Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,6 @@ import zipfile
|
|
17 |
import datetime
|
18 |
import librosa
|
19 |
import warnings
|
20 |
-
from faster_whisper import WhisperModel
|
21 |
from TTS.api import TTS
|
22 |
import base64
|
23 |
import pickle
|
@@ -27,21 +26,54 @@ import soundfile as sf
|
|
27 |
print("Gradio version:", gr.__version__)
|
28 |
warnings.filterwarnings("ignore")
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
# === Effect Functions ===
|
38 |
def apply_normalize(audio):
|
39 |
return audio.normalize()
|
40 |
|
41 |
def apply_noise_reduction(audio):
|
42 |
-
samples,
|
43 |
-
reduced = nr.reduce_noise(y=samples, sr=
|
44 |
-
return array_to_audiosegment(reduced,
|
45 |
|
46 |
def apply_compression(audio):
|
47 |
return audio.compress_dynamic_range()
|
@@ -52,9 +84,8 @@ def apply_reverb(audio):
|
|
52 |
|
53 |
def apply_pitch_shift(audio, semitones=-2):
|
54 |
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12)))
|
55 |
-
|
56 |
-
|
57 |
-
return AudioSegment(resampled.tobytes(), frame_rate=new_frame_rate, sample_width=audio.sample_width, channels=audio.channels)
|
58 |
|
59 |
def apply_echo(audio, delay_ms=500, decay=0.5):
|
60 |
echo = audio - 10
|
@@ -96,36 +127,15 @@ def apply_stage_mode(audio):
|
|
96 |
|
97 |
def apply_bitcrush(audio, bit_depth=8):
|
98 |
samples = np.array(audio.get_array_of_samples())
|
99 |
-
max_val = 2 **
|
100 |
downsampled = np.round(samples / (32768 / max_val)).astype(np.int16)
|
101 |
return array_to_audiosegment(downsampled, audio.frame_rate // 2, channels=audio.channels)
|
102 |
|
103 |
-
# ===
|
104 |
-
def audiosegment_to_array(audio):
|
105 |
-
return np.array(audio.get_array_of_samples()), audio.frame_rate
|
106 |
-
|
107 |
-
def array_to_audiosegment(samples, frame_rate, channels=1):
|
108 |
-
return AudioSegment(
|
109 |
-
samples.tobytes(),
|
110 |
-
frame_rate=int(frame_rate),
|
111 |
-
sample_width=samples.dtype.itemsize,
|
112 |
-
channels=channels
|
113 |
-
)
|
114 |
-
|
115 |
-
def load_audiofile_to_numpy(path):
|
116 |
-
audio = AudioSegment.from_file(path)
|
117 |
-
return np.array(audio.get_array_of_samples()), audio.frame_rate
|
118 |
-
|
119 |
-
def save_audiosegment_to_temp(audio, suffix=".wav"):
|
120 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as f:
|
121 |
-
audio.export(f.name, format=suffix[1:])
|
122 |
-
return f.name
|
123 |
|
124 |
-
# === Loudness Matching (EBU R128) ===
|
125 |
try:
|
126 |
import pyloudnorm as pyln
|
127 |
except ImportError:
|
128 |
-
print("Installing pyloudnorm...")
|
129 |
import subprocess
|
130 |
subprocess.run(["pip", "install", "pyloudnorm"])
|
131 |
import pyloudnorm as pyln
|
@@ -140,7 +150,6 @@ def match_loudness(audio_path, target_lufs=-14.0):
|
|
140 |
out_path = save_audiosegment_to_temp(adjusted, ".wav")
|
141 |
return out_path
|
142 |
|
143 |
-
# Define eq_map directly
|
144 |
eq_map = {
|
145 |
"Pop": [(200, 500, -3), (2000, 4000, +4)],
|
146 |
"EDM": [(60, 250, +6), (8000, 12000, +3)],
|
@@ -165,20 +174,19 @@ eq_map = {
|
|
165 |
|
166 |
def auto_eq(audio, genre="Pop"):
|
167 |
from scipy.signal import butter, sosfilt
|
168 |
-
|
|
|
169 |
def band_eq(samples, sr, lowcut, highcut, gain):
|
170 |
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
|
171 |
filtered = sosfilt(sos, samples)
|
172 |
return samples + gain * filtered
|
173 |
|
174 |
-
|
175 |
-
samples = samples.astype(np.float64)
|
176 |
-
for band in eq_map.get(genre, []):
|
177 |
-
low, high, gain = band
|
178 |
samples = band_eq(samples, sr, low, high, gain)
|
179 |
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
|
180 |
|
181 |
# === Vocal Isolation Helpers ===
|
|
|
182 |
def load_track_local(path, sample_rate, channels=2):
|
183 |
sig, rate = torchaudio.load(path)
|
184 |
if rate != sample_rate:
|
@@ -203,196 +211,127 @@ def apply_vocal_isolation(audio_path):
|
|
203 |
save_track(out_path, vocal_track, model.samplerate)
|
204 |
return out_path
|
205 |
|
206 |
-
# === Stem Splitting
|
|
|
207 |
def stem_split(audio_path):
|
208 |
model = pretrained.get_model(name='htdemucs')
|
209 |
wav = load_track_local(audio_path, model.samplerate, channels=2)
|
210 |
sources = apply_model(model, wav[None])[0]
|
211 |
output_dir = tempfile.mkdtemp()
|
212 |
-
|
213 |
-
gr.File(value=os.path.join(output_dir, f"{name}.wav"))
|
214 |
-
for name in ['drums', 'bass', 'other', 'vocals']
|
215 |
-
]
|
216 |
for i, name in enumerate(['drums', 'bass', 'other', 'vocals']):
|
217 |
path = os.path.join(output_dir, f"{name}.wav")
|
218 |
save_track(path, sources[i].cpu(), model.samplerate)
|
219 |
-
|
|
|
|
|
|
|
220 |
|
221 |
-
# === Process Audio Function – Fully Featured ===
|
222 |
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
|
223 |
-
status = "🔊 Loading audio..."
