Spaces:
Sleeping
Sleeping
File size: 35,442 Bytes
c08f175 8aee03f 9b24ddd a82e0c6 8aee03f a82e0c6 9301734 5cdf2bf 4e02325 45077a2 636d339 5cdf2bf 3af2469 aa87123 e15902b 5cdf2bf 3a131d6 78a7fa2 b4e6504 e15902b c260091 e15902b fc163b0 e4398dd 9301734 c108159 4e02325 9301734 4e02325 9301734 a82e0c6 e4398dd a82e0c6 9301734 a82e0c6 9301734 a82e0c6 31bd509 9301734 7b9755f 651e9be 9b24ddd f6738b1 7ae5e3a 98f6048 f6738b1 98f6048 f6738b1 98f6048 f6738b1 98f6048 f6738b1 98f6048 f6738b1 98f6048 7ae5e3a 98f6048 7ae5e3a f6738b1 e4398dd 45077a2 e4398dd aa87123 e4398dd 4e02325 3af2469 5cdf2bf 3af2469 5cdf2bf 3af2469 5cdf2bf e4398dd bf7d84f 3af2469 bf7d84f e4398dd 0663ef0 636d339 651e9be 9b24ddd 636d339 5cdf2bf 636d339 e15902b 5cdf2bf 3af2469 5cdf2bf 3af2469 5cdf2bf 3af2469 5cdf2bf 636d339 e15902b 3a131d6 e15902b 651e9be 9b24ddd e15902b 3a131d6 e15902b 5cdf2bf e15902b 5cdf2bf e15902b 5cdf2bf 7f358cd 987f28e c260091 3a131d6 c08f175 3e32fb7 5cdf2bf 98f6048 5cdf2bf dc26431 7713285 78a7fa2 9b24ddd 78a7fa2 5cdf2bf 9b24ddd 6085d7e 987f28e dc26431 c08f175 dc26431 987f28e dc26431 987f28e 2f52f6c dc26431 6085d7e dc26431 2f52f6c 6085d7e dc26431 987f28e 6085d7e dc26431 98f6048 7ae5e3a 98f6048 7ae5e3a dc26431 2f52f6c 651e9be 9b24ddd 2f52f6c f6738b1 2f52f6c 7b9755f 98f6048 7b9755f 98f6048 7b9755f f6738b1 98f6048 f6738b1 7b9755f 98f6048 2f52f6c 98f6048 f6738b1 2f52f6c 651e9be 6085d7e 987f28e 651e9be 987f28e 98f6048 987f28e dc26431 2f52f6c dc26431 9b24ddd dc26431 987f28e 2f52f6c 98f6048 7ae5e3a 98f6048 7ae5e3a 98f6048 7ae5e3a 98f6048 2f52f6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 |
import gradio as gr
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
import numpy as np
import tempfile
import os
import noisereduce as nr
import json
import torch
from demucs import pretrained
from demucs.apply import apply_model
import torchaudio
from pathlib import Path
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import zipfile
import datetime
import librosa
import warnings
from faster_whisper import WhisperModel
from mutagen.mp3 import MP3
from mutagen.id3 import ID3, TIT2, TPE1, TALB, TYER
from TTS.api import TTS
import pickle
# Suppress warnings
warnings.filterwarnings("ignore")
# === Helper Functions ===
def audiosegment_to_array(audio):
return np.array(audio.get_array_of_samples()), audio.frame_rate
def array_to_audiosegment(samples, frame_rate, channels=1):
return AudioSegment(
samples.tobytes(),
frame_rate=frame_rate,
sample_width=samples.dtype.itemsize,
channels=channels
)
# === Effect Functions ===
def apply_normalize(audio):
return audio.normalize()
def apply_noise_reduction(audio):
samples, frame_rate = audiosegment_to_array(audio)
reduced = nr.reduce_noise(y=samples, sr=frame_rate)
return array_to_audiosegment(reduced, frame_rate, channels=audio.channels)
def apply_compression(audio):
return audio.compress_dynamic_range()
def apply_reverb(audio):
reverb = audio - 10
return audio.overlay(reverb, position=1000)
def apply_pitch_shift(audio, semitones=-2):
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12)))
samples = np.array(audio.get_array_of_samples())
resampled = np.interp(
