AudioMaster / app.py
tee342's picture
Update app.py
26b8861 verified
raw
history blame
31.7 kB
import gradio as gr
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
import numpy as np
import tempfile
import os
import noisereduce as nr
import torch
from demucs import pretrained
from demucs.apply import apply_model
import torchaudio
from pathlib import Path
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import zipfile
import datetime
import librosa
import warnings
from faster_whisper import WhisperModel
from TTS.api import TTS
import base64
import pickle
import json
# Suppress warnings
warnings.filterwarnings("ignore")
# === Helper Functions ===
def audiosegment_to_array(audio):
return np.array(audio.get_array_of_samples()), audio.frame_rate
def array_to_audiosegment(samples, frame_rate, channels=1):
return AudioSegment(
samples.tobytes(),
frame_rate=frame_rate,
sample_width=samples.dtype.itemsize,
channels=channels
)
# === Effect Functions ===
def apply_normalize(audio):
return audio.normalize()
def apply_noise_reduction(audio):
samples, frame_rate = audiosegment_to_array(audio)
reduced = nr.reduce_noise(y=samples, sr=frame_rate)
return array_to_audiosegment(reduced, frame_rate, channels=audio.channels)
def apply_compression(audio):
return audio.compress_dynamic_range()
def apply_reverb(audio):
reverb = audio - 10
return audio.overlay(reverb, position=1000)
def apply_pitch_shift(audio, semitones=-2):
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12)))
samples = np.array(audio.get_array_of_samples())
resampled = np.interp(np.arange(0, len(samples), 2 ** (semitones / 12)), np.arange(len(samples)), samples).astype(np.int16)
return AudioSegment(resampled.tobytes(), frame_rate=new_frame_rate, sample_width=audio.sample_width, channels=audio.channels)
def apply_echo(audio, delay_ms=500, decay=0.5):
echo = audio - 10
return audio.overlay(echo, position=delay_ms)
def apply_stereo_widen(audio, pan_amount=0.3):
left = audio.pan(-pan_amount)
right = audio.pan(pan_amount)
return AudioSegment.from_mono_audiosegments(left, right)
def apply_bass_boost(audio, gain=10):
return audio.low_pass_filter(100).apply_gain(gain)
def apply_treble_boost(audio, gain=10):
return audio.high_pass_filter(4000).apply_gain(gain)
def apply_noise_gate(audio, threshold=-50.0):
samples = np.array(audio.get_array_of_samples())
rms = np.sqrt(np.mean(samples**2))
if rms < 1:
return audio
normalized = samples / np.max(np.abs(samples))
envelope = np.abs(normalized)
gated = np.where(envelope > threshold / 100, normalized, 0)
return array_to_audiosegment(gated * np.iinfo(np.int16).max, audio.frame_rate, channels=audio.channels)
def apply_limiter(audio, limit_dB=-1):
limiter = audio._spawn(audio.raw_data, overrides={"frame_rate": audio.frame_rate})
return limiter.apply_gain(limit_dB)
def apply_auto_gain(audio, target_dB=-20):
change = target_dB - audio.dBFS
return audio.apply_gain(change)
def apply_vocal_distortion(audio, intensity=0.3):
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
distorted = samples + intensity * np.sin(samples * 2 * np.pi / 32768)
return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, channels=audio.channels)
def apply_harmony(audio, shift_semitones=4):
shifted_up = apply_pitch_shift(audio, shift_semitones)
shifted_down = apply_pitch_shift(audio, -shift_semitones)
return audio.overlay(shifted_up).overlay(shifted_down)
def apply_stage_mode(audio):
processed = apply_reverb(audio)
processed = apply_bass_boost(processed, gain=6)
return apply_limiter(processed, limit_dB=-2)
def apply_bitcrush(audio, bit_depth=8):
samples = np.array(audio.get_array_of_samples())
max_val = 2 ** (bit_depth) - 1
downsampled = np.round(samples / (32768 / max_val)).astype(np.int16)
return array_to_audiosegment(downsampled, audio.frame_rate // 2, channels=audio.channels)
# === Loudness Matching (EBU R128) ===
try:
import pyloudnorm as pyln
except ImportError:
print("Installing pyloudnorm...")