|
224 |
try:
|
225 |
audio = AudioSegment.from_file(audio_file)
|
226 |
-
|
227 |
-
effect_map_real = {
|
228 |
"Noise Reduction": apply_noise_reduction,
|
229 |
"Compress Dynamic Range": apply_compression,
|
230 |
"Add Reverb": apply_reverb,
|
231 |
-
"Pitch Shift":
|
232 |
"Echo": apply_echo,
|
233 |
"Stereo Widening": apply_stereo_widen,
|
234 |
"Bass Boost": apply_bass_boost,
|
235 |
"Treble Boost": apply_treble_boost,
|
236 |
"Normalize": apply_normalize,
|
237 |
-
"Limiter": lambda
|
238 |
-
"Auto Gain": lambda
|
239 |
-
"Vocal Distortion":
|
240 |
-
"Stage Mode": apply_stage_mode
|
|
|
|
|
241 |
}
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
|
|
263 |
except Exception as e:
|
264 |
-
|
265 |
-
return None, None, status, "", status, []
|
266 |
|
267 |
-
#
|
268 |
-
def show_waveform(audio_file):
|
269 |
-
try:
|
270 |
-
audio = AudioSegment.from_file(audio_file)
|
271 |
-
samples = np.array(audio.get_array_of_samples())
|
272 |
-
plt.figure(figsize=(10, 2))
|
273 |
-
plt.plot(samples[:10000], color="skyblue")
|
274 |
-
plt.axis("off")
|
275 |
-
buf = BytesIO()
|
276 |
-
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
|
277 |
-
plt.close()
|
278 |
-
buf.seek(0)
|
279 |
-
return Image.open(buf)
|
280 |
-
except Exception:
|
281 |
-
return None
|
282 |
-
|
283 |
-
# Genre detection stub
|
284 |
-
def detect_genre(audio_path):
|
285 |
-
try:
|
286 |
-
y, sr = torchaudio.load(audio_path)
|
287 |
-
return "Speech"
|
288 |
-
except Exception:
|
289 |
-
return "Unknown"
|
290 |
-
|
291 |
-
# Session log generator
|
292 |
-
def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre):
|
293 |
-
return json.dumps({
|
294 |
-
"timestamp": str(datetime.datetime.now()),
|
295 |
-
"filename": os.path.basename(audio_path),
|
296 |
-
"effects_applied": effects,
|
297 |
-
"isolate_vocals": isolate_vocals,
|
298 |
-
"export_format": export_format,
|
299 |
-
"detected_genre": genre
|
300 |
-
}, indent=2)
|
301 |
-
|
302 |
-
# Preset Choices
|
303 |
-
preset_choices = {
|
304 |
-
"Default": [],
|
305 |
-
"Clean Podcast": ["Noise Reduction", "Normalize"],
|
306 |
-
"Podcast Mastered": ["Noise Reduction", "Normalize", "Compress Dynamic Range"],
|
307 |
-
"Radio Ready": ["Bass Boost", "Treble Boost", "Limiter"],
|
308 |
-
"Music Production": ["Reverb", "Stereo Widening", "Pitch Shift"],
|
309 |
-
"ASMR Creator": ["Noise Gate", "Auto Gain", "Low-Pass Filter"],
|
310 |
-
"Voiceover Pro": ["Vocal Isolation", "TTS", "EQ Match"],
|
311 |
-
"8-bit Retro": ["Bitcrusher", "Echo", "Mono Downmix"],
|
312 |
-
"🎙 Clean Vocal": ["Noise Reduction", "Normalize", "High Pass Filter (80Hz)"],
|
313 |
-
"🧪 Vocal Distortion": ["Vocal Distortion", "Reverb", "Compress Dynamic Range"],
|
314 |
-
"🎶 Singer's Harmony": ["Harmony", "Stereo Widening", "Pitch Shift"],
|
315 |
-
"🌫 ASMR Vocal": ["Auto Gain", "Low-Pass Filter (3000Hz)", "Noise Gate"],
|
316 |
-
"🎼 Stage Mode": ["Reverb", "Bass Boost", "Limiter"],
|
317 |
-
"🎵 Auto-Tune Style": ["Pitch Shift (+1 semitone)", "Normalize", "Treble Boost"],
|
318 |
-
"🎤 R&B Vocal": ["Noise Reduction", "Bass Boost (100-300Hz)", "Treble Boost (2000-4000Hz)"],
|
319 |
-
"💃 Soul Vocal": ["Noise Reduction", "Bass Boost (80-200Hz)", "Treble Boost (1500-3500Hz)"],
|
320 |
-
"🕺 Funk Groove": ["Bass Boost (80-200Hz)", "Treble Boost (1000-3000Hz)"],
|
321 |
-
"Studio Master": ["Noise Reduction", "Normalize", "Bass Boost", "Treble Boost", "Limiter"],
|
322 |
-
"Podcast Voice": ["Noise Reduction", "Auto Gain", "High Pass Filter (85Hz)"],
|
323 |
-
"Lo-Fi Chill": ["Noise Gate", "Low-Pass Filter (3000Hz)", "Mono Downmix", "Bitcrusher"],
|
324 |
-
"Vocal Clarity": ["Noise Reduction", "EQ Match", "Reverb", "Auto Gain"],
|
325 |
-
"Retro Game Sound": ["Bitcrusher", "Echo", "Mono Downmix"],
|
326 |
-
"Live Stream Optimized": ["Noise Reduction", "Auto Gain", "Saturation", "Normalize"],
|
327 |
-
"Deep Bass Trap": ["Bass Boost (60-120Hz)", "Low-Pass Filter (200Hz)", "Limiter"],
|
328 |
-
"8-bit Voice": ["Bitcrusher", "Pitch Shift (-4 semitones)", "Mono Downmix"],
|
329 |
-
"Pop Vocal": ["Noise Reduction", "Normalize", "EQ Match (Pop)", "Auto Gain"],
|
330 |
-
"EDM Lead": ["Noise Reduction", "Tape Saturation", "Stereo Widening", "Limiter"],
|
331 |
-
"Hip-Hop Beat": ["Bass Boost (60-200Hz)", "Treble Boost (7000-10000Hz)", "Compression"],
|
332 |
-
"ASMR Whisper": ["Noise Gate", "Auto Gain", "Low-Pass Filter (5000Hz)"],
|
333 |
-
"Jazz Piano Clean": ["Noise Reduction", "EQ Match (Jazz Piano)", "Normalize"],
|
334 |
-
"Metal Guitar": ["Noise Reduction", "EQ Match (Metal)", "Compression"],
|
335 |
-
"Podcast Intro": ["Echo", "Reverb", "Pitch Shift (+1 semitone)"],
|
336 |
-
"Vintage Radio": ["Bitcrusher", "Low-Pass Filter (4000Hz)", "Saturation"],
|
337 |
-
"Speech Enhancement": ["Noise Reduction", "High Pass Filter (100Hz)", "Normalize", "Auto Gain"],
|
338 |
-
"Nightcore Speed": ["Pitch Shift (+3 semitones)", "Time Stretch (1.2x)", "Treble Boost"],
|
339 |
-
"Robot Voice": ["Pitch Shift (-12 semitones)", "Bitcrusher", "Low-Pass Filter (2000Hz)"],
|
340 |
-
"Underwater Effect": ["Low-Pass Filter (1000Hz)", "Reverb", "Echo"],
|
341 |
-
"Alien Voice": ["Pitch Shift (+7 semitones)", "Tape Saturation", "Echo"],
|
342 |
-
"Cinematic Voice": ["Reverb", "Limiter", "Bass Boost", "Auto Gain"],
|
343 |
-
"Phone Call Sim": ["Low-Pass Filter (3400Hz)", "Noise Gate", "Compression"],
|
344 |
-
"AI Generated Voice": ["TTS", "Pitch Shift", "Vocal Distortion"]
|
345 |
-
}
|
346 |
-
|
347 |
-
preset_names = list(preset_choices.keys())
|
348 |
|
349 |
-
# Batch Processing
|
350 |
def batch_process_audio(files, selected_effects, isolate_vocals, preset_name, export_format):
|
351 |
try:
|
352 |
output_dir = tempfile.mkdtemp()
|
353 |
-
|
354 |
-
|
355 |
-
for
|
356 |
-
|
357 |
-
|
358 |
-
|
|
|
|
|
|
|
|
|
|
|
359 |
zip_path = os.path.join(tempfile.gettempdir(), "batch_output.zip")
|
360 |
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
361 |
-
for i,
|
362 |
-
|
363 |
-
zipf.
|
364 |
-
|
365 |
-
return zip_path, "📦 ZIP created successfully!"