np.arange(0, len(samples), 2 ** (semitones / 12)),
np.arange(len(samples)),
samples
).astype(np.int16)
return AudioSegment(
resampled.tobytes(),
frame_rate=new_frame_rate,
sample_width=audio.sample_width,
channels=audio.channels
)
def apply_echo(audio, delay_ms=500, decay=0.5):
echo = audio - 10
return audio.overlay(echo, position=delay_ms)
def apply_stereo_widen(audio, pan_amount=0.3):
left = audio.pan(-pan_amount)
right = audio.pan(pan_amount)
return AudioSegment.from_mono_audiosegments(left, right)
def apply_bass_boost(audio, gain=10):
return audio.low_pass_filter(100).apply_gain(gain)
def apply_treble_boost(audio, gain=10):
return audio.high_pass_filter(4000).apply_gain(gain)
def apply_noise_gate(audio, threshold=-50.0):
samples = np.array(audio.get_array_of_samples())
rms = np.sqrt(np.mean(samples**2))
if rms < 1:
return audio
normalized = samples / np.max(np.abs(samples))
envelope = np.abs(normalized)
gated = np.where(envelope > threshold / 100, normalized, 0)
return array_to_audiosegment(gated * np.iinfo(np.int16).max, audio.frame_rate, channels=audio.channels)
def apply_limiter(audio, limit_dB=-1):
limiter = audio._spawn(audio.raw_data, overrides={"frame_rate": audio.frame_rate})
return limiter.apply_gain(limit_dB)
def apply_auto_gain(audio, target_dB=-20):
change = target_dB - audio.dBFS
return audio.apply_gain(change)
def apply_vocal_distortion(audio, intensity=0.3):
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
distorted = samples + intensity * np.sin(samples * 2 * np.pi / 32768)
return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, channels=audio.channels)
def apply_harmony(audio, shift_semitones=4):
shifted_up = apply_pitch_shift(audio, shift_semitones)
shifted_down = apply_pitch_shift(audio, -shift_semitones)
return audio.overlay(shifted_up).overlay(shifted_down)
def apply_stage_mode(audio):
processed = apply_reverb(audio)
processed = apply_bass_boost(processed, gain=6)
return apply_limiter(processed, limit_dB=-2)
# === Auto-EQ per Genre ===
def auto_eq(audio, genre="Pop"):
# Define frequency bands based on genre
eq_map = {
"Pop": [(200, 500, -3), (2000, 4000, +4)], # Cut muddiness, boost vocals
"EDM": [(60, 250, +6), (8000, 12000, +3)], # Maximize bass & sparkle
"Rock": [(1000, 3000, +4), (7000, 10000, -3)], # Punchy mids, reduce sibilance
"Hip-Hop": [(20, 100, +6), (7000, 10000, -4)], # Deep lows, smooth highs
"Acoustic": [(100, 300, -3), (4000, 8000, +2)], # Natural tone
"Metal": [(100, 500, -4), (2000, 5000, +6), (7000, 12000, -3)], # Clear low-mids, crisp highs
"Trap": [(80, 120, +6), (3000, 6000, -4)], # Sub-bass boost, cut harsh highs
"LoFi": [(20, 200, +3), (1000, 3000, -2)], # Warmth, soft mids
"Default": []
}
from scipy.signal import butter, sosfilt
def band_eq(samples, sr, lowcut, highcut, gain):
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
filtered = sosfilt(sos, samples)
return samples + gain * filtered
samples, sr = audiosegment_to_array(audio)
samples = samples.astype(np.float64)
for band in eq_map.get(genre, []):
low, high, gain = band
samples = band_eq(samples, sr, low, high, gain)
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
