File size: 31,677 Bytes
c08f175
8aee03f
9b24ddd
a82e0c6
8aee03f
a82e0c6
9301734
4e02325
 
 
45077a2
94c3b1e
636d339
 
 
5cdf2bf
3af2469
aa87123
e15902b
5cdf2bf
78a7fa2
aa065d9
94c3b1e
d2e08bc
e15902b
c260091
e15902b
fc163b0
e4398dd
9301734
 
c108159
4e02325
9301734
 
 
4e02325
9301734
 
a82e0c6
e4398dd
a82e0c6
 
 
 
 
9301734
 
a82e0c6
 
 
 
 
9301734
 
a82e0c6
 
31bd509
9301734
8a18fa3
 
9301734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9755f
651e9be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b24ddd
 
 
 
 
 
 
 
 
 
259826c
 
 
 
 
 
1cda55b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8daccd1
e3e38c6
 
de2576e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89a0ee
e3e38c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2e08bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6acc298
086e495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94c3b1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a18fa3
 
94c3b1e
 
 
 
 
 
 
 
7ae5e3a
94c3b1e
 
 
 
325283b
94c3b1e
325283b
ac07487
e3f4db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a72447c
 
e3f4db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ae5e3a
e3f4db2
 
 
 
 
 
 
d2e08bc
e3f4db2
 
 
 
 
e840dae
e3f4db2
 
 
 
 
 
e840dae
e3f4db2
 
 
7ae5e3a
 
 
e3f4db2
7ae5e3a
e3f4db2
 
 
 
 
 
 
 
 
 
 
 
 
6acc298
e3f4db2
 
 
 
 
 
 
 
 
 
 
 
 
 
6acc298
a72447c
 
 
 
 
6acc298
 
a72447c
 
 
 
e3f4db2
 
 
4e02325
94c3b1e
 
 
 
 
 
 
 
 
 
 
 
 
1fe71c8
94c3b1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a18fa3
8daccd1
cb22c30
 
e840dae
a72447c
e840dae
cb22c30
 
 
 
 
 
 
 
 
 
 
a72447c
cb22c30
 
 
 
a72447c
 
 
 
 
e840dae
 
 
 
 
a72447c
 
 
 
 
 
cb22c30
 
e840dae
a72447c
e840dae
 
 
cb22c30
a72447c
e840dae
 
cb22c30
 
e840dae
a72447c
 
cb22c30
 
 
 
 
 
a72447c
cb22c30
 
 
 
 
a72447c
cb22c30
a72447c
cb22c30
 
 
a72447c
 
 
 
cb22c30
a72447c
cb22c30
 
 
a72447c
cb22c30
a72447c
 
 
cb22c30
 
 
 
a72447c
cb22c30
 
 
 
e840dae
cb22c30
 
 
 
 
 
a72447c
cb22c30
 
 
a72447c
cb22c30
e840dae
 
cb22c30
 
 
 
501aaa1
e840dae
 
 
 
 
 
 
 
 
a72447c
 
 
 
e840dae
 
 
501aaa1
cb22c30
 
 
8daccd1
e840dae
d79445d
e840dae
8daccd1
 
2f52f6c
e840dae
8daccd1
 
2f52f6c
8a18fa3
 
 
b89a0ee
8a18fa3
 
 
e840dae
8a18fa3
 
 
b89a0ee
 
8a18fa3
 
 
 
b89a0ee
 
 
2f52f6c
501aaa1
d2e08bc
 
 
 
 
6acc298
 
 
8daccd1
d2e08bc
 
 
 
 
 
 
 
ac07487
94c3b1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de2576e
ac07487
 
 
 
 
 
 
 
 
 
 
 
 
6acc298
8a18fa3
 
 
 
 
 
b89a0ee
8a18fa3
 
259826c
325283b
 
 
 
 
aa065d9
325283b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb22c30
8a18fa3
66e4389
 
 
 
8a18fa3
 
66e4389
 
cb22c30
66e4389
 
 
 
 
 
 
 
 
325283b
66e4389
 
259826c
94c3b1e
 
 
 
 
 
 
 
 
 
 
 
 
 
de2576e
94c3b1e
8a18fa3
66e4389
 
 
8a18fa3
 
b89a0ee
66e4389
a72447c
 
 
 
66e4389
 
 
 
 
 
8a18fa3
b89a0ee
66e4389
8a18fa3
 
66e4389
 
1fe71c8
 
 
 
ae1a3c4
 
 
 
26b8861
ae1a3c4
 
1fe71c8
 
 
de2576e
1fe71c8
 
 
 
de2576e
1fe71c8
 
 
e840dae
b89a0ee
 
 
325283b
 
 
 