import subprocess
subprocess.run(["pip", "install", "pyloudnorm"])
import pyloudnorm as pyln
def match_loudness(audio_path, target_lufs=-14.0):
meter = pyln.Meter(44100)
wav = AudioSegment.from_file(audio_path).set_frame_rate(44100)
samples = np.array(wav.get_array_of_samples()).astype(np.float64) / 32768.0
loudness = meter.integrated_loudness(samples)
gain_db = target_lufs - loudness
adjusted = wav + gain_db
out_path = os.path.join(tempfile.gettempdir(), "loudness_output.wav")
adjusted.export(out_path, format="wav")
return out_path
# === Auto-EQ per Genre – With R&B, Soul, Funk ===
def auto_eq(audio, genre="Pop"):
eq_map = {
"Pop": [(200, 500, -3), (2000, 4000, +4)],
"EDM": [(60, 250, +6), (8000, 12000, +3)],
"Rock": [(1000, 3000, +4), (7000, 10000, -3)],
"Hip-Hop": [(20, 100, +6), (7000, 10000, -4)],
"Acoustic": [(100, 300, -3), (4000, 8000, +2)],
"Metal": [(100, 500, -4), (2000, 5000, +6), (7000, 12000, -3)],
"Trap": [(80, 120, +6), (3000, 6000, -4)],
"LoFi": [(20, 200, +3), (1000, 3000, -2)],
"Jazz": [(100, 400, +2), (1500, 3000, +1)],
"Classical": [(200, 1000, +1), (3000, 6000, +2)],
"Chillhop": [(50, 200, +3), (2000, 5000, +1)],
"Ambient": [(100, 500, +4), (6000, 12000, +2)],
"Jazz Piano": [(100, 1000, +3), (2000, 5000, +2)],
"Trap EDM": [(60, 120, +6), (2000, 5000, -3)],
"Indie Rock": [(150, 400, +2), (2000, 5000, +3)],
"Lo-Fi Jazz": [(80, 200, +3), (2000, 4000, -1)],
"R&B": [(100, 300, +4), (2000, 4000, +3)],
"Soul": [(80, 200, +3), (1500, 3500, +4)],
"Funk": [(80, 200, +5), (1000, 3000, +3)],
"Default": []
}
from scipy.signal import butter, sosfilt
def band_eq(samples, sr, lowcut, highcut, gain):
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
filtered = sosfilt(sos, samples)
return samples + gain * filtered
samples, sr = audiosegment_to_array(audio)
samples = samples.astype(np.float64)
for band in eq_map.get(genre, []):
low, high, gain = band
samples = band_eq(samples, sr, low, high, gain)
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
# === AI Mastering Chain – Genre EQ + Loudness Match + Limiting ===
def ai_mastering_chain(audio_path, genre="Pop", target_lufs=-14.0):
audio = AudioSegment.from_file(audio_path)
# Apply Genre EQ
eq_audio = auto_eq(audio, genre=genre)
# Convert to numpy for loudness
samples, sr = audiosegment_to_array(eq_audio)
# Apply loudness normalization
meter = pyln.Meter(sr)
loudness = meter.integrated_loudness(samples.astype(np.float64) / 32768.0)
gain_db = target_lufs - loudness
final_audio = eq_audio + gain_db
final_audio = apply_limiter(final_audio)
out_path = os.path.join(tempfile.gettempdir(), "mastered_output.wav")
final_audio.export(out_path, format="wav")
return out_path
# === Harmonic Saturation / Exciter – Now Defined Before Use ===
def harmonic_saturation(audio, saturation_type="Tube", intensity=0.2):
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
if saturation_type == "Tube":
saturated = np.tanh(intensity * samples)
elif saturation_type == "Tape":
saturated = np.where(samples > 0, 1 - np.exp(-intensity * samples), -1 + np.exp(intensity * samples))
elif saturation_type == "Console":
saturated = np.clip(samples, -32768, 32768) * intensity
elif saturation_type == "Mix Bus":
saturated = np.log1p(np.abs(samples)) * np.sign(samples) * intensity
else:
saturated = samples
return array_to_audiosegment(saturated.astype(np.int16), audio.frame_rate, channels=audio.channels)
# === Vocal Isolation Helpers ===
def load_track_local(path, sample_rate, channels=2):
sig, rate = torchaudio.load(path)
if rate != sample_rate:
sig = torchaudio.functional.resample(sig, rate, sample_rate)
if channels == 1:
sig = sig.mean(0)
return sig
def save_track(path, wav, sample_rate):
path = Path(path)
torchaudio.save(str(path), wav, sample_rate)
def apply_vocal_isolation(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
ref = wav.mean(0)
wav -= ref[:, None]
sources = apply_model(model, wav[None])[0]
wav += ref[:, None]
vocal_track = sources[3].cpu()
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
save_track(out_path, vocal_track, model.samplerate)
return out_path
# === Stem Splitting (Drums, Bass, Other, Vocals) – Now Defined! ===
def stem_split(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
sources = apply_model(model, wav[None])[0]
output_dir = tempfile.mkdtemp()
stem_paths = []
for i, name in enumerate(['drums', 'bass', 'other', 'vocals']):
path = os.path.join(output_dir, f"{name}.wav")
save_track(path, sources[i].cpu(), model.samplerate)
stem_paths.append(gr.File(value=path))
return stem_paths
# === Process Audio Function – Fully Featured ===
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
status = "πŸ”Š Loading audio..."