# === Prompt-Based Editing ===
def process_prompt(audio_path, prompt):
audio = AudioSegment.from_file(audio_path)
if "noise" in prompt.lower() or "clean" in prompt.lower():
audio = apply_noise_reduction(audio)
if "normalize" in prompt.lower() or "loud" in prompt.lower():
audio = apply_normalize(audio)
if "bass" in prompt.lower() and ("boost" in prompt.lower()):
audio = apply_bass_boost(audio)
if "treble" in prompt.lower() or "high" in prompt.lower():
audio = apply_treble_boost(audio)
if "echo" in prompt.lower() or "reverb" in prompt.lower():
audio = apply_reverb(audio)
if "pitch" in prompt.lower() and "correct" in prompt.lower():
audio = apply_pitch_shift(audio, 0) # Placeholder
if "harmony" in prompt.lower() or "double" in prompt.lower():
audio = apply_harmony(audio)
out_path = os.path.join(tempfile.gettempdir(), "prompt_output.wav")
audio.export(out_path, format="wav")
return out_path
# === Real-Time EQ Sliders ===
def real_time_eq(audio, low_gain=0, mid_gain=0, high_gain=0):
samples, sr = audiosegment_to_array(audio)
samples = samples.astype(np.float64)
# Low EQ: 20β500Hz
sos_low = butter(10, [20, 500], btype='band', output='sos', fs=sr)
samples = sosfilt(sos_low, samples) * (10 ** (low_gain / 20))
# Mid EQ: 500β4000Hz
sos_mid = butter(10, [500, 4000], btype='band', output='sos', fs=sr)
samples += sosfilt(sos_mid, samples) * (10 ** (mid_gain / 20))
# High EQ: 4000β20000Hz
sos_high = butter(10, [4000, 20000], btype='high', output='sos', fs=sr)
samples += sosfilt(sos_high, samples) * (10 ** (high_gain / 20))
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
# === AI Suggest Presets Based on Genre ===
genre_preset_map = {
"Speech": ["Clean Podcast", "Normalize"],
"Pop": ["Vocal Clarity", "Limiter", "Stereo Expansion"],
"EDM": ["Heavy Bass", "Stereo Expansion", "Limiter", "Phaser"],
"Rock": ["Distortion", "Punchy Mids", "Reverb"],
"Hip-Hop": ["Deep Bass", "Vocal Presence", "Saturation"]
}
def suggest_preset_by_genre(audio_path):
try:
y, sr = torchaudio.load(audio_path)
mfccs = librosa.feature.mfcc(y=y.numpy().flatten(), sr=sr, n_mfcc=13).mean(axis=1).reshape(1, -1)
genre = "Pop"
return genre_preset_map.get(genre, ["Default"])
except Exception:
return ["Default"]
# === Create Karaoke Video from Audio + Lyrics ===
def create_karaoke_video(audio_path, lyrics, bg_image=None):
print(f"Creating karaoke video with lyrics: {lyrics}")
return apply_auto_gain(AudioSegment.from_file(audio_path)).export(
os.path.join(tempfile.gettempdir(), "karaoke_output.wav"), format="wav"
)
# === Vocal Isolation Helpers ===
def load_track_local(path, sample_rate, channels=2):
sig, rate = torchaudio.load(path)
if rate != sample_rate:
sig = torchaudio.functional.resample(sig, rate, sample_rate)
if channels == 1:
sig = sig.mean(0)
return sig
def save_track(path, wav, sample_rate):
path = Path(path)
torchaudio.save(str(path), wav, sample_rate)
def apply_vocal_isolation(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
ref = wav.mean(0)
wav -= ref[:, None]
sources = apply_model(model, wav[None])[0]
wav += ref[:, None]
vocal_track = sources[3].cpu()
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
save_track(out_path, vocal_track, model.samplerate)