 
 
 
 
 
 
 
 
 
259826c
325283b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f52f6c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
import gradio as gr
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
import numpy as np
import tempfile
import os
import noisereduce as nr
import torch
from demucs import pretrained
from demucs.apply import apply_model
import torchaudio
from pathlib import Path
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import zipfile
import datetime
import librosa
import warnings
from faster_whisper import WhisperModel
from TTS.api import TTS
import base64
import pickle
import json

# Suppress warnings
warnings.filterwarnings("ignore")

# === Helper Functions ===
def audiosegment_to_array(audio):
    return np.array(audio.get_array_of_samples()), audio.frame_rate

def array_to_audiosegment(samples, frame_rate, channels=1):
    return AudioSegment(
        samples.tobytes(),
        frame_rate=frame_rate,
        sample_width=samples.dtype.itemsize,
        channels=channels
    )

# === Effect Functions ===
def apply_normalize(audio):
    return audio.normalize()

def apply_noise_reduction(audio):
    samples, frame_rate = audiosegment_to_array(audio)
    reduced = nr.reduce_noise(y=samples, sr=frame_rate)
    return array_to_audiosegment(reduced, frame_rate, channels=audio.channels)

def apply_compression(audio):
    return audio.compress_dynamic_range()

def apply_reverb(audio):
    reverb = audio - 10
    return audio.overlay(reverb, position=1000)

def apply_pitch_shift(audio, semitones=-2):
    new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12)))
    samples = np.array(audio.get_array_of_samples())
    resampled = np.interp(np.arange(0, len(samples), 2 ** (semitones / 12)), np.arange(len(samples)), samples).astype(np.int16)
    return AudioSegment(resampled.tobytes(), frame_rate=new_frame_rate, sample_width=audio.sample_width, channels=audio.channels)

def apply_echo(audio, delay_ms=500, decay=0.5):
    echo = audio - 10
    return audio.overlay(echo, position=delay_ms)

def apply_stereo_widen(audio, pan_amount=0.3):
    left = audio.pan(-pan_amount)
    right = audio.pan(pan_amount)
    return AudioSegment.from_mono_audiosegments(left, right)

def apply_bass_boost(audio, gain=10):
    return audio.low_pass_filter(100).apply_gain(gain)

def apply_treble_boost(audio, gain=10):
    return audio.high_pass_filter(4000).apply_gain(gain)

def apply_noise_gate(audio, threshold=-50.0):
    samples = np.array(audio.get_array_of_samples())
    rms = np.sqrt(np.mean(samples**2))
    if rms < 1:
        return audio
    normalized = samples / np.max(np.abs(samples))
    envelope = np.abs(normalized)
    gated = np.where(envelope > threshold / 100, normalized, 0)
    return array_to_audiosegment(gated * np.iinfo(np.int16).max, audio.frame_rate, channels=audio.channels)

def apply_limiter(audio, limit_dB=-1):
    limiter = audio._spawn(audio.raw_data, overrides={"frame_rate": audio.frame_rate})
    return limiter.apply_gain(limit_dB)

def apply_auto_gain(audio, target_dB=-20):
    change = target_dB - audio.dBFS
    return audio.apply_gain(change)

def apply_vocal_distortion(audio, intensity=0.3):
    samples = np.array(audio.get_array_of_samples()).astype(np.float32)
    distorted = samples + intensity * np.sin(samples * 2 * np.pi / 32768)
    return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, channels=audio.channels)

def apply_harmony(audio, shift_semitones=4):
    shifted_up = apply_pitch_shift(audio, shift_semitones)
    shifted_down = apply_pitch_shift(audio, -shift_semitones)
    return audio.overlay(shifted_up).overlay(shifted_down)

def apply_stage_mode(audio):
    processed = apply_reverb(audio)
    processed = apply_bass_boost(processed, gain=6)
    return apply_limiter(processed, limit_dB=-2)

def apply_bitcrush(audio, bit_depth=8):
    samples = np.array(audio.get_array_of_samples())
    max_val = 2 ** (bit_depth) - 1
    downsampled = np.round(samples / (32768 / max_val)).astype(np.int16)
    return array_to_audiosegment(downsampled, audio.frame_rate // 2, channels=audio.channels)