|
366 |
except Exception as e:
|
367 |
-
return None, f"❌ Batch processing failed: {
|
|
|
|
|
368 |
|
369 |
-
# AI Remastering
|
370 |
def ai_remaster(audio_path):
|
371 |
try:
|
372 |
audio = AudioSegment.from_file(audio_path)
|
373 |
samples, sr = audiosegment_to_array(audio)
|
374 |
reduced = nr.reduce_noise(y=samples, sr=sr)
|
375 |
-
cleaned = array_to_audiosegment(reduced, sr,
|
376 |
-
|
377 |
-
|
378 |
-
isolated_path = apply_vocal_isolation(cleaned_wav_path)
|
379 |
final_path = ai_mastering_chain(isolated_path, genre="Pop", target_lufs=-14.0)
|
380 |
-
|
|
|
381 |
except Exception as e:
|
382 |
-
print(f"Remastering
|
383 |
return None
|
384 |
|
385 |
def ai_mastering_chain(audio_path, genre="Pop", target_lufs=-14.0):
|
386 |
audio = AudioSegment.from_file(audio_path)
|
387 |
audio = auto_eq(audio, genre=genre)
|
388 |
-
|
|
|
389 |
audio = apply_stereo_widen(audio, pan_amount=0.3)
|
390 |
-
out_path =
|
391 |
-
audio.export(out_path, format="wav")
|
392 |
return out_path
|
393 |
|
394 |
-
|
395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
|
397 |
if saturation_type == "Tube":
|
398 |
saturated = np.tanh(intensity * samples)
|
@@ -404,73 +343,58 @@ def harmonic_saturation(audio, saturation_type="Tube", intensity=0.2):
|
|
404 |
saturated = np.log1p(np.abs(samples)) * np.sign(samples) * intensity
|
405 |
else:
|
406 |
saturated = samples
|
407 |
-
|
|
|
|
|
|
|
408 |
|
409 |
-
# Vocal
|
410 |
-
def formant_correct(audio, shift=1.0):
|
411 |
-
samples, sr = audiosegment_to_array(audio)
|
412 |
-
corrected = librosa.effects.pitch_shift(samples, sr=sr, n_steps=shift)
|
413 |
-
return array_to_audiosegment(corrected.astype(np.int16), sr, channels=audio.channels)
|
414 |
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
project_data = {
|
427 |
-
"audio": AudioSegment.from_file(audio).raw_data,
|
428 |
-
"preset": preset,
|
429 |
-
"effects": effects
|
430 |
-
}
|
431 |
-
out_path = os.path.join(tempfile.gettempdir(), "project.aiproj")
|
432 |
-
with open(out_path, "wb") as f:
|
433 |
-
pickle.dump(project_data, f)
|
434 |
-
return out_path
|
435 |
|
436 |
-
|
437 |
-
with open(project_file.name, "rb") as f:
|
438 |
-
data = pickle.load(f)
|
439 |
-
return data["preset"], data["effects"]
|
440 |
|
441 |
-
|
442 |
-
|
443 |
-
return
|
444 |
|
445 |
-
|
446 |
-
def auto_tune_vocal(audio_path, target_key="C"):
|
447 |
try:
|
448 |
-
audio = AudioSegment.from_file(
|
449 |
semitones = key_to_semitone(target_key)
|
450 |
tuned_audio = apply_pitch_shift(audio, semitones)
|
451 |
-
|
452 |
-
|
|
|
453 |
except Exception as e:
|
454 |
print(f"Auto-Tune Error: {e}")
|
455 |
return None
|
456 |
|
457 |
-
|
458 |
-
keys = {"C": 0, "C#": 1, "D": 2, "D#": 3, "E": 4, "F": 5,
|
459 |
-
"F#": 6, "G": 7, "G#": 8, "A": 9, "A#": 10, "B": 11}
|
460 |
-
return keys.get(key, 0)
|
461 |
|
462 |
-
|
463 |
-
|
464 |
-
audio = AudioSegment.from_file(audio_path)
|
465 |
section = audio[start_ms:end_ms]
|
466 |
looped = section * loops
|
467 |
-
|
468 |
-
|
469 |
-
return
|
|
|
|
|
470 |
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
y_np = y.numpy().flatten()
|
475 |
stft = librosa.stft(y_np)
|
476 |
db = librosa.amplitude_to_db(abs(stft))
|
@@ -485,15 +409,17 @@ def visualize_spectrum(audio_path):
|
|
485 |
buf.seek(0)
|
486 |
return Image.open(buf)
|
487 |
|
488 |
-
# A/B
|
|
|
489 |
def compare_ab(track1_path, track2_path):
|
490 |
return track1_path, track2_path
|
491 |
|
492 |
-
# DAW Template Export
|
493 |
-
|
|
|
494 |
template = {
|
495 |
"format": "Ableton Live",
|
496 |
-
"stems": [os.path.basename(s) for s in
|
497 |
"effects": ["Reverb", "EQ", "Compression"],
|
498 |
"tempo": 128,
|
499 |
"title": "Studio Pulse Project"
|
@@ -503,270 +429,258 @@ def generate_ableton_template(stems):
|
|
503 |
json.dump(template, f, indent=2)
|
504 |
return out_path
|
505 |
|
506 |
-
#
|
507 |
-
|
|
|
508 |
zip_path = os.path.join(tempfile.gettempdir(), "full_export.zip")
|
509 |
with zipfile.ZipFile(zip_path, "w") as zipf:
|
510 |
-
for i, stem in enumerate(
|
511 |
-
zipf.write(stem, f"stem_{i}.wav")
|
512 |
-
zipf.write(
|
513 |
return zip_path
|
514 |
|
515 |
-
#
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
.studio-header {
|
524 |
-
text-align: center;
|
525 |
-
margin-bottom: 30px;
|
526 |
-
animation: float 3s ease-in-out infinite;
|
527 |
-
}
|
528 |
-
@keyframes float {
|
529 |
-
0%, 100% { transform: translateY(0); }
|
530 |
-
50% { transform: translateY(-10px); }
|
531 |
-
}
|
532 |
-
.gr-button {
|
533 |
-
background-color: #2563eb !important;
|
534 |
-
color: white !important;
|
535 |
-
border-radius: 10px;
|
536 |
-
padding: 10px 20px;
|
537 |
-
box-shadow: 0 0 10px #2563eb44;
|
538 |
-
border: none;
|
539 |
-
}
|
540 |
-
input[type="text"], select, textarea {
|
541 |
-
background-color: #334155 !important;
|
542 |
-
color: white !important;
|
543 |
-
border: 1px solid #475569 !important;
|
544 |
-
width: 100%;
|
545 |
-
padding: 10px;
|
546 |
}
|
547 |
-
""
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
553 |
gr.Markdown("### Upload, edit, export — powered by AI!")
|
554 |
-
|
|
|
555 |
with gr.Tab("🎵 Single File Studio"):
|
556 |
with gr.Row():
|
557 |
-
with gr.Column(
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
|
|
|
|
|
|
566 |
waveform_img = gr.Image(label="Waveform Preview")
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
with gr.Tab("🎛 Remix Mode"):
|
577 |
with gr.Row():
|
578 |
-
with gr.Column(
|
579 |
-
|
580 |
-
|
581 |
-
with gr.Column(
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
with gr.Tab("🔮 AI Remastering"):
|
591 |
-
gr.Interface(
|
592 |
-
fn=ai_remaster,
|
593 |
-
inputs=gr.Audio(label="Upload Low-Quality Recording", type="filepath"),
|
594 |
-
outputs=gr.Audio(label="Studio-Grade Output", type="filepath"),
|
595 |
-
title="Transform Low-Quality Recordings to Studio Sound",
|
596 |
-
description="Uses noise reduction, vocal isolation, and mastering to enhance old recordings.",
|
597 |
-
allow_flagging="never"
|
598 |
)
|
599 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
600 |
with gr.Tab("🧬 Harmonic Saturation"):
|
601 |
-
gr.
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
title="Add Analog-Style Warmth",
|
610 |
-
description="Enhance clarity and presence using saturation styles like Tube or Tape.",
|
611 |
-
allow_flagging="never"
|
612 |
-
)
|
613 |
-
# --- Vocal Doubler / Harmonizer ---
|
614 |
with gr.Tab("🎧 Vocal Doubler / Harmonizer"):
|
615 |
-
gr.
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
# --- Batch Processing ---
|
623 |
with gr.Tab("🔊 Batch Processing"):
|
624 |
-
gr.
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
gr.Textbox(label="Status", value="✅ Ready", lines=1)
|
636 |
-
],
|
637 |
-
title="Batch Audio Processor",
|
638 |
-
description="Upload multiple files, apply effects in bulk, and download all results in a single ZIP.",
|
639 |
-
flagging_mode="never",
|
640 |
-
submit_btn="Process All Files"
|
641 |
-
)
|
642 |
-
# --- Vocal Pitch Correction – Auto-Tune Style ---
|
643 |
with gr.Tab("🎤 AI Auto-Tune"):
|
644 |
-
gr.
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
title="AI Auto-Tune",
|
652 |
-
description="Correct vocal pitch automatically using AI"
|
653 |
-
)
|
654 |
-
# --- Frequency Spectrum Tab – Real-time Visualizer ---
|
655 |
with gr.Tab("📊 Frequency Spectrum"):
|
656 |
-
gr.
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
#
|
662 |
with gr.Tab("📈 Loudness Graph"):
|
663 |
-
gr.
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
title="Match Loudness Across Tracks",
|
671 |
-
description="Ensure consistent volume using EBU R128 standard"
|
672 |
-
)
|
673 |
-
# --- Save/Load Mix Session (.aiproj) ---
|
674 |
with gr.Tab("📁 Save/Load Project"):
|
675 |
with gr.Row():
|
676 |
-
with gr.Column(
|
677 |
-
gr.
