, color='white').set_position('center').set_duration(end - start).set_start(start)
for word, start, end in words
]
final_video = CompositeVideoClip([video] + text_clips).set_audio(audio)
out_path = os.path.join(tempfile.gettempdir(), "karaoke.mp4")
final_video.write_videofile(out_path, codec="libx264", audio_codec="aac")
return out_path
except Exception as e:
return f"β οΈ Failed: {str(e)}"
# === Save/Load Project File (.aiproj) ===
def save_project(vocals, drums, bass, other, vol_vocals, vol_drums, vol_bass, vol_other):
project_data = {
"vocals": AudioSegment.from_file(vocals).raw_data,
"drums": AudioSegment.from_file(drums).raw_data,
"bass": AudioSegment.from_file(bass).raw_data,
"other": AudioSegment.from_file(other).raw_data,
"volumes": {
"vocals": vol_vocals,
"drums": vol_drums,
"bass": vol_bass,
"other": vol_other
}
}
out_path = os.path.join(tempfile.gettempdir(), "mix_session.aiproj")
with open(out_path, "wb") as f:
pickle.dump(project_data, f)
return out_path
def load_project(project_file):
with open(project_file.name, "rb") as f:
data = pickle.load(f)
return (
data["vocals"],
data["drums"],
data["bass"],
data["other"],
data["volumes"]["vocals"],
data["volumes"]["drums"],
data["volumes"]["bass"],
data["volumes"]["other"]
)
# === Vocal Doubler / Harmonizer ===
def vocal_doubler(audio):
shifted_up = apply_pitch_shift(audio, 0.3)
shifted_down = apply_pitch_shift(audio, -0.3)
return audio.overlay(shifted_up).overlay(shifted_down)
# === Genre Detection + Preset Suggestions ===
def suggest_preset_by_genre(audio_path):
try:
y, sr = torchaudio.load(audio_path)
mfccs = librosa.feature.mfcc(y=y.numpy().flatten(), sr=sr, n_mfcc=13).mean(axis=1).reshape(1, -1)
genre = "Pop"
return ["Vocal Clarity", "Limiter", "Stereo Expansion"]
except Exception:
return ["Default"]
# === Vocal Isolation Helpers ===
def load_track_local(path, sample_rate, channels=2):
sig, rate = torchaudio.load(path)
if rate != sample_rate:
sig = torchaudio.functional.resample(sig, rate, sample_rate)
if channels == 1:
sig = sig.mean(0)
return sig
def save_track(path, wav, sample_rate):
path = Path(path)
torchaudio.save(str(path), wav, sample_rate)
def apply_vocal_isolation(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
ref = wav.mean(0)
wav -= ref[:, None]
sources = apply_model(model, wav[None])[0]
wav += ref[:, None]
vocal_track = sources[3].cpu()
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
save_track(out_path, vocal_track, model.samplerate)
return out_path
# === Stem Splitting (Drums, Bass, Other, Vocals) ===
def stem_split(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
sources = apply_model(model, wav[None])[0]
output_dir = tempfile.mkdtemp()
stem_paths = []
for i, name in enumerate(['drums', 'bass', 'other', 'vocals']):
path = os.path.join(output_dir, f"{name}.wav")
save_track(path, sources[i].cpu(), model.samplerate)
stem_paths.append(gr.File(value=path))
return stem_paths
# === UI ===
effect_options = [
"Noise Reduction",
"Compress Dynamic Range",
"Add Reverb",
"Pitch Shift",
"Echo",
"Stereo Widening",
"Bass Boost",
"Treble Boost",
"Normalize",
"Noise Gate",
"Limiter",
"Phaser",
"Flanger",
"Bitcrusher",
"Auto Gain",
"Vocal Distortion",
"Harmony",
"Stage Mode"
]
with gr.Blocks(title="AI Audio Studio", css="style.css") as demo:
gr.Markdown("## π§ Ultimate AI Audio Studio\nUpload, edit, export β powered by AI!")
# --- Single File Studio ---
with gr.Tab("π΅ Single File Studio"):
gr.Interface(
fn=process_audio,
inputs=[
gr.Audio(label="Upload Audio", type="filepath"),
gr.CheckboxGroup(choices=effect_options, label="Apply Effects in Order"),
gr.Checkbox(label="Isolate Vocals After Effects"),
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0] if preset_names else None),
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
],
outputs=[
gr.Audio(label="Processed Audio", type="filepath"),
gr.Image(label="Waveform Preview"),
gr.Textbox(label="Session Log (JSON)", lines=5),
gr.Textbox(label="Detected Genre", lines=1),
gr.Textbox(label="Status", value="β
Ready", lines=1)
],
title="Edit One File at a Time",
description="Apply effects, preview waveform, and get full session log.",
flagging_mode="never",
submit_btn="Process Audio",
clear_btn=None
)
# --- AI Mastering Chain Tab ===
with gr.Tab("π§ AI Mastering Chain"):
gr.Interface(
fn=ai_mastering_chain,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Dropdown(choices=["Pop", "EDM", "Rock", "Hip-Hop", "Acoustic", "Metal", "Trap", "LoFi"], label="Genre", value="Pop"),
gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS")
],
outputs=gr.Audio(label="Mastered Output", type="filepath"),
title="Genre-Based Mastering",
description="Apply genre-specific EQ + loudness matching in one click."