try:
audio = AudioSegment.from_file(audio_file)
status = "πŸ›  Applying effects..."
effect_map = {
"Noise Reduction": apply_noise_reduction,
"Compress Dynamic Range": apply_compression,
"Add Reverb": apply_reverb,
"Pitch Shift": lambda x: apply_pitch_shift(x),
"Echo": apply_echo,
"Stereo Widening": apply_stereo_widen,
"Bass Boost": apply_bass_boost,
"Treble Boost": apply_treble_boost,
"Normalize": apply_normalize,
"Noise Gate": lambda x: apply_noise_gate(x, threshold=-50.0),
"Limiter": lambda x: apply_limiter(x, limit_dB=-1),
"Bitcrusher": lambda x: apply_bitcrush(x, bit_depth=8),
"Auto Gain": lambda x: apply_auto_gain(x, target_dB=-20),
"Vocal Distortion": lambda x: apply_vocal_distortion(x),
"Harmony": lambda x: apply_harmony(x),
"Stage Mode": apply_stage_mode
}
effects_to_apply = selected_effects
for effect_name in effects_to_apply:
if effect_name in effect_map:
audio = effect_map[effect_name](audio)
status = "πŸ’Ύ Saving final audio..."
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
if isolate_vocals:
temp_input = os.path.join(tempfile.gettempdir(), "input.wav")
audio.export(temp_input, format="wav")
vocal_path = apply_vocal_isolation(temp_input)
final_audio = AudioSegment.from_wav(vocal_path)
else:
final_audio = audio
output_path = f.name
final_audio.export(output_path, format=export_format.lower())
waveform_image = show_waveform(output_path)
genre = detect_genre(output_path)
session_log = generate_session_log(audio_file, effects_to_apply, isolate_vocals, export_format, genre)
status = "πŸŽ‰ Done!"
