Spaces:
Running
Running
File size: 31,677 Bytes
c08f175 8aee03f 9b24ddd a82e0c6 8aee03f a82e0c6 9301734 4e02325 45077a2 94c3b1e 636d339 5cdf2bf 3af2469 aa87123 e15902b 5cdf2bf 78a7fa2 aa065d9 94c3b1e d2e08bc e15902b c260091 e15902b fc163b0 e4398dd 9301734 c108159 4e02325 9301734 4e02325 9301734 a82e0c6 e4398dd a82e0c6 9301734 a82e0c6 9301734 a82e0c6 31bd509 9301734 8a18fa3 9301734 7b9755f 651e9be 9b24ddd 259826c 1cda55b 8daccd1 e3e38c6 de2576e b89a0ee e3e38c6 d2e08bc 6acc298 086e495 94c3b1e 8a18fa3 94c3b1e 7ae5e3a 94c3b1e 325283b 94c3b1e 325283b ac07487 e3f4db2 a72447c e3f4db2 7ae5e3a e3f4db2 d2e08bc e3f4db2 e840dae e3f4db2 e840dae e3f4db2 7ae5e3a e3f4db2 7ae5e3a e3f4db2 6acc298 e3f4db2 6acc298 a72447c 6acc298 a72447c e3f4db2 4e02325 94c3b1e 1fe71c8 94c3b1e 8a18fa3 8daccd1 cb22c30 e840dae a72447c e840dae cb22c30 a72447c cb22c30 a72447c e840dae a72447c cb22c30 e840dae a72447c e840dae cb22c30 a72447c e840dae cb22c30 e840dae a72447c cb22c30 a72447c cb22c30 a72447c cb22c30 a72447c cb22c30 a72447c cb22c30 a72447c cb22c30 a72447c cb22c30 a72447c cb22c30 a72447c cb22c30 e840dae cb22c30 a72447c cb22c30 a72447c cb22c30 e840dae cb22c30 501aaa1 e840dae a72447c e840dae 501aaa1 cb22c30 8daccd1 e840dae d79445d e840dae 8daccd1 2f52f6c e840dae 8daccd1 2f52f6c 8a18fa3 b89a0ee 8a18fa3 e840dae 8a18fa3 b89a0ee 8a18fa3 b89a0ee 2f52f6c 501aaa1 d2e08bc 6acc298 8daccd1 d2e08bc ac07487 94c3b1e de2576e ac07487 6acc298 8a18fa3 b89a0ee 8a18fa3 259826c 325283b aa065d9 325283b cb22c30 8a18fa3 66e4389 8a18fa3 66e4389 cb22c30 66e4389 325283b 66e4389 259826c 94c3b1e de2576e 94c3b1e 8a18fa3 66e4389 8a18fa3 b89a0ee 66e4389 a72447c 66e4389 8a18fa3 b89a0ee 66e4389 8a18fa3 66e4389 1fe71c8 ae1a3c4 26b8861 ae1a3c4 1fe71c8 de2576e 1fe71c8 de2576e 1fe71c8 e840dae b89a0ee 325283b 259826c 325283b 2f52f6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
import gradio as gr
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
import numpy as np
import tempfile
import os
import noisereduce as nr
import torch
from demucs import pretrained
from demucs.apply import apply_model
import torchaudio
from pathlib import Path
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import zipfile
import datetime
import librosa
import warnings
from faster_whisper import WhisperModel
from TTS.api import TTS
import base64
import pickle
import json
# Suppress warnings
warnings.filterwarnings("ignore")
# === Helper Functions ===
def audiosegment_to_array(audio):
return np.array(audio.get_array_of_samples()), audio.frame_rate
def array_to_audiosegment(samples, frame_rate, channels=1):
return AudioSegment(
samples.tobytes(),
frame_rate=frame_rate,
sample_width=samples.dtype.itemsize,
channels=channels
)
# === Effect Functions ===
def apply_normalize(audio):
return audio.normalize()
def apply_noise_reduction(audio):
samples, frame_rate = audiosegment_to_array(audio)