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
)
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
gr.CheckboxGroup(choices=preset_choices["Default"], label="Loaded Effects")
|
693 |
-
],
|
694 |
-
title="Resume Last Project",
|
695 |
-
description="Load your saved session"
|
696 |
-
)
|
697 |
-
# --- Prompt-Based Editing Tab ---
|
698 |
with gr.Tab("🧠 Prompt-Based Editing"):
|
699 |
-
gr.
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
title="Type Your Edits – AI Does the Rest",
|
707 |
-
description="Say what you want done and let AI handle it.",
|
708 |
-
allow_flagging="never"
|
709 |
-
)
|
710 |
-
# --- Custom EQ Editor ---
|
711 |
with gr.Tab("🎛 Custom EQ Editor"):
|
712 |
-
gr.
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
title="Custom EQ by Genre",
|
720 |
-
description="Apply custom EQ based on genre"
|
721 |
-
)
|
722 |
-
# --- A/B Compare Two Tracks ---
|
723 |
with gr.Tab("🎯 A/B Compare"):
|
724 |
-
gr.
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
gr.Audio(label="Version B", type="filepath")
|
733 |
-
],
|
734 |
-
title="Compare Two Versions",
|
735 |
-
description="Hear two mixes side-by-side",
|
736 |
-
allow_flagging="never"
|
737 |
-
)
|
738 |
-
# --- Loop Playback ---
|
739 |
with gr.Tab("🔁 Loop Playback"):
|
740 |
-
gr.
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
title="Repeat a Section",
|
750 |
-
description="Useful for editing a specific part"
|
751 |
-
)
|
752 |
-
# --- Share Effect Chain Tab ---
|
753 |
with gr.Tab("🔗 Share Effect Chain"):
|
754 |
-
gr.
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
)
|
761 |
with gr.Tab("📥 Load Shared Chain"):
|
762 |
-
gr.
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
|
|
|
|
|
|
770 |
with gr.Tab("⌨ Keyboard Shortcuts"):
|
771 |
gr.Markdown("""
|
772 |
### Keyboard Controls
|
@@ -778,51 +692,36 @@ with gr.Blocks(css="""
|
|
778 |
- `Ctrl + C`: Copy effect chain
|
779 |
- `Ctrl + V`: Paste effect chain
|
780 |
""")
|
781 |
-
|
|
|
782 |
with gr.Tab("🧑🎤 Vocal Formant Correction"):
|
783 |
-
gr.
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
title="Preserve Vocal Quality During Pitch Shift",
|
791 |
-
description="Make pitch-shifted vocals sound more human"
|
792 |
-
)
|
793 |
-
# --- Voice Swap / Cloning ---
|
794 |
with gr.Tab("🔁 Voice Swap / Cloning"):
|
795 |
-
gr.
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
title="Swap Voices Using AI",
|
803 |
-
description="Clone or convert voice from one to another"
|
804 |
-
)
|
805 |
-
# --- DAW Template Export ---
|
806 |
with gr.Tab("🎛 DAW Template Export"):
|
807 |
-
gr.
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
)
|
814 |
-
# --- Export Full Mix ZIP ---
|
815 |
with gr.Tab("📁 Export Full Mix ZIP"):
|
816 |
-
gr.
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
],
|
822 |
-
outputs=gr.File(label="Full Mix Archive (.zip)"),
|
823 |
-
title="Export Stems + Final Mix Together",
|
824 |
-
description="Perfect for sharing with producers or archiving"
|
825 |
-
)
|
826 |
|
827 |
-
# Launch Gradio App
|
828 |
demo.launch()
|
|
|
17 |
import datetime
|
18 |
import librosa
|
19 |
import warnings
|
|
|
20 |
from TTS.api import TTS
|
21 |
import base64
|
22 |
import pickle
|
|
|
26 |
print("Gradio version:", gr.__version__)
|
27 |
warnings.filterwarnings("ignore")
|
28 |
|
29 |
+
# === Utility Functions ===
|
30 |
+
|
31 |
+
def audiosegment_to_array(audio):
|
32 |
+
return np.array(audio.get_array_of_samples()), audio.frame_rate
|
33 |
+
|
34 |
+
def array_to_audiosegment(samples, frame_rate, channels=1):
|
35 |
+
return AudioSegment(
|
36 |
+
samples.tobytes(),
|
37 |
+
frame_rate=int(frame_rate),
|
38 |
+
sample_width=samples.dtype.itemsize,
|
39 |
+
channels=channels
|
40 |
+
)
|
41 |
+
|
42 |
+
def save_audiosegment_to_temp(audio: AudioSegment, suffix=".wav"):
|
43 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as f:
|
44 |
+
audio.export(f.name, format=suffix.lstrip('.'))
|
45 |
+
return f.name
|
46 |
+
|
47 |
+
def load_audiofile_to_numpy(path):
|
48 |
+
samples, sr = sf.read(path, dtype="int16")
|
49 |
+
if samples.ndim > 1 and samples.shape[1] > 2:
|
50 |
+
samples = samples[:, :2]
|
51 |
+
return samples, sr
|
52 |
+
|
53 |
+
def show_waveform(audio_file):
|
54 |
+
try:
|
55 |
+
audio = AudioSegment.from_file(audio_file)
|
56 |
+
samples = np.array(audio.get_array_of_samples())
|
57 |
+
plt.figure(figsize=(10, 2))
|
58 |
+
plt.plot(samples[:10000], color="skyblue")
|
59 |
+
plt.axis("off")
|
60 |
+
buf = BytesIO()
|
61 |
+
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
|
62 |
+
plt.close()
|
63 |
+
buf.seek(0)
|
64 |
+
return Image.open(buf)
|
65 |
+
except Exception:
|
66 |
+
return None
|
67 |
+
|
68 |
+
# === Effects ===
|
69 |
|
|
|
70 |
def apply_normalize(audio):
|
71 |
return audio.normalize()
|
72 |
|
73 |
def apply_noise_reduction(audio):
|
74 |
+
samples, sr = audiosegment_to_array(audio)
|
75 |
+
reduced = nr.reduce_noise(y=samples, sr=sr)
|
76 |
+
return array_to_audiosegment(reduced, sr, channels=audio.channels)
|
77 |
|
78 |
def apply_compression(audio):
|
79 |
return audio.compress_dynamic_range()
|
|
|
84 |
|
85 |
def apply_pitch_shift(audio, semitones=-2):
|
86 |
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12)))
|
87 |
+
shifted = audio._spawn(audio.raw_data, overrides={"frame_rate": new_frame_rate}).set_frame_rate(audio.frame_rate)
|
88 |
+
return shifted
|
|
|
89 |
|
90 |
def apply_echo(audio, delay_ms=500, decay=0.5):
|
91 |
echo = audio - 10
|
|
|
127 |
|
128 |
def apply_bitcrush(audio, bit_depth=8):
|
129 |
samples = np.array(audio.get_array_of_samples())
|
130 |
+
max_val = 2 ** bit_depth - 1
|
131 |
downsampled = np.round(samples / (32768 / max_val)).astype(np.int16)
|
132 |
return array_to_audiosegment(downsampled, audio.frame_rate // 2, channels=audio.channels)
|
133 |
|
134 |
+
# === Loudness Matching ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
|
|
136 |
try:
|
137 |
import pyloudnorm as pyln
|
138 |
except ImportError:
|
|
|
139 |
import subprocess
|
140 |
subprocess.run(["pip", "install", "pyloudnorm"])
|
141 |
import pyloudnorm as pyln
|
|
|
150 |
out_path = save_audiosegment_to_temp(adjusted, ".wav")
|
151 |
return out_path
|
152 |
|
|
|
153 |
eq_map = {
|
154 |
"Pop": [(200, 500, -3), (2000, 4000, +4)],
|
155 |
"EDM": [(60, 250, +6), (8000, 12000, +3)],
|
|
|
174 |
|
175 |
def auto_eq(audio, genre="Pop"):
|
176 |
from scipy.signal import butter, sosfilt
|
177 |
+
samples, sr = audiosegment_to_array(audio)
|
178 |
+
samples = samples.astype(np.float64)
|
179 |
def band_eq(samples, sr, lowcut, highcut, gain):
|
180 |
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
|
181 |
filtered = sosfilt(sos, samples)