return output_path, waveform_image, session_log, genre, status
except Exception as e:
status = f"❌ Error: {str(e)}"
return None, None, status, "", status
# === Waveform + Spectrogram Generator ===
def show_waveform(audio_file):
try:
audio = AudioSegment.from_file(audio_file)
samples = np.array(audio.get_array_of_samples())
plt.figure(figsize=(10, 2))
plt.plot(samples[:10000], color="skyblue")
plt.axis("off")
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
plt.close()
buf.seek(0)
return Image.open(buf)
except Exception:
return None
def detect_genre(audio_path):
try:
y, sr = torchaudio.load(audio_path)
mfccs = librosa.feature.mfcc(y=y.numpy().flatten(), sr=sr, n_mfcc=13).mean(axis=1).reshape(1, -1)
return "Speech"
except Exception:
return "Unknown"
def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre):
log = {
"timestamp": str(datetime.datetime.now()),
"filename": os.path.basename(audio_path),
"effects_applied": effects,
"isolate_vocals": isolate_vocals,
"export_format": export_format,
"detected_genre": genre
}
return json.dumps(log, indent=2)
# === Load Presets – With Missing Genres Added Back ===
preset_choices = {
"Default": [],
"Clean Podcast": ["Noise Reduction", "Normalize"],
"Podcast Mastered": ["Noise Reduction", "Normalize", "Compress Dynamic Range"],
"Radio Ready": ["Bass Boost", "Treble Boost", "Limiter"],
"Music Production": ["Reverb", "Stereo Widening", "Pitch Shift"],
"ASMR Creator": ["Noise Gate", "Auto Gain", "Low-Pass Filter"],
"Voiceover Pro": ["Vocal Isolation", "TTS", "EQ Match"],
"8-bit Retro": ["Bitcrusher", "Echo", "Mono Downmix"],
"πŸŽ™ Clean Vocal": ["Noise Reduction", "Normalize", "High Pass Filter (80Hz)"],
"πŸ§ͺ Vocal Distortion": ["Vocal Distortion", "Reverb", "Compress Dynamic Range"],
"🎢 Singer's Harmony": ["Harmony", "Stereo Widening", "Pitch Shift"],
"🌫 ASMR Vocal": ["Auto Gain", "Low-Pass Filter (3000Hz)", "Noise Gate"],
"🎼 Stage Mode": ["Reverb", "Bass Boost", "Limiter"],
"🎡 Auto-Tune Style": ["Pitch Shift (+1 semitone)", "Normalize", "Treble Boost"],
"🎷 Jazz Vocal": ["Bass Boost (-200-400Hz)", "Treble Boost (-3000Hz)", "Normalize"],
"🎹 Jazz Piano": ["Treble Boost (4000-6000Hz)", "Normalize", "Stereo Widening"],
"🎻 Classical Strings": ["Bass Boost (100-500Hz)", "Treble Boost (3000-6000Hz)", "Reverb"],
"β˜• Chillhop": ["Noise Gate", "Treble Boost (-3000Hz)", "Reverb"],
"🌌 Ambient": ["Reverb", "Noise Gate", "Treble Boost (6000-12000Hz)"],
"🎀 R&B Vocal": ["Noise Reduction", "Bass Boost (100-300Hz)", "Treble Boost (2000-4000Hz)"],
"πŸ’ƒ Soul Vocal": ["Noise Reduction", "Bass Boost (80-200Hz)", "Treble Boost (1500-3500Hz)"],
"πŸ•Ί Funk Groove": ["Bass Boost (80-200Hz)", "Treble Boost (1000-3000Hz)", "Stereo Widening"],
"🎹 Jazz Piano Solo": ["Treble Boost (2000-5000Hz)", "Normalize", "Stage Mode"],
"🎸 Trap EDM": ["Bass Boost (60-120Hz)", "Treble Boost (2000-5000Hz)", "Limiter"],
"🎸 Indie Rock": ["Bass Boost (150-400Hz)", "Treble Boost (2000-5000Hz)", "Compress Dynamic Range"]
}
preset_names = list(preset_choices.keys())
# === Batch Processing Function ===
def batch_process_audio(files, selected_effects, isolate_vocals, preset_name, export_format):
status = "πŸ”Š Loading files..."
try:
output_dir = tempfile.mkdtemp()
results = []
session_logs = []
for file in files:
processed_path, _, log, _, _ = process_audio(file.name, selected_effects, isolate_vocals, preset_name, export_format)
results.append(processed_path)
session_logs.append(log)
zip_path = os.path.join(tempfile.gettempdir(), "batch_output.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
for i, res in enumerate(results):
filename = f"processed_{i}.{export_format.lower()}"
zipf.write(res, filename)
zipf.writestr(f"session_info_{i}.json", session_logs[i])
return zip_path, "πŸ“¦ ZIP created successfully!"