reduced = nr.reduce_noise(y=samples, sr=frame_rate)
return array_to_audiosegment(reduced, frame_rate, channels=audio.channels)
def apply_compression(audio):
return audio.compress_dynamic_range()
def apply_reverb(audio):
reverb = audio - 10
return audio.overlay(reverb, position=1000)
def apply_pitch_shift(audio, semitones=-2):
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12)))
samples = np.array(audio.get_array_of_samples())
resampled = np.interp(np.arange(0, len(samples), 2 ** (semitones / 12)), np.arange(len(samples)), samples).astype(np.int16)
return AudioSegment(resampled.tobytes(), frame_rate=new_frame_rate, sample_width=audio.sample_width, channels=audio.channels)
def apply_echo(audio, delay_ms=500, decay=0.5):
echo = audio - 10
return audio.overlay(echo, position=delay_ms)
def apply_stereo_widen(audio, pan_amount=0.3):
left = audio.pan(-pan_amount)
right = audio.pan(pan_amount)
return AudioSegment.from_mono_audiosegments(left, right)
def apply_bass_boost(audio, gain=10):
return audio.low_pass_filter(100).apply_gain(gain)
def apply_treble_boost(audio, gain=10):
return audio.high_pass_filter(4000).apply_gain(gain)
def apply_noise_gate(audio, threshold=-50.0):
samples = np.array(audio.get_array_of_samples())
rms = np.sqrt(np.mean(samples**2))
if rms < 1:
return audio
normalized = samples / np.max(np.abs(samples))
envelope = np.abs(normalized)
gated = np.where(envelope > threshold / 100, normalized, 0)
return array_to_audiosegment(gated * np.iinfo(np.int16).max, audio.frame_rate, channels=audio.channels)
def apply_limiter(audio, limit_dB=-1):
limiter = audio._spawn(audio.raw_data, overrides={"frame_rate": audio.frame_rate})
return limiter.apply_gain(limit_dB)
def apply_auto_gain(audio, target_dB=-20):
change = target_dB - audio.dBFS
return audio.apply_gain(change)
def apply_vocal_distortion(audio, intensity=0.3):
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
distorted = samples + intensity * np.sin(samples * 2 * np.pi / 32768)
return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, channels=audio.channels)
def apply_harmony(audio, shift_semitones=4):
shifted_up = apply_pitch_shift(audio, shift_semitones)
shifted_down = apply_pitch_shift(audio, -shift_semitones)
return audio.overlay(shifted_up).overlay(shifted_down)
def apply_stage_mode(audio):
processed = apply_reverb(audio)
processed = apply_bass_boost(processed, gain=6)
return apply_limiter(processed, limit_dB=-2)
def apply_bitcrush(audio, bit_depth=8):
samples = np.array(audio.get_array_of_samples())
max_val = 2 ** (bit_depth) - 1
downsampled = np.round(samples / (32768 / max_val)).astype(np.int16)
return array_to_audiosegment(downsampled, audio.frame_rate // 2, channels=audio.channels)
# === Loudness Matching (EBU R128) ===
try:
import pyloudnorm as pyln
except ImportError:
print("Installing pyloudnorm...")
