File size: 9,177 Bytes
d9349e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40e964d
3392353
 
 
78564ad
b1d0b82
40e964d
504a900
d9349e6
 
504a900
 
694966a
d9349e6
40e964d
d9349e6
 
 
 
 
 
 
 
 
 
 
 
3392353
d9349e6
3392353
d9349e6
 
 
 
3392353
e56bca3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import gradio as gr
from pydub import AudioSegment
import numpy as np
import tempfile
import os
import noisereduce as nr
import torch
from demucs import pretrained
from demucs.apply import apply_model
import torchaudio
from pathlib import Path
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import zipfile
import datetime
import librosa
import warnings
import json
import pickle
import soundfile as sf

warnings.filterwarnings("ignore")

### Helper Functions ###

def audiosegment_to_array(audio):
    return np.array(audio.get_array_of_samples()), audio.frame_rate

def array_to_audiosegment(samples, frame_rate, channels=1):
    return AudioSegment(
        samples.tobytes(),
        frame_rate=int(frame_rate),
        sample_width=samples.dtype.itemsize,
        channels=channels
    )

def save_audiosegment_to_temp(audio: AudioSegment, suffix=".wav"):
    with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as f:
        audio.export(f.name, format=suffix.lstrip('.'))
        return f.name

def load_audiofile_to_numpy(path):
    samples, sr = sf.read(path, dtype="int16")
    if samples.ndim > 1 and samples.shape[1] > 2:
        samples = samples[:, :2]
    return samples, sr

def show_waveform(audio_file):
    try:
        audio = AudioSegment.from_file(audio_file)
        samples = np.array(audio.get_array_of_samples())
        plt.figure(figsize=(10,2))
        plt.plot(samples[:10000], color="skyblue")
        plt.axis('off')
        buf = BytesIO()
        plt.savefig(buf, format='png', bbox_inches='tight')
        plt.close()
        buf.seek(0)
        return Image.open(buf)
    except Exception:
        return None

### Effects ###

def apply_normalize(audio): return audio.normalize()

def apply_noise_reduction(audio):
    samples, sr = audiosegment_to_array(audio)
    reduced = nr.reduce_noise(y=samples, sr=sr)
    return array_to_audiosegment(reduced, sr, audio.channels)

def apply_compression(audio): return audio.compress_dynamic_range()

def apply_reverb(audio):
    reverb = audio - 10
    return audio.overlay(reverb, position=1000)

def apply_pitch_shift(audio, semitones=-2):
    new_fr = int(audio.frame_rate * (2 ** (semitones / 12)))
    return audio._spawn(audio.raw_data, overrides={"frame_rate": new_fr}).set_frame_rate(audio.frame_rate)

def apply_echo(audio, delay_ms=500, decay=0.5):
    echo = audio - 10
    return audio.overlay(echo, position=delay_ms)

def apply_stereo_widen(audio, pan_amount=0.3):
    left = audio.pan(-pan_amount)
    right = audio.pan(pan_amount)
    return AudioSegment.from_mono_audiosegments(left, right)

def apply_bass_boost(audio, gain=10): return audio.low_pass_filter(100).apply_gain(gain)

def apply_treble_boost(audio, gain=10): return audio.high_pass_filter(4000).apply_gain(gain)

def apply_limiter(audio, limit_dB=-1):
    limiter = audio._spawn(audio.raw_data, overrides={"frame_rate": audio.frame_rate})
    return limiter.apply_gain(limit_dB)

def apply_auto_gain(audio, target_dB=-20):
    change = target_dB - audio.dBFS
    return audio.apply_gain(change)

def apply_vocal_distortion(audio, intensity=0.3):
    samples = np.array(audio.get_array_of_samples()).astype(np.float32)
    distorted = samples + intensity * np.sin(samples * 2 * np.pi / 32768)
    return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, audio.channels)

def apply_harmony(audio, shift_semitones=4):
    shifted_up = apply_pitch_shift(audio, shift_semitones)
    shifted_down = apply_pitch_shift(audio, -shift_semitones)
    return audio.overlay(shifted_up).overlay(shifted_down)

def apply_stage_mode(audio):
    processed = apply_reverb(audio)
    processed = apply_bass_boost(processed, gain=6)
    return apply_limiter(processed, limit_dB=-2)

def apply_bitcrush(audio, bit_depth=8):
    samples = np.array(audio.get_array_of_samples())
    max_value = 2 ** bit_depth - 1
    downsampled = np.round(samples / (32768 / max_value)).astype(np.int16)
    return array_to_audiosegment(downsampled, audio.frame_rate // 2, audio.channels)