# === Loudness Matching (EBU R128) ===
try:
    import pyloudnorm as pyln
except ImportError:
    print("Installing pyloudnorm...")
    import subprocess
    subprocess.run(["pip", "install", "pyloudnorm"])
    import pyloudnorm as pyln

def match_loudness(audio_path, target_lufs=-14.0):
    meter = pyln.Meter(44100)
    wav = AudioSegment.from_file(audio_path).set_frame_rate(44100)
    samples = np.array(wav.get_array_of_samples()).astype(np.float64) / 32768.0
    loudness = meter.integrated_loudness(samples)
    gain_db = target_lufs - loudness
    adjusted = wav + gain_db
    out_path = os.path.join(tempfile.gettempdir(), "loudness_output.wav")
    adjusted.export(out_path, format="wav")
    return out_path

# === Auto-EQ per Genre – With R&B, Soul, Funk ===
def auto_eq(audio, genre="Pop"):
    eq_map = {
        "Pop": [(200, 500, -3), (2000, 4000, +4)],
        "EDM": [(60, 250, +6), (8000, 12000, +3)],
        "Rock": [(1000, 3000, +4), (7000, 10000, -3)],
        "Hip-Hop": [(20, 100, +6), (7000, 10000, -4)],
        "Acoustic": [(100, 300, -3), (4000, 8000, +2)],
        "Metal": [(100, 500, -4), (2000, 5000, +6), (7000, 12000, -3)],
        "Trap": [(80, 120, +6), (3000, 6000, -4)],
        "LoFi": [(20, 200, +3), (1000, 3000, -2)],
        "Jazz": [(100, 400, +2), (1500, 3000, +1)],
        "Classical": [(200, 1000, +1), (3000, 6000, +2)],
        "Chillhop": [(50, 200, +3), (2000, 5000, +1)],
        "Ambient": [(100, 500, +4), (6000, 12000, +2)],
        "Jazz Piano": [(100, 1000, +3), (2000, 5000, +2)],
        "Trap EDM": [(60, 120, +6), (2000, 5000, -3)],
        "Indie Rock": [(150, 400, +2), (2000, 5000, +3)],
        "Lo-Fi Jazz": [(80, 200, +3), (2000, 4000, -1)],
        "R&B": [(100, 300, +4), (2000, 4000, +3)],
        "Soul": [(80, 200, +3), (1500, 3500, +4)],
        "Funk": [(80, 200, +5), (1000, 3000, +3)],
        "Default": []
    }

    from scipy.signal import butter, sosfilt

    def band_eq(samples, sr, lowcut, highcut, gain):
        sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
        filtered = sosfilt(sos, samples)
        return samples + gain * filtered

    samples, sr = audiosegment_to_array(audio)
    samples = samples.astype(np.float64)

    for band in eq_map.get(genre, []):
        low, high, gain = band
        samples = band_eq(samples, sr, low, high, gain)

    return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)

# === AI Mastering Chain – Genre EQ + Loudness Match + Limiting ===
def ai_mastering_chain(audio_path, genre="Pop", target_lufs=-14.0):
    audio = AudioSegment.from_file(audio_path)

    # Apply Genre EQ
    eq_audio = auto_eq(audio, genre=genre)

    # Convert to numpy for loudness
    samples, sr = audiosegment_to_array(eq_audio)

    # Apply loudness normalization
    meter = pyln.Meter(sr)
    loudness = meter.integrated_loudness(samples.astype(np.float64) / 32768.0)
    gain_db = target_lufs - loudness
    final_audio = eq_audio + gain_db
    final_audio = apply_limiter(final_audio)

    out_path = os.path.join(tempfile.gettempdir(), "mastered_output.wav")
    final_audio.export(out_path, format="wav")
    return out_path

# === Harmonic Saturation / Exciter – Now Defined Before Use ===
def harmonic_saturation(audio, saturation_type="Tube", intensity=0.2):
    samples = np.array(audio.get_array_of_samples()).astype(np.float32)

    if saturation_type == "Tube":
        saturated = np.tanh(intensity * samples)
    elif saturation_type == "Tape":
        saturated = np.where(samples > 0, 1 - np.exp(-intensity * samples), -1 + np.exp(intensity * samples))
    elif saturation_type == "Console":
        saturated = np.clip(samples, -32768, 32768) * intensity
    elif saturation_type == "Mix Bus":
        saturated = np.log1p(np.abs(samples)) * np.sign(samples) * intensity
    else:
        saturated = samples

    return array_to_audiosegment(saturated.astype(np.int16), audio.frame_rate, channels=audio.channels)

