Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,7 +9,9 @@ import subprocess
|
|
| 9 |
import torch
|
| 10 |
from demucs import pretrained
|
| 11 |
from demucs.apply import apply_model
|
| 12 |
-
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Helper functions
|
| 15 |
def audiosegment_to_array(audio):
|
|
@@ -72,14 +74,42 @@ def apply_treble_boost(audio, gain=10):
|
|
| 72 |
# Vocal Isolation using Demucs
|
| 73 |
def apply_vocal_isolation(audio_path):
|
| 74 |
model = pretrained.get_model(name='htdemucs')
|
| 75 |
-
wav =
|
| 76 |
ref = wav.mean(0)
|
| 77 |
wav -= ref[:, None]
|
| 78 |
sources = apply_model(model, wav[None])[0]
|
| 79 |
wav += ref[:, None]
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
| 81 |
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
return out_path
|
| 84 |
|
| 85 |
# Apply selected effects in order
|
|
|
|
| 9 |
import torch
|
| 10 |
from demucs import pretrained
|
| 11 |
from demucs.apply import apply_model
|
| 12 |
+
import torchaudio
|
| 13 |
+
import torch
|
| 14 |
+
from pathlib import Path
|
| 15 |
|
| 16 |
# Helper functions
|
| 17 |
def audiosegment_to_array(audio):
|
|
|
|
| 74 |
# Vocal Isolation using Demucs
|
| 75 |
def apply_vocal_isolation(audio_path):
|
| 76 |
model = pretrained.get_model(name='htdemucs')
|
| 77 |
+
wav = load_track_local(audio_path, model.samplerate, channels=2) # stereo
|
| 78 |
ref = wav.mean(0)
|
| 79 |
wav -= ref[:, None]
|
| 80 |
sources = apply_model(model, wav[None])[0]
|
| 81 |
wav += ref[:, None]
|
| 82 |
+
|
| 83 |
+
# Get vocals (index 3)
|
| 84 |
+
vocal_track = sources[3].cpu()
|
| 85 |
+
|
| 86 |
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
|
| 87 |
+
save_track(out_path, vocal_track, model.samplerate)
|
| 88 |
+
return out_path
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
# Local copy of helper functions from demucs
|
| 92 |
+
def load_track(track, sample_rate, mono=True):
|
| 93 |
+
wav, sr = torchaudio.load(str(track))
|
| 94 |
+
if sr != sample_rate:
|
| 95 |
+
wav = torchaudio.functional.resample(wav, sr, sample_rate)
|
| 96 |
+
if mono and wav.shape[0] == 2:
|
| 97 |
+
wav = wav.mean(0)
|
| 98 |
+
return wav
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def load_track_local(path, sample_rate, channels=2):
|
| 102 |
+
sig, rate = torchaudio.load(path)
|
| 103 |
+
if rate != sample_rate:
|
| 104 |
+
sig = torchaudio.functional.resample(sig, rate, sample_rate)
|
| 105 |
+
if channels == 1:
|
| 106 |
+
sig = sig.mean(0)
|
| 107 |
+
return sig
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def save_track(path, wav, sample_rate):
|
| 111 |
+
path = Path(path)
|
| 112 |
+
torchaudio.save(str(path), wav, sample_rate)
|
| 113 |
return out_path
|
| 114 |
|
| 115 |
# Apply selected effects in order
|