### Presets ###

preset_choices = {
    "Default": [],
    "Clean Podcast": ["Noise Reduction", "Normalize"],
    "Podcast Mastered": ["Noise Reduction", "Normalize", "Compress Dynamic Range"],
    "Radio Ready": ["Bass Boost", "Treble Boost", "Limiter"],
    "Music Production": ["Reverb", "Stereo Widening", "Pitch Shift"],
    "ASMR Creator": ["Noise Gate", "Auto Gain", "Low-Pass Filter"],
    "Voiceover Pro": ["Vocal Isolation", "TTS", "EQ Match"],
    "8-bit Retro": ["Bitcrusher", "Echo", "Mono Downmix"],
    "πŸŽ™ Clean Vocal": ["Noise Reduction", "Normalize", "High Pass Filter (80Hz)"],
    "πŸ§ͺ Vocal Distortion": ["Vocal Distortion", "Reverb", "Compress Dynamic Range"],
    "🎢 Singer's Harmony": ["Harmony", "Stereo Widening", "Pitch Shift"],
    "🌫 ASMR Vocal": ["Auto Gain", "Low-Pass Filter (3000Hz)", "Noise Gate"],
    "🎼 Stage Mode": ["Reverb", "Bass Boost", "Limiter"],
}

preset_names = list(preset_choices.keys())

### Main processing ###

def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
    try:
        audio = AudioSegment.from_file(audio_file)
        effect_map = {
            "Noise Reduction": apply_noise_reduction,
            "Compress Dynamic Range": apply_compression,
            "Add Reverb": apply_reverb,
            "Pitch Shift": apply_pitch_shift,
            "Echo": apply_echo,
            "Stereo Widening": apply_stereo_widen,
            "Bass Boost": apply_bass_boost,
            "Treble Boost": apply_treble_boost,
            "Normalize": apply_normalize,
            "Limiter": lambda x: apply_limiter(x, limit_dB=-1),
            "Auto Gain": lambda x: apply_auto_gain(x, target_dB=-20),
            "Vocal Distortion": apply_vocal_distortion,
            "Stage Mode": apply_stage_mode,
            "Harmony": apply_harmony,
            "Bitcrusher": apply_bitcrush,
        }
        for effect in selected_effects:
            if effect in effect_map:
                audio = effect_map[effect](audio)
        if isolate_vocals:
            temp_path = save_audiosegment_to_temp(audio, suffix=".wav")
            vocal_path = apply_vocal_isolation(temp_path)
            audio = AudioSegment.from_file(vocal_path)
        output_path = save_audiosegment_to_temp(audio, suffix='.' + export_format.lower())
        samples, sr = load_audiofile_to_numpy(output_path)
        waveform = show_waveform(output_path)
        session_log = json.dumps({
            "timestamp": str(datetime.datetime.now()),
            "filename": os.path.basename(audio_file),
            "effects_applied": selected_effects,
            "isolate_vocals": isolate_vocals,
            "export_format": export_format,
            "detected_genre": "Unknown"
        }, indent=2)
        return (samples, sr), waveform, session_log, "Unknown", "πŸŽ‰ Done!"
    except Exception as e:
        return None, None, f"Error: {e}", "", f"Error: {e}"

### Other necessary functions (batch, AI remaster...) would follow similar patterns.

# ===================================================
# Now, the Gradio UI:
# Paste this after all function definitions above
# ===================================================

with gr.Blocks() as demo:
    gr.HTML('<h3 style="text-align:center;">Where Your Audio Meets Intelligence</h3>')
    gr.Markdown('### Upload, edit, export β€” powered by AI!')

    with gr.Tab("🎡 Single File Studio"):
        with gr.Row():
            with gr.Column():
                input_audio = gr.Audio(label="Upload Audio", type="filepath")
                effect_checkbox = gr.CheckboxGroup(choices=list({e for effects in preset_choices.values() for e in effects}), label="Apply Effects in Order")
                preset_dropdown = gr.Dropdown(choices=preset_names, label="Select Preset")
                export_format = gr.Dropdown(choices=["WAV", "MP3"], label="Export Format", value="WAV")
                isolate_vocals = gr.Checkbox(label="Isolate Vocals After Effects")
                process_btn = gr.Button("Process Audio")

            with gr.Column():
                processed_audio = gr.Audio(label="Processed Audio", type="numpy")
                waveform_image = gr.Image(label="Waveform Preview")
                session_log = gr.Textbox(label="Session Log", lines=6)
                detected_genre = gr.Textbox(label="Detected Genre")
                status = gr.Textbox(label="Status", lines=1, value="Ready")

        def update_effects(preset):
            return preset_choices.get(preset, [])

        preset_dropdown.change(update_effects, inputs=preset_dropdown, outputs=effect_checkbox)

        def run_processing(audio, effects, isolate, preset, fmt):
            effs = preset_choices.get(preset, []) if preset in preset_choices else effects
            return process_audio(audio, effs, isolate, preset, fmt)

        process_btn.click(run_processing, 
            inputs=[input_audio, effect_checkbox, isolate_vocals, preset_dropdown, export_format],
            outputs=[processed_audio, waveform_image, session_log, detected_genre, status]
        )

demo.launch()