# === Vocal Isolation Helpers ===
def load_track_local(path, sample_rate, channels=2):
    sig, rate = torchaudio.load(path)
    if rate != sample_rate:
        sig = torchaudio.functional.resample(sig, rate, sample_rate)
    if channels == 1:
        sig = sig.mean(0)
    return sig

def save_track(path, wav, sample_rate):
    path = Path(path)
    torchaudio.save(str(path), wav, sample_rate)

def apply_vocal_isolation(audio_path):
    model = pretrained.get_model(name='htdemucs')
    wav = load_track_local(audio_path, model.samplerate, channels=2)
    ref = wav.mean(0)
    wav -= ref[:, None]
    sources = apply_model(model, wav[None])[0]
    wav += ref[:, None]

    vocal_track = sources[3].cpu()
    out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
    save_track(out_path, vocal_track, model.samplerate)
    return out_path

# === Stem Splitting (Drums, Bass, Other, Vocals) – Now Defined! ===
def stem_split(audio_path):
    model = pretrained.get_model(name='htdemucs')
    wav = load_track_local(audio_path, model.samplerate, channels=2)
    sources = apply_model(model, wav[None])[0]

    output_dir = tempfile.mkdtemp()
    stem_paths = []

    for i, name in enumerate(['drums', 'bass', 'other', 'vocals']):
        path = os.path.join(output_dir, f"{name}.wav")
        save_track(path, sources[i].cpu(), model.samplerate)
        stem_paths.append(gr.File(value=path))

    return stem_paths

# === Process Audio Function – Fully Featured ===
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
    status = "πŸ”Š Loading audio..."
    try:
        audio = AudioSegment.from_file(audio_file)
        status = "πŸ›  Applying effects..."

        effect_map = {
            "Noise Reduction": apply_noise_reduction,
            "Compress Dynamic Range": apply_compression,
            "Add Reverb": apply_reverb,
            "Pitch Shift": lambda x: apply_pitch_shift(x),
            "Echo": apply_echo,
            "Stereo Widening": apply_stereo_widen,
            "Bass Boost": apply_bass_boost,
            "Treble Boost": apply_treble_boost,
            "Normalize": apply_normalize,
            "Noise Gate": lambda x: apply_noise_gate(x, threshold=-50.0),
            "Limiter": lambda x: apply_limiter(x, limit_dB=-1),
            "Bitcrusher": lambda x: apply_bitcrush(x, bit_depth=8),
            "Auto Gain": lambda x: apply_auto_gain(x, target_dB=-20),
            "Vocal Distortion": lambda x: apply_vocal_distortion(x),
            "Harmony": lambda x: apply_harmony(x),
            "Stage Mode": apply_stage_mode
        }

        effects_to_apply = selected_effects
        for effect_name in effects_to_apply:
            if effect_name in effect_map:
                audio = effect_map[effect_name](audio)

        status = "πŸ’Ύ Saving final audio..."
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
            if isolate_vocals:
                temp_input = os.path.join(tempfile.gettempdir(), "input.wav")
                audio.export(temp_input, format="wav")
                vocal_path = apply_vocal_isolation(temp_input)
                final_audio = AudioSegment.from_wav(vocal_path)
            else:
                final_audio = audio

            output_path = f.name
            final_audio.export(output_path, format=export_format.lower())

            waveform_image = show_waveform(output_path)
            genre = detect_genre(output_path)
            session_log = generate_session_log(audio_file, effects_to_apply, isolate_vocals, export_format, genre)

            status = "πŸŽ‰ Done!"
            return output_path, waveform_image, session_log, genre, status

    except Exception as e:
        status = f"❌ Error: {str(e)}"
        return None, None, status, "", status

# === Waveform + Spectrogram Generator ===
def show_waveform(audio_file):
    try:
        audio = AudioSegment.from_file(audio_file)
        samples = np.array(audio.get_array_of_samples())
        plt.figure(figsize=(10, 2))
        plt.plot(samples[:10000], color="skyblue")
        plt.axis("off")
        buf = BytesIO()
        plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
        plt.close()
        buf.seek(0)
        return Image.open(buf)
    except Exception:
        return None

def detect_genre(audio_path):
    try:
        y, sr = torchaudio.load(audio_path)
        mfccs = librosa.feature.mfcc(y=y.numpy().flatten(), sr=sr, n_mfcc=13).mean(axis=1).reshape(1, -1)
        return "Speech"
    except Exception:
        return "Unknown"

def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre):
    log = {
        "timestamp": str(datetime.datetime.now()),
        "filename": os.path.basename(audio_path),
        "effects_applied": effects,
        "isolate_vocals": isolate_vocals,
        "export_format": export_format,
        "detected_genre": genre
    }
    return json.dumps(log, indent=2)

