Spaces:
Sleeping
Sleeping
File size: 5,557 Bytes
f6e2a5f 8aee03f a82e0c6 8aee03f a82e0c6 9301734 e4398dd 4e02325 45077a2 9301734 e4398dd 9301734 c108159 4e02325 9301734 4e02325 9301734 a82e0c6 e4398dd a82e0c6 9301734 a82e0c6 9301734 a82e0c6 9301734 e4398dd 45077a2 e4398dd 4e02325 e4398dd a82e0c6 4e02325 e4398dd 4e02325 a82e0c6 4e02325 e4398dd a82e0c6 e4398dd 4e02325 e4398dd b4d5bce a82e0c6 e4398dd a82e0c6 e4398dd 4e02325 8aee03f b4d5bce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
from pydub import AudioSegment
import numpy as np
import tempfile
import os
import noisereduce as nr
import json
import torch
from demucs import pretrained
from demucs.apply import apply_model
import torchaudio
from pathlib import Path
# === Helper Functions ===
def audiosegment_to_array(audio):
return np.array(audio.get_array_of_samples()), audio.frame_rate
def array_to_audiosegment(samples, frame_rate, channels=1):
return AudioSegment(
samples.tobytes(),
frame_rate=frame_rate,
sample_width=samples.dtype.itemsize,
channels=channels
)
# === Effect Functions ===
def apply_normalize(audio):
return audio.normalize()
def apply_noise_reduction(audio):
samples, frame_rate = audiosegment_to_array(audio)
reduced = nr.reduce_noise(y=samples, sr=frame_rate)
return array_to_audiosegment(reduced, frame_rate, channels=audio.channels)
def apply_compression(audio):
return audio.compress_dynamic_range()
def apply_reverb(audio):
reverb = audio - 10
return audio.overlay(reverb, position=1000)
def apply_pitch_shift(audio, semitones=-2):
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12)))
samples = np.array(audio.get_array_of_samples())
resampled = np.interp(
np.arange(0, len(samples), 2 ** (semitones / 12)),
np.arange(len(samples)),
samples
).astype(np.int16)
return AudioSegment(
resampled.tobytes(),
frame_rate=new_frame_rate,
sample_width=audio.sample_width,
channels=audio.channels
)
def apply_echo(audio, delay_ms=500, decay=0.5):
echo = audio - 10
return audio.overlay(echo, position=delay_ms)
def apply_stereo_widen(audio, pan_amount=0.3):
left = audio.pan(-pan_amount)
right = audio.pan(pan_amount)
return AudioSegment.from_mono_audiosegments(left, right)
def apply_bass_boost(audio, gain=10):
return audio.low_pass_filter(100).apply_gain(gain)
def apply_treble_boost(audio, gain=10):
return audio.high_pass_filter(4000).apply_gain(gain)
# === Vocal Isolation Helpers ===
def load_track_local(path, sample_rate, channels=2):
sig, rate = torchaudio.load(path)
if rate != sample_rate:
sig = torchaudio.functional.resample(sig, rate, sample_rate)
if channels == 1:
sig = sig.mean(0)
return sig
def save_track(path, wav, sample_rate):
path = Path(path)
torchaudio.save(str(path), wav, sample_rate)
def apply_vocal_isolation(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
ref = wav.mean(0)
wav -= ref[:, None]
sources = apply_model(model, wav[None])[0]
wav += ref[:, None]
vocal_track = sources[3].cpu() # index 3 = vocals
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
save_track(out_path, vocal_track, model.samplerate)
return out_path
# === Preset Loader ===
def load_presets():
preset_files = [f for f in os.listdir("presets") if f.endswith(".json")]
presets = {}
for f in preset_files:
with open(os.path.join("presets", f)) as infile:
data = json.load(infile)
presets[data["name"]] = data["effects"]
return presets
preset_choices = load_presets()
# === Main Processing Function ===
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name):
audio = AudioSegment.from_file(audio_file)
effect_map = {
"Noise Reduction": apply_noise_reduction,
"Compress Dynamic Range": apply_compression,
"Add Reverb": apply_reverb,
"Pitch Shift": lambda x: apply_pitch_shift(x),
"Echo": apply_echo,
"Stereo Widening": apply_stereo_widen,
"Bass Boost": apply_bass_boost,
"Treble Boost": apply_treble_boost,
"Normalize": apply_normalize,
}
# Apply selected preset or custom effects
effects_to_apply = preset_choices.get(preset_name, selected_effects)
for effect_name in effects_to_apply:
if effect_name in effect_map:
audio = effect_map[effect_name](audio)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
if isolate_vocals:
temp_input = os.path.join(tempfile.gettempdir(), "input.wav")
audio.export(temp_input, format="wav")
vocal_path = apply_vocal_isolation(temp_input)
final_audio = AudioSegment.from_wav(vocal_path)
else:
final_audio = audio
output_path = f.name
final_audio.export(output_path, format="mp3")
return output_path
# === Gradio Interface ===
effect_options = [
"Noise Reduction",
"Compress Dynamic Range",
"Add Reverb",
"Pitch Shift",
"Echo",
"Stereo Widening",
"Bass Boost",
"Treble Boost",
"Normalize"
]
preset_names = list(preset_choices.keys())
interface = gr.Interface(
fn=process_audio,
inputs=[
gr.Audio(label="Upload Audio", type="filepath"),
gr.CheckboxGroup(choices=effect_options, label="Apply Effects in Order"),
gr.Checkbox(label="Isolate Vocals After Effects"),
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0] if preset_names else None)
],
outputs=gr.Audio(label="Processed Audio (MP3)", type="filepath"),
title="AI Audio Studio - Pro Edition",
description="Apply multiple effects, isolate vocals, and export polished tracks -- all powered by AI!",
allow_flagging="never"
)
interface.launch() |