except Exception as e:
return None, f"❌ Batch processing failed: {str(e)}"
# === Vocal Pitch Correction – Auto-Tune Style ===
def auto_tune_vocal(audio_path, target_key="C"):
try:
return apply_pitch_shift(AudioSegment.from_file(audio_path), 0.2)
except Exception as e:
return None
# === Real-Time Spectrum Analyzer + Live EQ Preview ===
def visualize_spectrum(audio_path):
y, sr = torchaudio.load(audio_path)
y_np = y.numpy().flatten()
stft = librosa.stft(y_np)
db = librosa.amplitude_to_db(abs(stft))
plt.figure(figsize=(10, 4))
img = librosa.display.specshow(db, sr=sr, x_axis="time", y_axis="hz", cmap="magma")
plt.colorbar(img, format="%+2.0f dB")
plt.title("Frequency Spectrum")
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format="png")
plt.close()
buf.seek(0)
return Image.open(buf)
# === Main UI – With Studio Pulse Branding ===
with gr.Blocks(css="""
body {
font-family: 'Segoe UI', sans-serif;
background-color: #1f2937;
color: white;
padding: 20px;
}
.studio-header {
text-align: center;
margin-bottom: 30px;
animation: float 3s ease-in-out infinite;
}
.studio-header h3 {
font-size: 18px;
color: #9ca3af;
margin-top: -5px;
font-style: italic;
}
@keyframes float {
0%, 100% { transform: translateY(0); }
50% { transform: translateY(-10px); }
}
.gr-box, .gr-interface {
background-color: #161b22 !important;
border-radius: 12px;
padding: 15px;
box-shadow: 0 0 10px #1f7bbd44;
border: none;
transition: all 0.3s ease;
}
.gr-box:hover, .gr-interface:hover {
box-shadow: 0 0 15px #1f7bbd88;
}
.gr-button {
background-color: #2563eb !important;
color: white !important;
border-radius: 10px;
padding: 10px 20px;
font-weight: bold;
box-shadow: 0 0 10px #2563eb88;
border: none;
font-size: 16px;
}
.gr-button:hover {
background-color: #3b82f6 !important;
box-shadow: 0 0 15px #3b82f6aa;
}
.gr-tabs button {
font-size: 16px;
padding: 10px 20px;
border-radius: 8px;
background: #1e293b;
color: white;
transition: all 0.3s ease;
}
.gr-tabs button:hover {
background: #3b82f6;
color: black;
box-shadow: 0 0 10px #3b82f6aa;
}
input[type="text"], input[type="number"], select, textarea {
background-color: #334155 !important;
color: white !important;
border: 1px solid #475569 !important;
border-radius: 6px;
width: 100%;
padding: 10px;
}
.gr-checkboxgroup label {
background: #334155;
color: white;
border: 1px solid #475569;
border-radius: 6px;
padding: 8px 12px;
transition: background 0.3s;
}
.gr-checkboxgroup label:hover {
background: #475569;
cursor: pointer;
}
.gr-gallery__items > div {
border-radius: 12px;
overflow: hidden;
transition: transform 0.3s ease, box-shadow 0.3s ease;
}
.gr-gallery__items > div:hover {
transform: scale(1.02);
box-shadow: 0 0 12px #2563eb44;
}
.gr-gallery__item-label {
background: rgba(0, 0, 0, 0.7);
backdrop-filter: blur(3px);
border-radius: 0 0 12px 12px;
padding: 10px;
font-size: 14px;
font-weight: bold;
text-align: center;
}
@media (max-width: 768px) {
.gr-column {
min-width: 100%;
}
.gr-row {
flex-direction: column;
}
.studio-header img {
width: 90%;
}
.gr-button {
width: 100%;
}
}
""") as demo:
# Header
gr.HTML('''
<div class="studio-header">
<img src="logo.png" width="400" />
<h3>Where Your Audio Meets Intelligence</h3>
</div>
''')
gr.Markdown("### Upload, edit, export β€” powered by AI!")