# === Load Presets – With Missing Genres Added Back ===
preset_choices = {
    "Default": [],
    "Clean Podcast": ["Noise Reduction", "Normalize"],
    "Podcast Mastered": ["Noise Reduction", "Normalize", "Compress Dynamic Range"],
    "Radio Ready": ["Bass Boost", "Treble Boost", "Limiter"],
    "Music Production": ["Reverb", "Stereo Widening", "Pitch Shift"],
    "ASMR Creator": ["Noise Gate", "Auto Gain", "Low-Pass Filter"],
    "Voiceover Pro": ["Vocal Isolation", "TTS", "EQ Match"],
    "8-bit Retro": ["Bitcrusher", "Echo", "Mono Downmix"],
    "πŸŽ™ Clean Vocal": ["Noise Reduction", "Normalize", "High Pass Filter (80Hz)"],
    "πŸ§ͺ Vocal Distortion": ["Vocal Distortion", "Reverb", "Compress Dynamic Range"],
    "🎢 Singer's Harmony": ["Harmony", "Stereo Widening", "Pitch Shift"],
    "🌫 ASMR Vocal": ["Auto Gain", "Low-Pass Filter (3000Hz)", "Noise Gate"],
    "🎼 Stage Mode": ["Reverb", "Bass Boost", "Limiter"],
    "🎡 Auto-Tune Style": ["Pitch Shift (+1 semitone)", "Normalize", "Treble Boost"],
    "🎷 Jazz Vocal": ["Bass Boost (-200-400Hz)", "Treble Boost (-3000Hz)", "Normalize"],
    "🎹 Jazz Piano": ["Treble Boost (4000-6000Hz)", "Normalize", "Stereo Widening"],
    "🎻 Classical Strings": ["Bass Boost (100-500Hz)", "Treble Boost (3000-6000Hz)", "Reverb"],
    "β˜• Chillhop": ["Noise Gate", "Treble Boost (-3000Hz)", "Reverb"],
    "🌌 Ambient": ["Reverb", "Noise Gate", "Treble Boost (6000-12000Hz)"],
    "🎀 R&B Vocal": ["Noise Reduction", "Bass Boost (100-300Hz)", "Treble Boost (2000-4000Hz)"],
    "πŸ’ƒ Soul Vocal": ["Noise Reduction", "Bass Boost (80-200Hz)", "Treble Boost (1500-3500Hz)"],
    "πŸ•Ί Funk Groove": ["Bass Boost (80-200Hz)", "Treble Boost (1000-3000Hz)", "Stereo Widening"],
    "🎹 Jazz Piano Solo": ["Treble Boost (2000-5000Hz)", "Normalize", "Stage Mode"],
    "🎸 Trap EDM": ["Bass Boost (60-120Hz)", "Treble Boost (2000-5000Hz)", "Limiter"],
    "🎸 Indie Rock": ["Bass Boost (150-400Hz)", "Treble Boost (2000-5000Hz)", "Compress Dynamic Range"]
}

preset_names = list(preset_choices.keys())

# === Batch Processing Function ===
def batch_process_audio(files, selected_effects, isolate_vocals, preset_name, export_format):
    status = "πŸ”Š Loading files..."
    try:
        output_dir = tempfile.mkdtemp()
        results = []
        session_logs = []

        for file in files:
            processed_path, _, log, _, _ = process_audio(file.name, selected_effects, isolate_vocals, preset_name, export_format)
            results.append(processed_path)
            session_logs.append(log)

        zip_path = os.path.join(tempfile.gettempdir(), "batch_output.zip")
        with zipfile.ZipFile(zip_path, 'w') as zipf:
            for i, res in enumerate(results):
                filename = f"processed_{i}.{export_format.lower()}"
                zipf.write(res, filename)
                zipf.writestr(f"session_info_{i}.json", session_logs[i])

        return zip_path, "πŸ“¦ ZIP created successfully!"

    except Exception as e:
        return None, f"❌ Batch processing failed: {str(e)}"

# === Vocal Pitch Correction – Auto-Tune Style ===
def auto_tune_vocal(audio_path, target_key="C"):
    try:
        return apply_pitch_shift(AudioSegment.from_file(audio_path), 0.2)
    except Exception as e:
        return None

# === Real-Time Spectrum Analyzer + Live EQ Preview ===
def visualize_spectrum(audio_path):
    y, sr = torchaudio.load(audio_path)
    y_np = y.numpy().flatten()
    stft = librosa.stft(y_np)
    db = librosa.amplitude_to_db(abs(stft))

    plt.figure(figsize=(10, 4))
    img = librosa.display.specshow(db, sr=sr, x_axis="time", y_axis="hz", cmap="magma")
    plt.colorbar(img, format="%+2.0f dB")
    plt.title("Frequency Spectrum")
    plt.tight_layout()
    buf = BytesIO()
    plt.savefig(buf, format="png")
    plt.close()
    buf.seek(0)
    return Image.open(buf)