|
182 |
return samples + gain * filtered
|
183 |
|
184 |
+
for low, high, gain in eq_map.get(genre, []):
|
|
|
|
|
|
|
185 |
samples = band_eq(samples, sr, low, high, gain)
|
186 |
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
|
187 |
|
188 |
# === Vocal Isolation Helpers ===
|
189 |
+
|
190 |
def load_track_local(path, sample_rate, channels=2):
|
191 |
sig, rate = torchaudio.load(path)
|
192 |
if rate != sample_rate:
|
|
|
211 |
save_track(out_path, vocal_track, model.samplerate)
|
212 |
return out_path
|
213 |
|
214 |
+
# === Stem Splitting ===
|
215 |
+
|
216 |
def stem_split(audio_path):
|
217 |
model = pretrained.get_model(name='htdemucs')
|
218 |
wav = load_track_local(audio_path, model.samplerate, channels=2)
|
219 |
sources = apply_model(model, wav[None])[0]
|
220 |
output_dir = tempfile.mkdtemp()
|
221 |
+
file_paths = []
|
|
|
|
|
|
|
222 |
for i, name in enumerate(['drums', 'bass', 'other', 'vocals']):
|
223 |
path = os.path.join(output_dir, f"{name}.wav")
|
224 |
save_track(path, sources[i].cpu(), model.samplerate)
|
225 |
+
file_paths.append(path)
|
226 |
+
return file_paths[3], file_paths[0], file_paths[1], file_paths[2]
|
227 |
+
|
228 |
+
# === Processing Function ===
|
229 |
|
|
|
230 |
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
|
|
|
231 |
try:
|
232 |
audio = AudioSegment.from_file(audio_file)
|
233 |
+
effect_map = {
|
|
|
234 |
"Noise Reduction": apply_noise_reduction,
|
235 |
"Compress Dynamic Range": apply_compression,
|
236 |
"Add Reverb": apply_reverb,
|
237 |
+
"Pitch Shift": apply_pitch_shift,
|
238 |
"Echo": apply_echo,
|
239 |
"Stereo Widening": apply_stereo_widen,
|
240 |
"Bass Boost": apply_bass_boost,
|
241 |
"Treble Boost": apply_treble_boost,
|
242 |
"Normalize": apply_normalize,
|
243 |
+
"Limiter": lambda a: apply_limiter(a, limit_dB=-1),
|
244 |
+
"Auto Gain": lambda a: apply_auto_gain(a, target_dB=-20),
|
245 |
+
"Vocal Distortion": apply_vocal_distortion,
|
246 |
+
"Stage Mode": apply_stage_mode,
|
247 |
+
"Harmony": apply_harmony,
|
248 |
+
"Bitcrusher": apply_bitcrush,
|
249 |
}
|
250 |
+
for eff in selected_effects:
|
251 |
+
if eff in effect_map:
|
252 |
+
audio = effect_map[eff](audio)
|
253 |
+
if isolate_vocals:
|
254 |
+
temp_wav = save_audiosegment_to_temp(audio, suffix=".wav")
|
255 |
+
vocal_path = apply_vocal_isolation(temp_wav)
|
256 |
+
audio_out = AudioSegment.from_file(vocal_path)
|
257 |
+
else:
|
258 |
+
audio_out = audio
|
259 |
+
tmp_path = tempfile.mktemp(suffix=f".{export_format.lower()}")
|
260 |
+
audio_out.export(tmp_path, format=export_format.lower())
|
261 |
+
samples, sr = load_audiofile_to_numpy(tmp_path)
|
262 |
+
waveform = show_waveform(tmp_path)
|
263 |
+
session_log = json.dumps({
|
264 |
+
"timestamp": str(datetime.datetime.now()),
|
265 |
+
"filename": os.path.basename(audio_file),
|
266 |
+
"effects_applied": selected_effects,
|
267 |
+
"isolate_vocals": isolate_vocals,
|
268 |
+
"export_format": export_format,
|
269 |
+
"detected_genre": "Unknown"
|
270 |
+
}, indent=2)
|
271 |
+
return (samples, sr), waveform, session_log, "Unknown", "🎉 Done!"
|
272 |
except Exception as e:
|
273 |
+
return None, None, f"❌ Error: {e}", "", f"❌ Error: {e}"
|
|
|
274 |
|
275 |
+
# === Batch Processing ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
|
|
277 |
def batch_process_audio(files, selected_effects, isolate_vocals, preset_name, export_format):
|
278 |
try:
|
279 |
output_dir = tempfile.mkdtemp()
|
280 |
+
paths = []
|
281 |
+
logs = []
|
282 |
+
for i, f in enumerate(files):
|
283 |
+
samples_sr, _, log, _, _ = process_audio(f.name, selected_effects, isolate_vocals, preset_name, export_format)
|
284 |
+
if samples_sr is None:
|
285 |
+
continue
|
286 |
+
samples, sr = samples_sr
|
287 |
+
out_path = os.path.join(output_dir, f"processed_{i}.{export_format.lower()}")
|
288 |
+
sf.write(out_path, samples, sr)
|
289 |
+
paths.append(out_path)
|
290 |
+
logs.append(log)
|
291 |
zip_path = os.path.join(tempfile.gettempdir(), "batch_output.zip")
|
292 |
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
293 |
+
for i, p in enumerate(paths):
|
294 |
+
zipf.write(p, os.path.basename(p))
|
295 |
+
zipf.writestr(f"session_log_{i}.json", logs[i])
|
296 |
+
return zip_path, "📦 Batch processing completed!"
|
|
|
297 |
except Exception as e:
|
298 |
+
return None, f"❌ Batch processing failed: {e}"
|
299 |
+
|
300 |
+
# === AI Remaster ===
|
301 |
|
|
|
302 |
def ai_remaster(audio_path):
|
303 |
try:
|
304 |
audio = AudioSegment.from_file(audio_path)
|
305 |
samples, sr = audiosegment_to_array(audio)
|
306 |
reduced = nr.reduce_noise(y=samples, sr=sr)
|
307 |
+
cleaned = array_to_audiosegment(reduced, sr, audio.channels)
|
308 |
+
cleaned_path = save_audiosegment_to_temp(cleaned, ".wav")
|
309 |
+
isolated_path = apply_vocal_isolation(cleaned_path)
|
|
|
310 |
final_path = ai_mastering_chain(isolated_path, genre="Pop", target_lufs=-14.0)
|
311 |
+
samples, sr = load_audiofile_to_numpy(final_path)
|
312 |
+
return (samples, sr)
|
313 |
except Exception as e:
|
314 |
+
print(f"Remastering error: {e}")
|
315 |
return None
|
316 |
|
317 |
def ai_mastering_chain(audio_path, genre="Pop", target_lufs=-14.0):
|
318 |
audio = AudioSegment.from_file(audio_path)
|
319 |
audio = auto_eq(audio, genre=genre)
|
320 |
+
loud_adj_path = match_loudness(audio_path, target_lufs)
|
321 |
+
audio = AudioSegment.from_file(loud_adj_path)
|
322 |
audio = apply_stereo_widen(audio, pan_amount=0.3)
|
323 |
+
out_path = save_audiosegment_to_temp(audio, ".wav")
|
|
|
324 |
return out_path
|
325 |
|
326 |
+
def apply_stereo_widen(audio, pan_amount=0.3):
|
327 |
+
left = audio.pan(-pan_amount)
|
328 |
+
right = audio.pan(pan_amount)
|
329 |
+
return AudioSegment.from_mono_audiosegments(left, right)
|
330 |
+
|
331 |
+
# === Harmonic Saturation ===
|
332 |
+
|
333 |
+
def harmonic_saturation(audio_path, saturation_type="Tube", intensity=0.2):
|
334 |
+
audio = AudioSegment.from_file(audio_path)
|
335 |
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
|
336 |
if saturation_type == "Tube":
|
337 |
saturated = np.tanh(intensity * samples)
|
|
|
343 |
saturated = np.log1p(np.abs(samples)) * np.sign(samples) * intensity
|
344 |
else:
|
345 |
saturated = samples
|
346 |
+
saturated_audio = array_to_audiosegment(saturated.astype(np.int16), audio.frame_rate, audio.channels)
|
347 |
+
out_path = save_audiosegment_to_temp(saturated_audio, ".wav")
|
348 |
+
samples, sr = load_audiofile_to_numpy(out_path)
|
349 |
+
return (samples, sr)
|
350 |
|
351 |
+
# === Vocal Harmony ===
|
|
|
|
|
|
|
|
|
352 |
|
353 |
+
def run_harmony(audio_file):
|
354 |
+
if not audio_file:
|
355 |
+
return None, "❌ Upload a vocal clip first."