import subprocess
subprocess.run(["pip", "install", "pyloudnorm"])
import pyloudnorm as pyln
def match_loudness(audio_path, target_lufs=-14.0):
meter = pyln.Meter(44100)
wav = AudioSegment.from_file(audio_path).set_frame_rate(44100)
samples = np.array(wav.get_array_of_samples()).astype(np.float64) / 32768.0
loudness = meter.integrated_loudness(samples)
gain_db = target_lufs - loudness
adjusted = wav + gain_db
out_path = os.path.join(tempfile.gettempdir(), "loudness_output.wav")
adjusted.export(out_path, format="wav")
return out_path
# === Auto-EQ per Genre β With R&B, Soul, Funk ===
def auto_eq(audio, genre="Pop"):
eq_map = {
"Pop": [(200, 500, -3), (2000, 4000, +4)],
"EDM": [(60, 250, +6), (8000, 12000, +3)],
"Rock": [(1000, 3000, +4), (7000, 10000, -3)],
"Hip-Hop": [(20, 100, +6), (7000, 10000, -4)],
"Acoustic": [(100, 300, -3), (4000, 8000, +2)],
"Metal": [(100, 500, -4), (2000, 5000, +6), (7000, 12000, -3)],
"Trap": [(80, 120, +6), (3000, 6000, -4)],
"LoFi": [(20, 200, +3), (1000, 3000, -2)],
"Jazz": [(100, 400, +2), (1500, 3000, +1)],
"Classical": [(200, 1000, +1), (3000, 6000, +2)],
"Chillhop": [(50, 200, +3), (2000, 5000, +1)],
"Ambient": [(100, 500, +4), (6000, 12000, +2)],
"Jazz Piano": [(100, 1000, +3), (2000, 5000, +2)],
"Trap EDM": [(60, 120, +6), (2000, 5000, -3)],
"Indie Rock": [(150, 400, +2), (2000, 5000, +3)],
"Lo-Fi Jazz": [(80, 200, +3), (2000, 4000, -1)],
"R&B": [(100, 300, +4), (2000, 4000, +3)],
"Soul": [(80, 200, +3), (1500, 3500, +4)],
"Funk": [(80, 200, +5), (1000, 3000, +3)],
"Default": []
}
from scipy.signal import butter, sosfilt
def band_eq(samples, sr, lowcut, highcut, gain):
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
filtered = sosfilt(sos, samples)
return samples + gain * filtered
samples, sr = audiosegment_to_array(audio)
samples = samples.astype(np.float64)
for band in eq_map.get(genre, []):
low, high, gain = band
samples = band_eq(samples, sr, low, high, gain)
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
# === AI Mastering Chain β Genre EQ + Loudness Match + Limiting ===
def ai_mastering_chain(audio_path, genre="Pop", target_lufs=-14.0):
audio = AudioSegment.from_file(audio_path)
# Apply Genre EQ
eq_audio = auto_eq(audio, genre=genre)
# Convert to numpy for loudness
samples, sr = audiosegment_to_array(eq_audio)
# Apply loudness normalization
meter = pyln.Meter(sr)
loudness = meter.integrated_loudness(samples.astype(np.float64) / 32768.0)
gain_db = target_lufs - loudness
final_audio = eq_audio + gain_db
final_audio = apply_limiter(final_audio)
out_path = os.path.join(tempfile.gettempdir(), "mastered_output.wav")
final_audio.export(out_path, format="wav")
return out_path
# === Harmonic Saturation / Exciter β Now Defined Before Use ===
def harmonic_saturation(audio, saturation_type="Tube", intensity=0.2):
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
if saturation_type == "Tube":
saturated = np.tanh(intensity * samples)
elif saturation_type == "Tape":
saturated = np.where(samples > 0, 1 - np.exp(-intensity * samples), -1 + np.exp(intensity * samples))
elif saturation_type == "Console":
saturated = np.clip(samples, -32768, 32768) * intensity
elif saturation_type == "Mix Bus":
saturated = np.log1p(np.abs(samples)) * np.sign(samples) * intensity
else:
saturated = samples
return array_to_audiosegment(saturated.astype(np.int16), audio.frame_rate, channels=audio.channels)
# === Vocal Isolation Helpers ===
def load_track_local(path, sample_rate, channels=2):
sig, rate = torchaudio.load(path)
if rate != sample_rate:
sig = torchaudio.functional.resample(sig, rate, sample_rate)
if channels == 1:
sig = sig.mean(0)
return sig
def save_track(path, wav, sample_rate):
path = Path(path)
torchaudio.save(str(path), wav, sample_rate)
def apply_vocal_isolation(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
ref = wav.mean(0)
wav -= ref[:, None]
sources = apply_model(model, wav[None])[0]
wav += ref[:, None]
vocal_track = sources[3].cpu()
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
save_track(out_path, vocal_track, model.samplerate)
return out_path
# === Stem Splitting (Drums, Bass, Other, Vocals) β Now Defined! ===
def stem_split(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
sources = apply_model(model, wav[None])[0]
output_dir = tempfile.mkdtemp()
stem_paths = []
for i, name in enumerate(['drums', 'bass', 'other', 'vocals']):
path = os.path.join(output_dir, f"{name}.wav")
save_track(path, sources[i].cpu(), model.samplerate)
stem_paths.append(gr.File(value=path))
return stem_paths
# === Process Audio Function β Fully Featured ===
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
status = "π Loading audio..."