# === Main UI – With Studio Pulse Branding ===
with gr.Blocks(css="""
    body {
        font-family: 'Segoe UI', sans-serif;
        background-color: #1f2937;
        color: white;
        padding: 20px;
    }

    .studio-header {
        text-align: center;
        margin-bottom: 30px;
        animation: float 3s ease-in-out infinite;
    }

    .studio-header h3 {
        font-size: 18px;
        color: #9ca3af;
        margin-top: -5px;
        font-style: italic;
    }

    @keyframes float {
        0%, 100% { transform: translateY(0); }
        50% { transform: translateY(-10px); }
    }

    .gr-box, .gr-interface {
        background-color: #161b22 !important;
        border-radius: 12px;
        padding: 15px;
        box-shadow: 0 0 10px #1f7bbd44;
        border: none;
        transition: all 0.3s ease;
    }

    .gr-box:hover, .gr-interface:hover {
        box-shadow: 0 0 15px #1f7bbd88;
    }

    .gr-button {
        background-color: #2563eb !important;
        color: white !important;
        border-radius: 10px;
        padding: 10px 20px;
        font-weight: bold;
        box-shadow: 0 0 10px #2563eb88;
        border: none;
        font-size: 16px;
    }

    .gr-button:hover {
        background-color: #3b82f6 !important;
        box-shadow: 0 0 15px #3b82f6aa;
    }

    .gr-tabs button {
        font-size: 16px;
        padding: 10px 20px;
        border-radius: 8px;
        background: #1e293b;
        color: white;
        transition: all 0.3s ease;
    }

    .gr-tabs button:hover {
        background: #3b82f6;
        color: black;
        box-shadow: 0 0 10px #3b82f6aa;
    }

    input[type="text"], input[type="number"], select, textarea {
        background-color: #334155 !important;
        color: white !important;
        border: 1px solid #475569 !important;
        border-radius: 6px;
        width: 100%;
        padding: 10px;
    }

    .gr-checkboxgroup label {
        background: #334155;
        color: white;
        border: 1px solid #475569;
        border-radius: 6px;
        padding: 8px 12px;
        transition: background 0.3s;
    }

    .gr-checkboxgroup label:hover {
        background: #475569;
        cursor: pointer;
    }

    .gr-gallery__items > div {
        border-radius: 12px;
        overflow: hidden;
        transition: transform 0.3s ease, box-shadow 0.3s ease;
    }

    .gr-gallery__items > div:hover {
        transform: scale(1.02);
        box-shadow: 0 0 12px #2563eb44;
    }

    .gr-gallery__item-label {
        background: rgba(0, 0, 0, 0.7);
        backdrop-filter: blur(3px);
        border-radius: 0 0 12px 12px;
        padding: 10px;
        font-size: 14px;
        font-weight: bold;
        text-align: center;
    }

    @media (max-width: 768px) {
        .gr-column {
            min-width: 100%;
        }

        .gr-row {
            flex-direction: column;
        }

        .studio-header img {
            width: 90%;
        }

        .gr-button {
            width: 100%;
        }
    }
""") as demo:

    # Header
    gr.HTML('''
    <div class="studio-header">
        <img src="logo.png" width="400" />
        <h3>Where Your Audio Meets Intelligence</h3>
    </div>
    ''')

    gr.Markdown("### Upload, edit, export β€” powered by AI!")

    # --- Single File Studio Tab ---
    with gr.Tab("🎡 Single File Studio"):
        with gr.Row():
            with gr.Column(min_width=300):
                input_audio = gr.Audio(label="Upload Audio", type="filepath")
                effect_checkbox = gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order")
                preset_dropdown = gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0])
                export_format = gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
                isolate_vocals = gr.Checkbox(label="Isolate Vocals After Effects")
                submit_btn = gr.Button("Process Audio")
            with gr.Column(min_width=300):
                output_audio = gr.Audio(label="Processed Audio", type="filepath")
                waveform_img = gr.Image(label="Waveform Preview")
                session_log_out = gr.Textbox(label="Session Log", lines=5)
                genre_out = gr.Textbox(label="Detected Genre", lines=1)
                status_box = gr.Textbox(label="Status", value="βœ… Ready", lines=1)

        submit_btn.click(fn=process_audio, inputs=[
            input_audio, effect_checkbox, isolate_vocals, preset_dropdown, export_format
        ], outputs=[
            output_audio, waveform_img, session_log_out, genre_out, status_box
        ])