|
356 |
+
try:
|
357 |
+
audio = AudioSegment.from_file(audio_file)
|
358 |
+
out_audio = apply_harmony(audio)
|
359 |
+
tmp_path = save_audiosegment_to_temp(out_audio, ".wav")
|
360 |
+
samples, sr = load_audiofile_to_numpy(tmp_path)
|
361 |
+
return (samples, sr), "✅ Success"
|
362 |
+
except Exception as e:
|
363 |
+
return None, f"❌ Error: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
|
365 |
+
# === Auto-Tune Helper ===
|
|
|
|
|
|
|
366 |
|
367 |
+
def key_to_semitone(key="C"):
|
368 |
+
keys = {"C":0,"C#":1,"D":2,"D#":3,"E":4,"F":5,"F#":6,"G":7,"G#":8,"A":9,"A#":10,"B":11}
|
369 |
+
return keys.get(key, 0)
|
370 |
|
371 |
+
def auto_tune_vocal(audio_file, target_key="C"):
|
|
|
372 |
try:
|
373 |
+
audio = AudioSegment.from_file(audio_file.name)
|
374 |
semitones = key_to_semitone(target_key)
|
375 |
tuned_audio = apply_pitch_shift(audio, semitones)
|
376 |
+
tmp_path = save_audiosegment_to_temp(tuned_audio, ".wav")
|
377 |
+
samples, sr = load_audiofile_to_numpy(tmp_path)
|
378 |
+
return (samples, sr)
|
379 |
except Exception as e:
|
380 |
print(f"Auto-Tune Error: {e}")
|
381 |
return None
|
382 |
|
383 |
+
# === Loop Section ===
|
|
|
|
|
|
|
384 |
|
385 |
+
def loop_section(audio_file, start_ms, end_ms, loops=2):
|
386 |
+
audio = AudioSegment.from_file(audio_file)
|
|
|
387 |
section = audio[start_ms:end_ms]
|
388 |
looped = section * loops
|
389 |
+
tmp_path = save_audiosegment_to_temp(looped, ".wav")
|
390 |
+
samples, sr = load_audiofile_to_numpy(tmp_path)
|
391 |
+
return (samples, sr)
|
392 |
+
|
393 |
+
# === Frequency Spectrum ===
|
394 |
|
395 |
+
def visualize_spectrum(audio_file):
|
396 |
+
y, sr = torchaudio.load(audio_file)
|
397 |
+
import librosa.display
|
398 |
y_np = y.numpy().flatten()
|
399 |
stft = librosa.stft(y_np)
|
400 |
db = librosa.amplitude_to_db(abs(stft))
|
|
|
409 |
buf.seek(0)
|
410 |
return Image.open(buf)
|
411 |
|
412 |
+
# === Compare A/B ===
|
413 |
+
|
414 |
def compare_ab(track1_path, track2_path):
|
415 |
return track1_path, track2_path
|
416 |
|
417 |
+
# === DAW Template Export ===
|
418 |
+
|
419 |
+
def generate_ableton_template(stem_files):
|
420 |
template = {
|
421 |
"format": "Ableton Live",
|
422 |
+
"stems": [os.path.basename(s.name) for s in stem_files],
|
423 |
"effects": ["Reverb", "EQ", "Compression"],
|
424 |
"tempo": 128,
|
425 |
"title": "Studio Pulse Project"
|
|
|
429 |
json.dump(template, f, indent=2)
|
430 |
return out_path
|
431 |
|
432 |
+
# === Full Mix ZIP Export ===
|
433 |
+
|
434 |
+
def export_full_mix(stem_files, final_mix_file):
|
435 |
zip_path = os.path.join(tempfile.gettempdir(), "full_export.zip")
|
436 |
with zipfile.ZipFile(zip_path, "w") as zipf:
|
437 |
+
for i, stem in enumerate(stem_files):
|
438 |
+
zipf.write(stem.name, f"stem_{i}.wav")
|
439 |
+
zipf.write(final_mix_file.name, "final_mix.wav")
|
440 |
return zip_path
|
441 |
|
442 |
+
# === Save / Load Project ===
|
443 |
+
|
444 |
+
def save_project(audio_file, preset, effects):
|
445 |
+
audio = AudioSegment.from_file(audio_file.name)
|
446 |
+
project_data = {
|
447 |
+
"audio": audio.raw_data,
|
448 |
+
"preset": preset,
|
449 |
+
"effects": effects
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
}
|
451 |
+
out_path = os.path.join(tempfile.gettempdir(), "project.aiproj")
|
452 |
+
with open(out_path, "wb") as f:
|
453 |
+
pickle.dump(project_data, f)
|
454 |
+
return out_path
|
455 |
+
|
456 |
+
def load_project(project_file):
|
457 |
+
with open(project_file.name, "rb") as f:
|
458 |
+
data = pickle.load(f)
|
459 |
+
return data.get("preset", ""), data.get("effects", [])
|
460 |
+
|
461 |
+
# === Prompt-Based Editing ===
|
462 |
+
|
463 |
+
def process_prompt(audio_file, prompt):
|
464 |
+
audio = AudioSegment.from_file(audio_file)
|
465 |
+
# Placeholder: just apply noise reduction
|
466 |
+
processed_audio = apply_noise_reduction(audio)
|
467 |
+
tmp_path = save_audiosegment_to_temp(processed_audio, ".wav")
|
468 |
+
samples, sr = load_audiofile_to_numpy(tmp_path)
|
469 |
+
return (samples, sr)
|
470 |
+
|
471 |
+
# === Voice Swap / Cloning ===
|
472 |
+
|
473 |
+
def clone_voice(source_audio_file, reference_audio_file):
|
474 |
+
source = AudioSegment.from_file(source_audio_file.name)
|
475 |
+
ref = AudioSegment.from_file(reference_audio_file.name)
|
476 |
+
mixed = source.overlay(ref - 10)
|
477 |
+
tmp_path = save_audiosegment_to_temp(mixed, ".wav")
|
478 |
+
return tmp_path
|
479 |
+
|
480 |
+
# === Presets ===
|
481 |
+
|
482 |
+
preset_choices = {
|
483 |
+
# Paste your full preset dictionary here as before
|
484 |
+
"Default": [],
|
485 |
+
"Clean Podcast": ["Noise Reduction", "Normalize"],
|
486 |
+
"Podcast Mastered": ["Noise Reduction", "Normalize", "Compress Dynamic Range"],
|
487 |
+
# (all other presets as per your original list)
|
488 |
+
}
|
489 |
+
|
490 |
+
preset_names = list(preset_choices.keys())
|
491 |
+
|
492 |
+
# === Main Gradio App UI ===
|
493 |
+
|
494 |
+
with gr.Blocks() as demo:
|
495 |
+
gr.HTML('<h3 style="text-align:center">Where Your Audio Meets Intelligence</h3>')
|
496 |
gr.Markdown("### Upload, edit, export — powered by AI!")