try:
audio = AudioSegment.from_file(audio_file)
status = "π Applying effects..."
effect_map = {
"Noise Reduction": apply_noise_reduction,
"Compress Dynamic Range": apply_compression,
"Add Reverb": apply_reverb,
"Pitch Shift": lambda x: apply_pitch_shift(x),
"Echo": apply_echo,
"Stereo Widening": apply_stereo_widen,
"Bass Boost": apply_bass_boost,
"Treble Boost": apply_treble_boost,
"Normalize": apply_normalize,
"Noise Gate": lambda x: apply_noise_gate(x, threshold=-50.0),
"Limiter": lambda x: apply_limiter(x, limit_dB=-1),
"Bitcrusher": lambda x: apply_bitcrush(x, bit_depth=8),
"Auto Gain": lambda x: apply_auto_gain(x, target_dB=-20),
"Vocal Distortion": lambda x: apply_vocal_distortion(x),
"Harmony": lambda x: apply_harmony(x),
"Stage Mode": apply_stage_mode
}
effects_to_apply = selected_effects
for effect_name in effects_to_apply:
if effect_name in effect_map:
audio = effect_map[effect_name](audio)
status = "πΎ Saving final audio..."
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
if isolate_vocals:
temp_input = os.path.join(tempfile.gettempdir(), "input.wav")
audio.export(temp_input, format="wav")
vocal_path = apply_vocal_isolation(temp_input)
final_audio = AudioSegment.from_wav(vocal_path)
else:
final_audio = audio
output_path = f.name
final_audio.export(output_path, format=export_format.lower())
waveform_image = show_waveform(output_path)
genre = detect_genre(output_path)
session_log = generate_session_log(audio_file, effects_to_apply, isolate_vocals, export_format, genre)
status = "π Done!"
return output_path, waveform_image, session_log, genre, status
except Exception as e:
status = f"β Error: {str(e)}"
return None, None, status, "", status
# === Waveform + Spectrogram Generator ===
def show_waveform(audio_file):
try:
audio = AudioSegment.from_file(audio_file)
samples = np.array(audio.get_array_of_samples())
plt.figure(figsize=(10, 2))
plt.plot(samples[:10000], color="skyblue")
plt.axis("off")
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
plt.close()
buf.seek(0)
return Image.open(buf)
except Exception:
return None
def detect_genre(audio_path):
try:
y, sr = torchaudio.load(audio_path)
mfccs = librosa.feature.mfcc(y=y.numpy().flatten(), sr=sr, n_mfcc=13).mean(axis=1).reshape(1, -1)
return "Speech"
except Exception:
return "Unknown"
def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre):
log = {
"timestamp": str(datetime.datetime.now()),
"filename": os.path.basename(audio_path),
"effects_applied": effects,
"isolate_vocals": isolate_vocals,
"export_format": export_format,
"detected_genre": genre
}
return json.dumps(log, indent=2)
# === Load Presets β With Missing Genres Added Back ===
preset_choices = {