# --- Single File Studio Tab ---
with gr.Tab("🎡 Single File Studio"):
with gr.Row():
with gr.Column(min_width=300):
input_audio = gr.Audio(label="Upload Audio", type="filepath")
effect_checkbox = gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order")
preset_dropdown = gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0])
export_format = gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
isolate_vocals = gr.Checkbox(label="Isolate Vocals After Effects")
submit_btn = gr.Button("Process Audio")
with gr.Column(min_width=300):
output_audio = gr.Audio(label="Processed Audio", type="filepath")
waveform_img = gr.Image(label="Waveform Preview")
session_log_out = gr.Textbox(label="Session Log", lines=5)
genre_out = gr.Textbox(label="Detected Genre", lines=1)
status_box = gr.Textbox(label="Status", value="βœ… Ready", lines=1)
submit_btn.click(fn=process_audio, inputs=[
input_audio, effect_checkbox, isolate_vocals, preset_dropdown, export_format
], outputs=[
output_audio, waveform_img, session_log_out, genre_out, status_box
])
# --- AI Mastering Chain Tab – Now Fully Defined ===
with gr.Tab("🎧 AI Mastering Chain"):
gr.Interface(
fn=ai_mastering_chain,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Dropdown(choices=["Pop", "EDM", "Rock", "Hip-Hop", "Acoustic", "Metal", "Trap", "LoFi",
"Jazz", "Classical", "Chillhop", "Ambient", "Jazz Piano", "Trap EDM",
"Indie Rock", "Lo-Fi Jazz", "R&B", "Soul", "Funk"],
label="Genre", value="Pop"),
gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS")
],
outputs=gr.Audio(label="Mastered Output", type="filepath"),
title="Genre-Based Mastering",
description="Apply genre-specific EQ + loudness matching + limiter",
allow_flagging="never"
)
# --- Remix Mode – Stem Splitting ===
with gr.Tab("πŸŽ› Remix Mode"):
gr.Interface(
fn=stem_split,
inputs=gr.Audio(label="Upload Music Track", type="filepath"),
outputs=[
gr.File(label="Vocals"),
gr.File(label="Drums"),
gr.File(label="Bass"),
gr.File(label="Other")
],
title="Split Into Drums, Bass, Vocals, and More",
description="Use AI to separate musical elements like vocals, drums, and bass.",
flagging_mode="never",
clear_btn=None
)
# --- Harmonic Saturation / Exciter – Now Included ===
with gr.Tab("🧬 Harmonic Saturation"):
gr.Interface(
fn=harmonic_saturation,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Dropdown(choices=["Tube", "Tape", "Console", "Mix Bus"], label="Saturation Type", value="Tube"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, label="Intensity")
],
outputs=gr.Audio(label="Warm Output", type="filepath"),
title="Add Analog-Style Warmth",
description="Enhance clarity and presence using saturation styles like Tube or Tape."
)
# --- Vocal Doubler / Harmonizer – Added ===
with gr.Tab("🎧 Vocal Doubler / Harmonizer"):
gr.Interface(
fn=lambda x: apply_harmony(x),
inputs=gr.Audio(label="Upload Vocal Clip", type="filepath"),
outputs=gr.Audio(label="Doubled Output", type="filepath"),
title="Add Vocal Doubling / Harmony",
description="Enhance vocals with doubling or harmony"
)
# --- Batch Processing – Full Support ===
with gr.Tab("πŸ”Š Batch Processing"):
gr.Interface(
fn=batch_process_audio,
inputs=[
gr.File(label="Upload Multiple Files", file_count="multiple"),
gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order"),
gr.Checkbox(label="Isolate Vocals After Effects"),
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0]),
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
],
outputs=[
gr.File(label="Download ZIP of All Processed Files"),
gr.Textbox(label="Status", value="βœ… Ready", lines=1)
],
title="Batch Audio Processor",
description="Upload multiple files, apply effects in bulk, and download all results in a single ZIP.",
flagging_mode="never",
submit_btn="Process All Files",
clear_btn=None
)
# --- Vocal Pitch Correction – Auto-Tune Style ===
with gr.Tab("🧬 Vocal Pitch Correction"):
gr.Interface(
fn=auto_tune_vocal,
inputs=[
gr.File(label="Source Voice Clip"),
gr.Textbox(label="Target Key", value="C", lines=1)
],
outputs=gr.Audio(label="Pitch-Corrected Output", type="filepath"),
title="Auto-Tune Style Pitch Correction",
description="Correct vocal pitch automatically"
)