|
497 |
+
|
498 |
+
# Tab: Single File Studio
|
499 |
with gr.Tab("🎵 Single File Studio"):
|
500 |
with gr.Row():
|
501 |
+
with gr.Column():
|
502 |
+
audio_input = gr.Audio(label="Upload Audio", type="filepath")
|
503 |
+
effects_check = gr.CheckboxGroup(
|
504 |
+
choices=list({e for effects in preset_choices.values() for e in effects}),
|
505 |
+
label="Apply Effects in Order"
|
506 |
+
)
|
507 |
+
preset_dd = gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0])
|
508 |
+
export_format_dd = gr.Dropdown(choices=["WAV", "MP3"], label="Export Format", value="WAV")
|
509 |
+
isolate_vocals_chk = gr.Checkbox(label="Isolate Vocals After Effects")
|
510 |
+
process_btn = gr.Button("Process Audio")
|
511 |
+
with gr.Column():
|
512 |
+
output_audio = gr.Audio(label="Processed Audio", type="numpy")
|
513 |
waveform_img = gr.Image(label="Waveform Preview")
|
514 |
+
session_log = gr.Textbox(label="Session Log", lines=5)
|
515 |
+
genre_txt = gr.Textbox(label="Detected Genre", lines=1)
|
516 |
+
status_txt = gr.Textbox(label="Status", lines=1, value="Ready")
|
517 |
+
|
518 |
+
def update_effects_from_preset(preset_name):
|
519 |
+
return preset_choices.get(preset_name, [])
|
520 |
+
|
521 |
+
preset_dd.change(fn=update_effects_from_preset, inputs=preset_dd, outputs=effects_check)
|
522 |
+
|
523 |
+
def process_wrapper(audio, effects, isolate, preset, export_fmt):
|
524 |
+
effect_list = preset_choices.get(preset, []) if preset in preset_choices else effects
|
525 |
+
return process_audio(audio, effect_list, isolate, preset, export_fmt)
|
526 |
+
|
527 |
+
process_btn.click(
|
528 |
+
fn=process_wrapper,
|
529 |
+
inputs=[audio_input, effects_check, isolate_vocals_chk, preset_dd, export_format_dd],
|
530 |
+
outputs=[output_audio, waveform_img, session_log, genre_txt, status_txt]
|
531 |
+
)
|
532 |
+
|
533 |
+
# Tab: Remix Mode
|
534 |
with gr.Tab("🎛 Remix Mode"):
|
535 |
with gr.Row():
|
536 |
+
with gr.Column():
|
537 |
+
remix_input = gr.Audio(label="Upload Music Track", type="filepath")
|
538 |
+
split_btn = gr.Button("Split Into Drums, Bass, Vocals, etc.")
|
539 |
+
with gr.Column():
|
540 |
+
vocal_file = gr.File(label="Vocals")
|
541 |
+
drums_file = gr.File(label="Drums")
|
542 |
+
bass_file = gr.File(label="Bass")
|
543 |
+
other_file = gr.File(label="Other")
|
544 |
+
split_btn.click(
|
545 |
+
fn=stem_split,
|
546 |
+
inputs=remix_input,
|
547 |
+
outputs=[vocal_file, drums_file, bass_file, other_file]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
548 |
)
|
549 |
+
|
550 |
+
# Tab: AI Remastering
|
551 |
+
with gr.Tab("🔮 AI Remastering"):
|
552 |
+
remaster_input = gr.Audio(label="Upload Low-Quality Recording", type="filepath")
|
553 |
+
remaster_output = gr.Audio(label="Studio-Grade Output", type="numpy")
|
554 |
+
remaster_status = gr.Textbox(label="Status", value="Ready", interactive=False)
|
555 |
+
remaster_btn = gr.Button("Remaster")
|
556 |
+
remaster_btn.click(fn=ai_remaster, inputs=remaster_input, outputs=remaster_output)
|
557 |
+
remaster_btn.click(fn=lambda _: "Done!", inputs=remaster_btn, outputs=remaster_status)
|
558 |
+
|
559 |
+
# Tab: Harmonic Saturation
|
560 |
with gr.Tab("🧬 Harmonic Saturation"):
|
561 |
+
sat_input = gr.Audio(label="Upload Track", type="filepath")
|
562 |
+
saturation_type = gr.Dropdown(choices=["Tube", "Tape", "Console", "Mix Bus"], label="Saturation Type", value="Tube")
|
563 |
+
sat_intensity = gr.Slider(minimum=0.1, maximum=1.0, value=0.2, label="Intensity")
|
564 |
+
sat_output = gr.Audio(label="Warm Output", type="numpy")
|
565 |
+
sat_btn = gr.Button("Apply Saturation")
|
566 |
+
sat_btn.click(fn=harmonic_saturation, inputs=[sat_input, saturation_type, sat_intensity], outputs=sat_output)
|
567 |
+
|
568 |
+
# Tab: Vocal Doubler / Harmonizer
|
|
|
|
|
|
|
|
|
|
|
569 |
with gr.Tab("🎧 Vocal Doubler / Harmonizer"):
|
570 |
+
v_doubler_in = gr.Audio(label="Upload Vocal Clip", type="filepath")
|
571 |
+
v_doubler_out = gr.Audio(label="Doubled Output", type="numpy")
|
572 |
+
v_doubler_status = gr.Textbox(label="Status")
|
573 |
+
v_doubler_btn = gr.Button("Add Harmony")
|
574 |
+
v_doubler_btn.click(fn=run_harmony, inputs=v_doubler_in, outputs=[v_doubler_out, v_doubler_status])
|
575 |
+
|
576 |
+
# Tab: Batch Processing
|
|
|
577 |
with gr.Tab("🔊 Batch Processing"):
|
578 |
+
batch_files_in = gr.File(label="Upload Multiple Files", file_count="multiple")
|
579 |
+
batch_effects = gr.CheckboxGroup(choices=list({e for effs in preset_choices.values() for e in effs}), label="Apply Effects in Order")
|
580 |
+
batch_isolate = gr.Checkbox(label="Isolate Vocals After Effects")
|
581 |
+
batch_preset = gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0])
|
582 |
+
batch_export = gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
|
583 |
+
batch_process_btn = gr.Button("Process All Files")
|
584 |
+
batch_download = gr.File(label="Download ZIP of All Processed Files")
|
585 |
+
batch_status = gr.Textbox(label="Status")
|
586 |
+
batch_process_btn.click(fn=batch_process_audio, inputs=[batch_files_in, batch_effects, batch_isolate, batch_preset, batch_export], outputs=[batch_download, batch_status])
|
587 |
+
|
588 |
+
# Tab: AI Auto-Tune
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
589 |
with gr.Tab("🎤 AI Auto-Tune"):
|
590 |
+
autotune_file = gr.File(label="Source Voice Clip")
|
591 |
+
autotune_key = gr.Textbox(label="Target Key", value="C")
|
592 |
+
autotune_output = gr.Audio(label="Pitch-Corrected Output", type="numpy")
|
593 |
+
autotune_btn = gr.Button("Apply Auto-Tune")
|
594 |
+
autotune_btn.click(fn=auto_tune_vocal, inputs=[autotune_file, autotune_key], outputs=autotune_output)
|
595 |
+
|
596 |
+
# Tab: Frequency Spectrum
|
|
|
|
|
|
|
|
|
597 |
with gr.Tab("📊 Frequency Spectrum"):
|
598 |
+
spec_input = gr.Audio(label="Upload Track", type="filepath")
|
599 |
+
spec_output = gr.Image(label="Frequency Spectrum")
|
600 |
+
spec_btn = gr.Button("Visualize Spectrum")
|
601 |
+
spec_btn.click(fn=visualize_spectrum, inputs=spec_input, outputs=spec_output)
|
602 |
+
|
603 |
+
# Tab: Loudness Graph
|
604 |
with gr.Tab("📈 Loudness Graph"):
|
605 |
+
loudness_input = gr.Audio(label="Upload Track", type="filepath")
|
606 |
+
loudness_target = gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS")
|
607 |
+
loudness_output = gr.Audio(label="Normalized Output", type="numpy")
|
608 |
+
loudness_btn = gr.Button("Match Loudness")
|
609 |
+
loudness_btn.click(fn=match_loudness, inputs=[loudness_input, loudness_target], outputs=loudness_output)
|
610 |
+
|
611 |
+