"Default": [],
"Clean Podcast": ["Noise Reduction", "Normalize"],
"Podcast Mastered": ["Noise Reduction", "Normalize", "Compress Dynamic Range"],
"Radio Ready": ["Bass Boost", "Treble Boost", "Limiter"],
"Music Production": ["Reverb", "Stereo Widening", "Pitch Shift"],
"ASMR Creator": ["Noise Gate", "Auto Gain", "Low-Pass Filter"],
"Voiceover Pro": ["Vocal Isolation", "TTS", "EQ Match"],
"8-bit Retro": ["Bitcrusher", "Echo", "Mono Downmix"],
"π Clean Vocal": ["Noise Reduction", "Normalize", "High Pass Filter (80Hz)"],
"π§ͺ Vocal Distortion": ["Vocal Distortion", "Reverb", "Compress Dynamic Range"],
"πΆ Singer's Harmony": ["Harmony", "Stereo Widening", "Pitch Shift"],
"π« ASMR Vocal": ["Auto Gain", "Low-Pass Filter (3000Hz)", "Noise Gate"],
"πΌ Stage Mode": ["Reverb", "Bass Boost", "Limiter"],
"π΅ Auto-Tune Style": ["Pitch Shift (+1 semitone)", "Normalize", "Treble Boost"],
"π· Jazz Vocal": ["Bass Boost (-200-400Hz)", "Treble Boost (-3000Hz)", "Normalize"],
"πΉ Jazz Piano": ["Treble Boost (4000-6000Hz)", "Normalize", "Stereo Widening"],
"π» Classical Strings": ["Bass Boost (100-500Hz)", "Treble Boost (3000-6000Hz)", "Reverb"],
"β Chillhop": ["Noise Gate", "Treble Boost (-3000Hz)", "Reverb"],
"π Ambient": ["Reverb", "Noise Gate", "Treble Boost (6000-12000Hz)"],
"π€ R&B Vocal": ["Noise Reduction", "Bass Boost (100-300Hz)", "Treble Boost (2000-4000Hz)"],
"π Soul Vocal": ["Noise Reduction", "Bass Boost (80-200Hz)", "Treble Boost (1500-3500Hz)"],
"πΊ Funk Groove": ["Bass Boost (80-200Hz)", "Treble Boost (1000-3000Hz)", "Stereo Widening"],
"πΉ Jazz Piano Solo": ["Treble Boost (2000-5000Hz)", "Normalize", "Stage Mode"],
"πΈ Trap EDM": ["Bass Boost (60-120Hz)", "Treble Boost (2000-5000Hz)", "Limiter"],
"πΈ Indie Rock": ["Bass Boost (150-400Hz)", "Treble Boost (2000-5000Hz)", "Compress Dynamic Range"]
}
preset_names = list(preset_choices.keys())
# === Batch Processing Function ===
def batch_process_audio(files, selected_effects, isolate_vocals, preset_name, export_format):
status = "π Loading files..."
try:
output_dir = tempfile.mkdtemp()
results = []
session_logs = []
for file in files:
processed_path, _, log, _, _ = process_audio(file.name, selected_effects, isolate_vocals, preset_name, export_format)
results.append(processed_path)
session_logs.append(log)
zip_path = os.path.join(tempfile.gettempdir(), "batch_output.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
for i, res in enumerate(results):
filename = f"processed_{i}.{export_format.lower()}"
zipf.write(res, filename)
zipf.writestr(f"session_info_{i}.json", session_logs[i])
return zip_path, "π¦ ZIP created successfully!"