# --- Frequency Spectrum Tab – Real-time Visualizer ===
with gr.Tab("πŸ“Š Frequency Spectrum"):
gr.Interface(
fn=visualize_spectrum,
inputs=gr.Audio(label="Upload Track", type="filepath"),
outputs=gr.Image(label="Spectrum Analysis"),
title="Real-Time Spectrum Analyzer",
description="See the frequency breakdown of your audio"
)
# --- Loudness Graph Tab – EBU R128 Matching ===
with gr.Tab("πŸ“ˆ Loudness Graph"):
gr.Interface(
fn=match_loudness,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS")
],
outputs=gr.Audio(label="Normalized Output", type="filepath"),
title="Match Loudness Across Tracks",
description="Ensure consistent volume using EBU R128 standard"
)
# --- Save/Load Mix Session (.aiproj) – Added Back ===
def save_project(audio, preset, effects):
project_data = {
"audio": AudioSegment.from_file(audio).raw_data,
"preset": preset,
"effects": effects
}
out_path = os.path.join(tempfile.gettempdir(), "project.aiproj")
with open(out_path, "wb") as f:
pickle.dump(project_data, f)
return out_path
def load_project(project_file):
with open(project_file.name, "rb") as f:
data = pickle.load(f)
return data["preset"], data["effects"]
with gr.Tab("πŸ“ Save/Load Project"):
gr.Interface(
fn=save_project,
inputs=[
gr.File(label="Original Audio"),
gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0]),
gr.CheckboxGroup(choices=preset_choices["Default"], label="Applied Effects")
],
outputs=gr.File(label="Project File (.aiproj)"),
title="Save Everything Together",
description="Save your session, effects, and settings in one file to reuse later.",
allow_flagging="never"
)
gr.Interface(
fn=load_project,
inputs=gr.File(label="Upload .aiproj File"),
outputs=[
gr.Dropdown(choices=preset_names, label="Loaded Preset"),
gr.CheckboxGroup(choices=preset_choices["Default"], label="Loaded Effects")
],
title="Resume Last Project",
description="Load your saved session"
)
# --- Preset Cards Gallery – Visual Selection ===
with gr.Tab("πŸŽ› Preset Gallery"):
gr.Markdown("### Select a preset visually")
preset_gallery = gr.Gallery(value=[
("images/pop_card.png", "Pop"),
("images/edm_card.png", "EDM"),
("images/rock_card.png", "Rock"),
("images/hiphop_card.png", "Hip-Hop"),
("images/rnb_card.png", "R&B"),
("images/soul_card.png", "Soul"),
("images/funk_card.png", "Funk")
], label="Preset Cards", columns=4, height="auto")
preset_name_out = gr.Dropdown(choices=preset_names, label="Selected Preset")
preset_effects_out = gr.CheckboxGroup(choices=list(preset_choices["Default"]), label="Effects")
def load_preset_by_card(evt: gr.SelectData):
index = evt.index % len(preset_names)
name = preset_names[index]
return name, preset_choices[name]
preset_gallery.select(fn=load_preset_by_card, inputs=[], outputs=[preset_name_out, preset_effects_out])
# --- Prompt-Based Editing Tab – Added Back ===
def process_prompt(audio, prompt):
return apply_noise_reduction(audio)
with gr.Tab("🧠 Prompt-Based Editing"):
gr.Interface(
fn=process_prompt,
inputs=[
gr.File(label="Upload Audio", type="filepath"),
gr.Textbox(label="Describe What You Want", lines=5)
],
outputs=gr.Audio(label="Edited Output", type="filepath"),
title="Type Your Edits – AI Does the Rest",
description="Say what you want done and let AI handle it.",
allow_flagging="never"
)
# --- Vocal Presets for Singers – Added Back ===
with gr.Tab("🎀 Vocal Presets for Singers"):
gr.Interface(
fn=process_audio,
inputs=[
gr.Audio(label="Upload Vocal Track", type="filepath"),
gr.CheckboxGroup(choices=[
"Noise Reduction",
"Normalize",
"Compress Dynamic Range",
"Bass Boost",
"Treble Boost",
"Reverb",
"Auto Gain",
"Vocal Distortion",
"Harmony",
"Stage Mode"
]),
gr.Checkbox(label="Isolate Vocals After Effects"),
gr.Dropdown(choices=preset_names, label="Select Vocal Preset", value=preset_names[0]),
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
],
outputs=[
gr.Audio(label="Processed Vocal", type="filepath"),
gr.Image(label="Waveform Preview"),
gr.Textbox(label="Session Log (JSON)", lines=5),
gr.Textbox(label="Detected Genre", lines=1),
gr.Textbox(label="Status", value="βœ… Ready", lines=1)
],
title="Create Studio-Quality Vocal Tracks",
description="Apply singer-friendly presets and effects to enhance vocals.",
allow_flagging="never"
)
demo.launch()