    # --- AI Mastering Chain Tab – Now Fully Defined ===
    with gr.Tab("🎧 AI Mastering Chain"):
        gr.Interface(
            fn=ai_mastering_chain,
            inputs=[
                gr.Audio(label="Upload Track", type="filepath"),
                gr.Dropdown(choices=["Pop", "EDM", "Rock", "Hip-Hop", "Acoustic", "Metal", "Trap", "LoFi",
                                 "Jazz", "Classical", "Chillhop", "Ambient", "Jazz Piano", "Trap EDM",
                                 "Indie Rock", "Lo-Fi Jazz", "R&B", "Soul", "Funk"],
                       label="Genre", value="Pop"),
                gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS")
            ],
            outputs=gr.Audio(label="Mastered Output", type="filepath"),
            title="Genre-Based Mastering",
            description="Apply genre-specific EQ + loudness matching + limiter",
            allow_flagging="never"
        )

    # --- Remix Mode – Stem Splitting ===
    with gr.Tab("πŸŽ› Remix Mode"):
        gr.Interface(
            fn=stem_split,
            inputs=gr.Audio(label="Upload Music Track", type="filepath"),
            outputs=[
                gr.File(label="Vocals"),
                gr.File(label="Drums"),
                gr.File(label="Bass"),
                gr.File(label="Other")
            ],
            title="Split Into Drums, Bass, Vocals, and More",
            description="Use AI to separate musical elements like vocals, drums, and bass.",
            flagging_mode="never",
            clear_btn=None
        )

    # --- Harmonic Saturation / Exciter – Now Included ===
    with gr.Tab("🧬 Harmonic Saturation"):
        gr.Interface(
            fn=harmonic_saturation,
            inputs=[
                gr.Audio(label="Upload Track", type="filepath"),
                gr.Dropdown(choices=["Tube", "Tape", "Console", "Mix Bus"], label="Saturation Type", value="Tube"),
                gr.Slider(minimum=0.1, maximum=1.0, value=0.2, label="Intensity")
            ],
            outputs=gr.Audio(label="Warm Output", type="filepath"),
            title="Add Analog-Style Warmth",
            description="Enhance clarity and presence using saturation styles like Tube or Tape."
        )

    # --- Vocal Doubler / Harmonizer – Added ===
    with gr.Tab("🎧 Vocal Doubler / Harmonizer"):
        gr.Interface(
            fn=lambda x: apply_harmony(x),
            inputs=gr.Audio(label="Upload Vocal Clip", type="filepath"),
            outputs=gr.Audio(label="Doubled Output", type="filepath"),
            title="Add Vocal Doubling / Harmony",
            description="Enhance vocals with doubling or harmony"
        )

    # --- Batch Processing – Full Support ===
    with gr.Tab("πŸ”Š Batch Processing"):
        gr.Interface(
            fn=batch_process_audio,
            inputs=[
                gr.File(label="Upload Multiple Files", file_count="multiple"),
                gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order"),
                gr.Checkbox(label="Isolate Vocals After Effects"),
                gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0]),
                gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
            ],
            outputs=[
                gr.File(label="Download ZIP of All Processed Files"),
                gr.Textbox(label="Status", value="βœ… Ready", lines=1)
            ],
            title="Batch Audio Processor",
            description="Upload multiple files, apply effects in bulk, and download all results in a single ZIP.",
            flagging_mode="never",
            submit_btn="Process All Files",
            clear_btn=None
        )

    # --- Vocal Pitch Correction – Auto-Tune Style ===
    with gr.Tab("🧬 Vocal Pitch Correction"):
        gr.Interface(
            fn=auto_tune_vocal,
            inputs=[
                gr.File(label="Source Voice Clip"),
                gr.Textbox(label="Target Key", value="C", lines=1)
            ],
            outputs=gr.Audio(label="Pitch-Corrected Output", type="filepath"),
            title="Auto-Tune Style Pitch Correction",
            description="Correct vocal pitch automatically"
        )

    # --- Frequency Spectrum Tab – Real-time Visualizer ===
    with gr.Tab("πŸ“Š Frequency Spectrum"):
        gr.Interface(
            fn=visualize_spectrum,
            inputs=gr.Audio(label="Upload Track", type="filepath"),
            outputs=gr.Image(label="Spectrum Analysis"),
            title="Real-Time Spectrum Analyzer",
            description="See the frequency breakdown of your audio"
        )

    # --- Loudness Graph Tab – EBU R128 Matching ===
    with gr.Tab("πŸ“ˆ Loudness Graph"):
        gr.Interface(
            fn=match_loudness,
            inputs=[
                gr.Audio(label="Upload Track", type="filepath"),
                gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS")
            ],
            outputs=gr.Audio(label="Normalized Output", type="filepath"),
            title="Match Loudness Across Tracks",
            description="Ensure consistent volume using EBU R128 standard"
        )