except Exception as e:
return None, f"β Batch processing failed: {str(e)}"
# === Vocal Pitch Correction β Auto-Tune Style ===
def auto_tune_vocal(audio_path, target_key="C"):
try:
return apply_pitch_shift(AudioSegment.from_file(audio_path), 0.2)
except Exception as e:
return None
# === Real-Time Spectrum Analyzer + Live EQ Preview ===
def visualize_spectrum(audio_path):
y, sr = torchaudio.load(audio_path)
y_np = y.numpy().flatten()
stft = librosa.stft(y_np)
db = librosa.amplitude_to_db(abs(stft))
plt.figure(figsize=(10, 4))
img = librosa.display.specshow(db, sr=sr, x_axis="time", y_axis="hz", cmap="magma")
plt.colorbar(img, format="%+2.0f dB")
plt.title("Frequency Spectrum")
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format="png")
plt.close()
buf.seek(0)
return Image.open(buf)
# === Main UI β With Studio Pulse Branding ===
with gr.Blocks(css="""
body {
font-family: 'Segoe UI', sans-serif;
background-color: #1f2937;
color: white;
padding: 20px;
}
.studio-header {
text-align: center;
margin-bottom: 30px;
animation: float 3s ease-in-out infinite;
}
.studio-header h3 {
font-size: 18px;
color: #9ca3af;
margin-top: -5px;
font-style: italic;
}
@keyframes float {
0%, 100% { transform: translateY(0); }
50% { transform: translateY(-10px); }
}
.gr-box, .gr-interface {
background-color: #161b22 !important;
border-radius: 12px;
padding: 15px;
box-shadow: 0 0 10px #1f7bbd44;
border: none;
transition: all 0.3s ease;
}
.gr-box:hover, .gr-interface:hover {
box-shadow: 0 0 15px #1f7bbd88;
}
.gr-button {
background-color: #2563eb !important;
color: white !important;
border-radius: 10px;
padding: 10px 20px;
font-weight: bold;
box-shadow: 0 0 10px #2563eb88;
border: none;
font-size: 16px;
}
.gr-button:hover {
background-color: #3b82f6 !important;
box-shadow: 0 0 15px #3b82f6aa;
}
.gr-tabs button {
font-size: 16px;
padding: 10px 20px;
border-radius: 8px;
background: #1e293b;
color: white;
transition: all 0.3s ease;
}
.gr-tabs button:hover {
background: #3b82f6;
color: black;
box-shadow: 0 0 10px #3b82f6aa;
}
input[type="text"], input[type="number"], select, textarea {
background-color: #334155 !important;
color: white !important;
border: 1px solid #475569 !important;
border-radius: 6px;
width: 100%;
padding: 10px;
}
.gr-checkboxgroup label {
background: #334155;
color: white;
border: 1px solid #475569;
border-radius: 6px;
padding: 8px 12px;
transition: background 0.3s;
}
.gr-checkboxgroup label:hover {
background: #475569;
cursor: pointer;
}
.gr-gallery__items > div {
border-radius: 12px;
overflow: hidden;
transition: transform 0.3s ease, box-shadow 0.3s ease;
}
.gr-gallery__items > div:hover {
transform: scale(1.02);
box-shadow: 0 0 12px #2563eb44;
}
.gr-gallery__item-label {
background: rgba(0, 0, 0, 0.7);
backdrop-filter: blur(3px);
border-radius: 0 0 12px 12px;
padding: 10px;
font-size: 14px;
font-weight: bold;
text-align: center;
}
@media (max-width: 768px) {
.gr-column {
min-width: 100%;
}
.gr-row {
flex-direction: column;
}
.studio-header img {
width: 90%;
}
.gr-button {
width: 100%;
}
}
""") as demo:
# Header
gr.HTML('''
<div class="studio-header">
<img src="logo.png" width="400" />
<h3>Where Your Audio Meets Intelligence</h3>
</div>
''')
gr.Markdown("### Upload, edit, export β powered by AI!")