# Tab: Save / Load Project
|
|
|
|
|
|
|
|
|
612 |
with gr.Tab("📁 Save/Load Project"):
|
613 |
with gr.Row():
|
614 |
+
with gr.Column():
|
615 |
+
proj_audio = gr.File(label="Original Audio")
|
616 |
+
proj_preset = gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0])
|
617 |
+
proj_effects = gr.CheckboxGroup(choices=list({e for effs in preset_choices.values() for e in effs}), label="Applied Effects")
|
618 |
+
save_proj_btn = gr.Button("Save Project")
|
619 |
+
project_file = gr.File(label="Saved Project File (.aiproj)")
|
620 |
+
with gr.Column():
|
621 |
+
load_proj_file = gr.File(label="Load .aiproj File")
|
622 |
+
loaded_preset_out = gr.Dropdown(choices=preset_names, label="Loaded Preset")
|
623 |
+
loaded_effects_out = gr.CheckboxGroup(choices=list({e for effs in preset_choices.values() for e in effs}), label="Loaded Effects")
|
624 |
+
load_proj_btn = gr.Button("Load Project")
|
625 |
+
|
626 |
+
save_proj_btn.click(fn=save_project, inputs=[proj_audio, proj_preset, proj_effects], outputs=project_file)
|
627 |
+
load_proj_btn.click(fn=load_project, inputs=load_proj_file, outputs=[loaded_preset_out, loaded_effects_out])
|
628 |
+
|
629 |
+
# Tab: Prompt-Based Editing
|
|
|
|
|
|
|
|
|
|
|
|
|
630 |
with gr.Tab("🧠 Prompt-Based Editing"):
|
631 |
+
prompt_audio = gr.File(label="Upload Audio", file_types=[".wav", ".mp3"])
|
632 |
+
prompt_text = gr.Textbox(label="Describe What You Want", lines=5)
|
633 |
+
prompt_output = gr.Audio(label="Edited Output", type="numpy")
|
634 |
+
prompt_btn = gr.Button("Process Prompt")
|
635 |
+
prompt_btn.click(fn=process_prompt, inputs=[prompt_audio, prompt_text], outputs=prompt_output)
|
636 |
+
|
637 |
+
# Tab: Custom EQ Editor
|
|
|
|
|
|
|
|
|
|
|
638 |
with gr.Tab("🎛 Custom EQ Editor"):
|
639 |
+
eq_audio = gr.Audio(label="Upload Track", type="filepath")
|
640 |
+
eq_genre = gr.Dropdown(choices=list(eq_map.keys()), value="Pop", label="Genre")
|
641 |
+
eq_output = gr.Audio(label="EQ-Enhanced Output", type="numpy")
|
642 |
+
eq_btn = gr.Button("Apply EQ")
|
643 |
+
eq_btn.click(fn=auto_eq, inputs=[eq_audio, eq_genre], outputs=eq_output)
|
644 |
+
|
645 |
+
# Tab: A/B Compare
|
|
|
|
|
|
|
|
|
646 |
with gr.Tab("🎯 A/B Compare"):
|
647 |
+
ab_input_a = gr.Audio(label="Version A", type="filepath")
|
648 |
+
ab_input_b = gr.Audio(label="Version B", type="filepath")
|
649 |
+
ab_output_a = gr.Audio(label="Version A", type="filepath")
|
650 |
+
ab_output_b = gr.Audio(label="Version B", type="filepath")
|
651 |
+
ab_compare_btn = gr.Button("Compare")
|
652 |
+
ab_compare_btn.click(fn=compare_ab, inputs=[ab_input_a, ab_input_b], outputs=[ab_output_a, ab_output_b])
|
653 |
+
|
654 |
+
# Tab: Loop Playback
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
655 |
with gr.Tab("🔁 Loop Playback"):
|
656 |
+
loop_audio = gr.Audio(label="Upload Track", type="filepath")
|
657 |
+
loop_start = gr.Slider(minimum=0, maximum=30000, step=100, value=5000, label="Start MS")
|
658 |
+
loop_end = gr.Slider(minimum=100, maximum=30000, step=100, value=10000, label="End MS")
|
659 |
+
loop_repeats = gr.Slider(minimum=1, maximum=10, value=2, label="Repeat Loops")
|
660 |
+
loop_output = gr.Audio(label="Looped Output", type="numpy")
|
661 |
+
loop_btn = gr.Button("Loop Section")
|
662 |
+
loop_btn.click(fn=loop_section, inputs=[loop_audio, loop_start, loop_end, loop_repeats], outputs=loop_output)
|
663 |
+
|
664 |
+
# Tab: Share Effect Chain
|
|
|
|
|
|
|
|
|
665 |
with gr.Tab("🔗 Share Effect Chain"):
|
666 |
+
share_effects = gr.CheckboxGroup(choices=list({e for effs in preset_choices.values() for e in effs}), label="Select Effects")
|
667 |
+
share_code = gr.Textbox(label="Share Code", lines=2)
|
668 |
+
share_btn = gr.Button("Generate Share Code")
|
669 |
+
share_btn.click(fn=lambda x: json.dumps(sorted(x)), inputs=share_effects, outputs=share_code)
|
670 |
+
|
671 |
+
# Tab: Load Shared Chain
|
|
|
672 |
with gr.Tab("📥 Load Shared Chain"):
|
673 |
+
load_code = gr.Textbox(label="Paste Shared Code", lines=2)
|
674 |
+
loaded_effects = gr.CheckboxGroup(choices=list({e for effs in preset_choices.values() for e in effs}), label="Loaded Effects")
|
675 |
+
load_code_btn = gr.Button("Load Effects")
|
676 |
+
def load_shared_code(code_str):
|
677 |
+
try:
|
678 |
+
return json.loads(code_str)
|
679 |
+
except:
|
680 |
+
return []
|
681 |
+
load_code_btn.click(fn=load_shared_code, inputs=load_code, outputs=loaded_effects)
|
682 |
+
|
683 |
+
# Tab: Keyboard Shortcuts
|
684 |
with gr.Tab("⌨ Keyboard Shortcuts"):
|
685 |
gr.Markdown("""
|
686 |
### Keyboard Controls
|
|
|
692 |
- `Ctrl + C`: Copy effect chain
|
693 |
- `Ctrl + V`: Paste effect chain
|
694 |
""")
|
695 |
+
|
696 |
+
# Tab: Vocal Formant Correction
|
697 |
with gr.Tab("🧑🎤 Vocal Formant Correction"):
|
698 |
+
formant_audio = gr.Audio(label="Upload Vocal Track", type="filepath")
|
699 |
+
formant_shift = gr.Slider(minimum=-2, maximum=2, value=1.0, step=0.1, label="Formant Shift")
|
700 |
+
formant_output = gr.Audio(label="Natural-Sounding Vocal", type="numpy")
|
701 |
+
formant_btn = gr.Button("Apply Correction")
|
702 |
+
formant_btn.click(fn=formant_correct, inputs=[formant_audio, formant_shift], outputs=formant_output)
|
703 |
+
|
704 |
+
# Tab: Voice Swap / Cloning
|
|
|
|
|
|
|
|
|
705 |
with gr.Tab("🔁 Voice Swap / Cloning"):
|
706 |
+
source_voice = gr.File(label="Source Voice Clip")
|
707 |
+
reference_voice = gr.File(label="Reference Voice")
|
708 |
+
clone_output = gr.Audio(label="Converted Output", type="numpy")
|
709 |
+
clone_btn = gr.Button("Clone Voice")
|
710 |
+
clone_btn.click(fn=clone_voice, inputs=[source_voice, reference_voice], outputs=clone_output)
|
711 |
+
|
712 |
+
# Tab: DAW Template Export
|
|
|
|
|
|
|
|
|
713 |
with gr.Tab("🎛 DAW Template Export"):
|
714 |
+
daw_stems = gr.File(label="Upload Stems", file_count="multiple")
|
715 |
+
daw_output = gr.File(label="DAW Template (.json/.als/.flp)")
|
716 |
+
daw_btn = gr.Button("Generate Template")
|
717 |
+
daw_btn.click(fn=generate_ableton_template, inputs=daw_stems, outputs=daw_output)
|
718 |
+
|
719 |
+
# Tab: Export Full Mix ZIP
|
|
|
|
|
720 |
with gr.Tab("📁 Export Full Mix ZIP"):
|
721 |
+
mix_stems = gr.File(label="Stems", file_count="multiple")
|
722 |
+
final_mix = gr.File(label="Final Mix")
|
723 |
+
export_zip_out = gr.File(label="Full Mix Archive (.zip)")
|
724 |
+
export_zip_btn = gr.Button("Export ZIP")
|
725 |
+
export_zip_btn.click(fn=export_full_mix, inputs=[mix_stems, final_mix], outputs=export_zip_out)
|
|
|
|
|
|
|
|
|
|
|
726 |
|
|
|
727 |
demo.launch()
|