)
# --- Multiband Compression Tab ===
with gr.Tab("π Multiband Compression"):
gr.Interface(
fn=multiband_compression,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Slider(minimum=-12, maximum=12, value=0, label="Low Gain (20β500Hz)"),
gr.Slider(minimum=-12, maximum=12, value=0, label="Mid Gain (500Hzβ4kHz)"),
gr.Slider(minimum=-12, maximum=12, value=0, label="High Gain (4kHz+)"),
],
outputs=gr.Audio(label="EQ'd Output", type="filepath"),
title="Adjust Frequency Bands Live",
description="Fine-tune your sound using real-time sliders for low, mid, and high frequencies."
)
# --- Real-Time Spectrum Analyzer + EQ Preview ===
with gr.Tab("π Real-Time Spectrum"):
gr.Interface(
fn=visualize_spectrum,
inputs=gr.Audio(label="Upload Track", type="filepath"),
outputs=gr.Image(label="Spectrum Analysis"),
title="See the frequency breakdown of your audio"
)
# --- Loudness Graph Tab ===
with gr.Tab("π Loudness Graph"):
gr.Interface(
fn=match_loudness,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS")
],
outputs=gr.Audio(label="Normalized Output", type="filepath"),
title="Match Loudness Across Tracks",
description="Use EBU R128 standard for consistent volume"
)
# --- Stereo Imaging Tool ===
with gr.Tab("π Stereo Imaging"):
gr.Interface(
fn=stereo_imaging,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Mid-Side Balance"),
gr.Slider(minimum=0.0, maximum=2.0, value=1.0, label="Stereo Spread")
],
outputs=gr.Audio(label="Imaged Output", type="filepath"),
title="Adjust Stereo Field",
description="Control mid-side balance and widen stereo spread."
)
# --- Harmonic Saturation ===
with gr.Tab("𧬠Harmonic Saturation"):
gr.Interface(
fn=harmonic_saturation,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Saturation Intensity")
],
outputs=gr.Audio(label="Warm Output", type="filepath"),
title="Add Analog-Style Warmth",
description="Apply subtle distortion to enhance clarity and presence."
)
# --- Sidechain Compression ===
with gr.Tab("π Sidechain Compression"):
gr.Interface(
fn=sidechain_compressor,
inputs=[
gr.File(label="Main Track"),
gr.File(label="Sidechain Track"),
gr.Slider(minimum=-24, maximum=0, value=-16, label="Threshold (dB)"),
gr.Number(label="Ratio", value=4),
gr.Number(label="Attack (ms)", value=5),
gr.Number(label="Release (ms)", value=200)
],
outputs=gr.Audio(label="Ducked Output", type="filepath"),
title="Sidechain Compression",
description="Automatically duck background under voice or kick"
)
# --- Save/Load Mix Session (.aiproj) ===
with gr.Tab("π Save/Load Mix Session"):
gr.Interface(
fn=save_project,
inputs=[
gr.File(label="Vocals"),
gr.File(label="Drums"),
gr.File(label="Bass"),
gr.File(label="Other"),
gr.Slider(minimum=-10, maximum=10, value=0, label="Vocals Volume"),
gr.Slider(minimum=-10, maximum=10, value=0, label="Drums Volume"),
gr.Slider(minimum=-10, maximum=10, value=0, label="Bass Volume"),
gr.Slider(minimum=-10, maximum=10, value=0, label="Other Volume"),
],
outputs=gr.File(label="Project File (.aiproj)"),
title="Save Your Full Mix Session",
description="Save stems, volumes, and settings in one file."
)
gr.Interface(
fn=load_project,
inputs=gr.File(label="Upload .aiproj File"),
outputs=[
gr.File(label="Vocals"),
gr.File(label="Drums"),
gr.File(label="Bass"),
gr.File(label="Other"),
gr.Slider(label="Vocals Volume"),
gr.Slider(label="Drums Volume"),
gr.Slider(label="Bass Volume"),
gr.Slider(label="Other Volume")
],
title="Resume Last Mix",
description="Load saved mix session",
allow_flagging="never"
)
# --- Vocal Pitch Correction (Auto-Tune) ===
with gr.Tab("𧬠Vocal Pitch Correction"):
gr.Interface(
fn=auto_tune_vocal,
inputs=[
gr.File(label="Source Voice Clip"),
gr.Textbox(label="Target Key", value="C", lines=1)
],
outputs=gr.Audio(label="Pitch-Corrected Output", type="filepath"),
title="Auto-Tune Style Pitch Correction",
description="Correct vocal pitch automatically"
)
demo.launch() |