return out_path
# === Stem Splitting (Drums, Bass, Other, Vocals) ===
def stem_split(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
sources = apply_model(model, wav[None])[0]
output_dir = tempfile.mkdtemp()
stem_paths = []
for i, name in enumerate(['drums', 'bass', 'other', 'vocals']):
path = os.path.join(output_dir, f"{name}.wav")
save_track(path, sources[i].cpu(), model.samplerate)
stem_paths.append(gr.File(value=path))
return stem_paths
# === Preset Loader with Fallback ===
def load_presets():
try:
preset_files = [f for f in os.listdir("presets") if f.endswith(".json")]
presets = {}
for f in preset_files:
path = os.path.join("presets", f)
try:
with open(path, "r") as infile:
data = json.load(infile)
if "name" in data and "effects" in data:
presets[data["name"]] = data["effects"]
except json.JSONDecodeError:
print(f"Invalid JSON: {f}")
return presets
except FileNotFoundError:
print("Presets folder not found")
return {}
preset_choices = load_presets()
if not preset_choices:
preset_choices = {
"Default": [],
"Clean Podcast": ["Noise Reduction", "Normalize"],
"Podcast Mastered": ["Noise Reduction", "Normalize", "Compress Dynamic Range"],
"Radio Ready": ["Bass Boost", "Treble Boost", "Limiter"],
"Music Production": ["Reverb", "Stereo Widening", "Pitch Shift"],
"ASMR Creator": ["Noise Gate", "Auto Gain", "Low-Pass Filter"],
"Voiceover Pro": ["Vocal Isolation", "TTS", "EQ Match"],
"8-bit Retro": ["Bitcrusher", "Echo", "Mono Downmix"],
# π€ Vocalist Presets
"π Clean Vocal": ["Noise Reduction", "Normalize", "High Pass Filter (80Hz)"],
"π§ͺ Vocal Distortion": ["Vocal Distortion", "Reverb", "Compress Dynamic Range"],
"πΆ Singer's Harmony": ["Harmony", "Stereo Widening", "Pitch Shift"],
"π« ASMR Vocal": ["Auto Gain", "Low-Pass Filter (3000Hz)", "Noise Gate"],
"πΌ Stage Mode": ["Reverb", "Bass Boost", "Limiter"],
"π΅ Auto-Tune Style": ["Pitch Shift (+1 semitone)", "Normalize", "Treble Boost"]
}
preset_names = list(preset_choices.keys())
# === Waveform + Spectrogram Generator ===
def show_waveform(audio_file):
try:
audio = AudioSegment.from_file(audio_file)
samples = np.array(audio.get_array_of_samples())
plt.figure(figsize=(10, 2))
plt.plot(samples[:10000], color="blue")
plt.axis("off")
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
plt.close()
buf.seek(0)
return Image.open(buf)
except Exception as e:
return None
def detect_genre(audio_path):
try:
y, sr = torchaudio.load(audio_path)
mfccs = librosa.feature.mfcc(y=y.numpy().flatten(), sr=sr, n_mfcc=13).mean(axis=1).reshape(1, -1)
return "Speech"
except Exception:
return "Unknown"
# === Session Info Export ===
def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre):
log = {
"timestamp": str(datetime.datetime.now()),
"filename": os.path.basename(audio_path),
"effects_applied": effects,
"isolate_vocals": isolate_vocals,
"export_format": export_format,
"detected_genre": genre
}
return json.dumps(log, indent=2)
# === Main Processing Function with Status Updates ===
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
status = "π Loading audio..."
try:
audio = AudioSegment.from_file(audio_file)
status = "π Applying effects..."