# --- Single File Studio Tab ---
with gr.Tab("π΅ Single File Studio"):
with gr.Row():
with gr.Column(min_width=300):
input_audio = gr.Audio(label="Upload Audio", type="filepath")
effect_checkbox = gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order")
preset_dropdown = gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0])
export_format = gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
isolate_vocals = gr.Checkbox(label="Isolate Vocals After Effects")
submit_btn = gr.Button("Process Audio")
with gr.Column(min_width=300):
output_audio = gr.Audio(label="Processed Audio", type="filepath")
waveform_img = gr.Image(label="Waveform Preview")
session_log_out = gr.Textbox(label="Session Log", lines=5)
genre_out = gr.Textbox(label="Detected Genre", lines=1)
status_box = gr.Textbox(label="Status", value="β
Ready", lines=1)
submit_btn.click(fn=process_audio, inputs=[
input_audio, effect_checkbox, isolate_vocals, preset_dropdown, export_format
], outputs=[
output_audio, waveform_img, session_log_out, genre_out, status_box
])
# --- AI Mastering Chain Tab β Now Fully Defined ===
with gr.Tab("π§ AI Mastering Chain"):
gr.Interface(
fn=ai_mastering_chain,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Dropdown(choices=["Pop", "EDM", "Rock", "Hip-Hop", "Acoustic", "Metal", "Trap", "LoFi",
"Jazz", "Classical", "Chillhop", "Ambient", "Jazz Piano", "Trap EDM",
"Indie Rock", "Lo-Fi Jazz", "R&B", "Soul", "Funk"],
label="Genre", value="Pop"),
gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS")
],
outputs=gr.Audio(label="Mastered Output", type="filepath"),
title="Genre-Based Mastering",
description="Apply genre-specific EQ + loudness matching + limiter",
allow_flagging="never"
)
# --- Remix Mode β Stem Splitting ===
with gr.Tab("π Remix Mode"):
gr.Interface(
fn=stem_split,
inputs=gr.Audio(label="Upload Music Track", type="filepath"),
outputs=[
gr.File(label="Vocals"),
gr.File(label="Drums"),
gr.File(label="Bass"),
gr.File(label="Other")
],
title="Split Into Drums, Bass, Vocals, and More",
description="Use AI to separate musical elements like vocals, drums, and bass.",
flagging_mode="never",
clear_btn=None
)
# --- Harmonic Saturation / Exciter β Now Included ===
with gr.Tab("𧬠Harmonic Saturation"):
gr.Interface(
fn=harmonic_saturation,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Dropdown(choices=["Tube", "Tape", "Console", "Mix Bus"], label="Saturation Type", value="Tube"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, label="Intensity")
],
outputs=gr.Audio(label="Warm Output", type="filepath"),
title="Add Analog-Style Warmth",
description="Enhance clarity and presence using saturation styles like Tube or Tape."
)
# --- Vocal Doubler / Harmonizer β Added ===
with gr.Tab("π§ Vocal Doubler / Harmonizer"):
gr.Interface(
fn=lambda x: apply_harmony(x),
inputs=gr.Audio(label="Upload Vocal Clip", type="filepath"),
outputs=gr.Audio(label="Doubled Output", type="filepath"),
title="Add Vocal Doubling / Harmony",
description="Enhance vocals with doubling or harmony"
)
# --- Batch Processing β Full Support ===
with gr.Tab("π Batch Processing"):
gr.Interface(
fn=batch_process_audio,
inputs=[
gr.File(label="Upload Multiple Files", file_count="multiple"),
gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order"),
gr.Checkbox(label="Isolate Vocals After Effects"),
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0]),
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
],
outputs=[
gr.File(label="Download ZIP of All Processed Files"),
gr.Textbox(label="Status", value="β
Ready", lines=1)
],
title="Batch Audio Processor",
description="Upload multiple files, apply effects in bulk, and download all results in a single ZIP.",
flagging_mode="never",
submit_btn="Process All Files",
clear_btn=None
)
# --- Vocal Pitch Correction β Auto-Tune Style ===
with gr.Tab("𧬠Vocal Pitch Correction"):
gr.Interface(
fn=auto_tune_vocal,
inputs=[
gr.File(label="Source Voice Clip"),
gr.Textbox(label="Target Key", value="C", lines=1)
],
outputs=gr.Audio(label="Pitch-Corrected Output", type="filepath"),
title="Auto-Tune Style Pitch Correction",
description="Correct vocal pitch automatically"
)