    # --- Save/Load Mix Session (.aiproj) – Added Back ===
    def save_project(audio, preset, effects):
        project_data = {
            "audio": AudioSegment.from_file(audio).raw_data,
            "preset": preset,
            "effects": effects
        }
        out_path = os.path.join(tempfile.gettempdir(), "project.aiproj")
        with open(out_path, "wb") as f:
            pickle.dump(project_data, f)
        return out_path

    def load_project(project_file):
        with open(project_file.name, "rb") as f:
            data = pickle.load(f)
        return data["preset"], data["effects"]

    with gr.Tab("πŸ“ Save/Load Project"):
        gr.Interface(
            fn=save_project,
            inputs=[
                gr.File(label="Original Audio"),
                gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0]),
                gr.CheckboxGroup(choices=preset_choices["Default"], label="Applied Effects")
            ],
            outputs=gr.File(label="Project File (.aiproj)"),
            title="Save Everything Together",
            description="Save your session, effects, and settings in one file to reuse later.",
            allow_flagging="never"
        )

        gr.Interface(
            fn=load_project,
            inputs=gr.File(label="Upload .aiproj File"),
            outputs=[
                gr.Dropdown(choices=preset_names, label="Loaded Preset"),
                gr.CheckboxGroup(choices=preset_choices["Default"], label="Loaded Effects")
            ],
            title="Resume Last Project",
            description="Load your saved session"
        )

    # --- Preset Cards Gallery – Visual Selection ===
    with gr.Tab("πŸŽ› Preset Gallery"):
        gr.Markdown("### Select a preset visually")
        preset_gallery = gr.Gallery(value=[
            ("images/pop_card.png",  "Pop"),
            ("images/edm_card.png",  "EDM"),
            ("images/rock_card.png",  "Rock"),
            ("images/hiphop_card.png",  "Hip-Hop"),
            ("images/rnb_card.png",  "R&B"),
            ("images/soul_card.png",  "Soul"),
            ("images/funk_card.png",  "Funk")
        ], label="Preset Cards", columns=4, height="auto")

        preset_name_out = gr.Dropdown(choices=preset_names, label="Selected Preset")
        preset_effects_out = gr.CheckboxGroup(choices=list(preset_choices["Default"]), label="Effects")

        def load_preset_by_card(evt: gr.SelectData):
            index = evt.index % len(preset_names)
            name = preset_names[index]
            return name, preset_choices[name]

        preset_gallery.select(fn=load_preset_by_card, inputs=[], outputs=[preset_name_out, preset_effects_out])

    # --- Prompt-Based Editing Tab – Added Back ===
    def process_prompt(audio, prompt):
        return apply_noise_reduction(audio)

    with gr.Tab("🧠 Prompt-Based Editing"):
        gr.Interface(
            fn=process_prompt,
            inputs=[
                gr.File(label="Upload Audio", type="filepath"),
                gr.Textbox(label="Describe What You Want", lines=5)
            ],
            outputs=gr.Audio(label="Edited Output", type="filepath"),
            title="Type Your Edits – AI Does the Rest",
            description="Say what you want done and let AI handle it.",
            allow_flagging="never"
        )

    # --- Vocal Presets for Singers – Added Back ===
    with gr.Tab("🎀 Vocal Presets for Singers"):
        gr.Interface(
            fn=process_audio,
            inputs=[
                gr.Audio(label="Upload Vocal Track", type="filepath"),
                gr.CheckboxGroup(choices=[
                    "Noise Reduction",
                    "Normalize",
                    "Compress Dynamic Range",
                    "Bass Boost",
                    "Treble Boost",
                    "Reverb",
                    "Auto Gain",
                    "Vocal Distortion",
                    "Harmony",
                    "Stage Mode"
                ]),
                gr.Checkbox(label="Isolate Vocals After Effects"),
                gr.Dropdown(choices=preset_names, label="Select Vocal Preset", value=preset_names[0]),
                gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
            ],
            outputs=[
                gr.Audio(label="Processed Vocal", type="filepath"),
                gr.Image(label="Waveform Preview"),
                gr.Textbox(label="Session Log (JSON)", lines=5),
                gr.Textbox(label="Detected Genre", lines=1),
                gr.Textbox(label="Status", value="βœ… Ready", lines=1)
            ],
            title="Create Studio-Quality Vocal Tracks",
            description="Apply singer-friendly presets and effects to enhance vocals.",
            allow_flagging="never"
        )

demo.launch()