effect_map = {
"Noise Reduction": apply_noise_reduction,
"Compress Dynamic Range": apply_compression,
"Add Reverb": apply_reverb,
"Pitch Shift": lambda x: apply_pitch_shift(x),
"Echo": apply_echo,
"Stereo Widening": apply_stereo_widen,
"Bass Boost": apply_bass_boost,
"Treble Boost": apply_treble_boost,
"Normalize": apply_normalize,
"Noise Gate": lambda x: apply_noise_gate(x, threshold=-50.0),
"Limiter": lambda x: apply_limiter(x, limit_dB=-1),
"Phaser": lambda x: apply_phaser(x),
"Flanger": lambda x: apply_phaser(x, rate=1.2, depth=0.9, mix=0.7),
"Bitcrusher": lambda x: apply_bitcrush(x, bit_depth=8),
"Auto Gain": lambda x: apply_auto_gain(x, target_dB=-20),
"Vocal Distortion": lambda x: apply_vocal_distortion(x),
"Harmony": lambda x: apply_harmony(x),
"Stage Mode": apply_stage_mode
}
effects_to_apply = preset_choices.get(preset_name, selected_effects)
for effect_name in effects_to_apply:
if effect_name in effect_map:
audio = effect_map[effect_name](audio)
status = "πΎ Saving final audio..."
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
if isolate_vocals:
temp_input = os.path.join(tempfile.gettempdir(), "input.wav")
audio.export(temp_input, format="wav")
vocal_path = apply_vocal_isolation(temp_input)
final_audio = AudioSegment.from_wav(vocal_path)
else:
final_audio = audio
output_path = f.name
final_audio.export(output_path, format=export_format.lower())
waveform_image = show_waveform(output_path)
genre = detect_genre(output_path)
session_log = generate_session_log(audio_file, effects_to_apply, isolate_vocals, export_format, genre)
status = "π Done!"
return output_path, waveform_image, session_log, genre, status
except Exception as e:
status = f"β Error: {str(e)}"
return None, None, status, "", status
# === Batch Processing Function ===
def batch_process_audio(files, selected_effects, isolate_vocals, preset_name, export_format):
status = "π Loading files..."
try:
output_dir = tempfile.mkdtemp()
results = []
session_logs = []
for file in files:
processed_path, _, log, _, _ = process_audio(file.name, selected_effects, isolate_vocals, preset_name, export_format)
results.append(processed_path)
session_logs.append(log)
zip_path = os.path.join(output_dir, "batch_output.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
for i, res in enumerate(results):
filename = f"processed_{i}.{export_format.lower()}"
zipf.write(res, filename)
zipf.writestr(f"session_info_{i}.json", session_logs[i])
return zip_path, "π¦ ZIP created successfully!"
except Exception as e:
return None, f"β Batch processing failed: {str(e)}"
# === Transcribe & Edit Tab ===
whisper_model = WhisperModel("base")
def transcribe_audio(audio_path):
segments, info = whisper_model.transcribe(audio_path, beam_size=5)
text = " ".join([seg.text for seg in segments])
return text
# === TTS Tab ===
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False)
def generate_tts(text):
out_path = os.path.join(tempfile.gettempdir(), "tts_output.wav")
tts.tts_to_file(text=text, file_path=out_path)
return out_path
# === Save/Load Project File (.aiproj) ===
def save_project(audio_path, preset_name, effects):
project_data = {
"audio": AudioSegment.from_file(audio_path).raw_data,
"preset": preset_name,
"effects": effects
}
out_path = os.path.join(tempfile.gettempdir(), "project.aiproj")
with open(out_path, "wb") as f:
pickle.dump(project_data, f)
return out_path
def load_project(project_file):
with open(project_file.name, "rb") as f:
data = pickle.load(f)
return data["preset"], data["effects"]
# === Trim Silence Automatically (VAD) ===
def detect_silence(audio_file, silence_threshold=-50.0, min_silence_len=1000):
audio = AudioSegment.from_file(audio_file)
nonsilent_ranges = detect_nonsilent(