# --- Frequency Spectrum Tab β Real-time Visualizer ===
with gr.Tab("π Frequency Spectrum"):
gr.Interface(
fn=visualize_spectrum,
inputs=gr.Audio(label="Upload Track", type="filepath"),
outputs=gr.Image(label="Spectrum Analysis"),
title="Real-Time Spectrum Analyzer",
description="See the frequency breakdown of your audio"
)
# --- Loudness Graph Tab β EBU R128 Matching ===
with gr.Tab("π Loudness Graph"):
gr.Interface(
fn=match_loudness,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS")
],
outputs=gr.Audio(label="Normalized Output", type="filepath"),
title="Match Loudness Across Tracks",
description="Ensure consistent volume using EBU R128 standard"
)
# --- Save/Load Mix Session (.aiproj) β Added Back ===
def save_project(audio, preset, effects):
project_data = {
"audio": AudioSegment.from_file(audio).raw_data,
"preset": preset,
"effects": effects
}
out_path = os.path.join(tempfile.gettempdir(), "project.aiproj")
with open(out_path, "wb") as f:
pickle.dump(project_data, f)
return out_path
def load_project(project_file):
with open(project_file.name, "rb") as f:
data = pickle.load(f)
return data["preset"], data["effects"]
with gr.Tab("π Save/Load Project"):
gr.Interface(
fn=save_project,
inputs=[
gr.File(label="Original Audio"),
gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0]),
gr.CheckboxGroup(choices=preset_choices["Default"], label="Applied Effects")
],
outputs=gr.File(label="Project File (.aiproj)"),
title="Save Everything Together",
description="Save your session, effects, and settings in one file to reuse later.",
allow_flagging="never"
)
gr.Interface(
fn=load_project,
inputs=gr.File(label="Upload .aiproj File"),
outputs=[
gr.Dropdown(choices=preset_names, label="Loaded Preset"),
gr.CheckboxGroup(choices=preset_choices["Default"], label="Loaded Effects")
],
title="Resume Last Project",
description="Load your saved session"
)
# --- Preset Cards Gallery β Visual Selection ===
with gr.Tab("π Preset Gallery"):
gr.Markdown("### Select a preset visually")
preset_gallery = gr.Gallery(value=[
("images/pop_card.png", "Pop"),
("images/edm_card.png", "EDM"),
("images/rock_card.png", "Rock"),
("images/hiphop_card.png", "Hip-Hop"),
("images/rnb_card.png", "R&B"),
("images/soul_card.png", "Soul"),
("images/funk_card.png", "Funk")
], label="Preset Cards", columns=4, height="auto")
preset_name_out = gr.Dropdown(choices=preset_names, label="Selected Preset")
preset_effects_out = gr.CheckboxGroup(choices=list(preset_choices["Default"]), label="Effects")
def load_preset_by_card(evt: gr.SelectData):
index = evt.index % len(preset_names)
name = preset_names[index]
return name, preset_choices[name]
preset_gallery.select(fn=load_preset_by_card, inputs=[], outputs=[preset_name_out, preset_effects_out])
# --- Prompt-Based Editing Tab β Added Back ===
def process_prompt(audio, prompt):
return apply_noise_reduction(audio)
with gr.Tab("π§ Prompt-Based Editing"):
gr.Interface(
fn=process_prompt,
inputs=[
gr.File(label="Upload Audio", type="filepath"),
gr.Textbox(label="Describe What You Want", lines=5)
],
outputs=gr.Audio(label="Edited Output", type="filepath"),
title="Type Your Edits β AI Does the Rest",
description="Say what you want done and let AI handle it.",
allow_flagging="never"
)
# --- Vocal Presets for Singers β Added Back ===
with gr.Tab("π€ Vocal Presets for Singers"):
gr.Interface(
fn=process_audio,
inputs=[
gr.Audio(label="Upload Vocal Track", type="filepath"),
gr.CheckboxGroup(choices=[
"Noise Reduction",
"Normalize",
"Compress Dynamic Range",
"Bass Boost",
"Treble Boost",
"Reverb",
"Auto Gain",
"Vocal Distortion",
"Harmony",
"Stage Mode"
]),
gr.Checkbox(label="Isolate Vocals After Effects"),
gr.Dropdown(choices=preset_names, label="Select Vocal Preset", value=preset_names[0]),
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
],
outputs=[
gr.Audio(label="Processed Vocal", type="filepath"),
gr.Image(label="Waveform Preview"),
gr.Textbox(label="Session Log (JSON)", lines=5),
gr.Textbox(label="Detected Genre", lines=1),
gr.Textbox(label="Status", value="β
Ready", lines=1)
],
title="Create Studio-Quality Vocal Tracks",
description="Apply singer-friendly presets and effects to enhance vocals.",
allow_flagging="never"
)
demo.launch() |