audio,
min_silence_len=int(min_silence_len),
silence_thresh=silence_threshold
)
if not nonsilent_ranges:
return audio.export(os.path.join(tempfile.gettempdir(), "trimmed.wav"), format="wav")
trimmed = audio[nonsilent_ranges[0][0]:nonsilent_ranges[-1][1]]
out_path = os.path.join(tempfile.gettempdir(), "trimmed.wav")
trimmed.export(out_path, format="wav")
return out_path
# === Mix Two Tracks ===
def mix_tracks(track1, track2, volume_offset=0):
a1 = AudioSegment.from_file(track1)
a2 = AudioSegment.from_file(track2)
mixed = a1.overlay(a2 - volume_offset)
out_path = os.path.join(tempfile.gettempdir(), "mixed.wav")
mixed.export(out_path, format="wav")
return out_path
# === Dummy Voice Cloning Tab β Works Locally Only ===
def clone_voice(*args):
return "β οΈ Voice cloning requires local install β use Python 3.9 or below"
# === Speaker Diarization ("Who Spoke When?") ===
try:
from pyannote.audio import Pipeline as DiarizationPipeline
from huggingface_hub import login
hf_token = os.getenv("HF_TOKEN")
if hf_token:
login(token=hf_token)
diarize_pipeline = DiarizationPipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hf_token or True)
except Exception as e:
diarize_pipeline = None
print(f"β οΈ Failed to load diarization: {e}")
def diarize_and_transcribe(audio_path):
if not diarize_pipeline:
return "β οΈ Diarization pipeline not loaded β check HF token or install pyannote.audio"
# Run diarization
audio = AudioSegment.from_file(audio_path)
temp_wav = os.path.join(tempfile.gettempdir(), "diarize.wav")
audio.export(temp_wav, format="wav")
try:
diarization = diarize_pipeline(temp_wav)
result = whisper.transcribe(temp_wav)
segments = []
for turn, _, speaker in diarization.itertracks(yield_label=True):
text = " ".join([seg["text"] for seg in result["segments"] if seg["start"] >= turn.start and seg["end"] <= turn.end])
segments.append({
"speaker": speaker,
"start": turn.start,
"end": turn.end,
"text": text
})
return segments
except Exception as e:
return f"β οΈ Diarization failed: {str(e)}"
# === Real-Time Spectrum Analyzer + EQ Visualizer ===
def visualize_spectrum(audio_path):
y, sr = torchaudio.load(audio_path)
y_np = y.numpy().flatten()
stft = librosa.stft(y_np)
db = librosa.amplitude_to_db(abs(stft))
plt.figure(figsize=(10, 4))
img = librosa.display.specshow(db, sr=sr, x_axis="time", y_axis="hz", cmap="magma")
plt.colorbar(img, format="%+2.0f dB")
plt.title("Frequency Spectrum")
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format="png")
plt.close()
buf.seek(0)
return Image.open(buf)
# === Real-Time EQ Slider Wrapper ===
def real_time_eq_slider(audio, low_gain, mid_gain, high_gain):
return real_time_eq(audio, low_gain, mid_gain, high_gain)
# === Cloud Project Sync (Premium Feature) ===
def cloud_save_project(audio, preset, effects, project_name, project_id=""):
project_data = {
"audio": audio,
"preset": preset,
"effects": effects
}
project_path = os.path.join(tempfile.gettempdir(), f"{project_name}.aiproj")
with open(project_path, "wb") as f:
pickle.dump(project_data, f)
return project_path, f"β
'{project_name}' saved to cloud"
def cloud_load_project(project_id):
if not project_id:
return None, None, None
try:
with open(project_id, "rb") as f:
data = pickle.load(f)
return data["audio"], data["preset"], data["effects"]
except Exception:
return None, None, None
# === UI ===
effect_options = [
"Noise Reduction",
"Compress Dynamic Range",
"Add Reverb",
"Pitch Shift",
"Echo",
"Stereo Widening",
"Bass Boost",
"Treble Boost",
"Normalize",
"Noise Gate",
"Limiter",
"Phaser",
"Flanger",
"Bitcrusher",
"Auto Gain",
"Vocal Distortion",
"Harmony",
"Stage Mode"
]
with gr.Blocks(title="AI Audio Studio", css="style.css") as demo:
gr.Markdown("## π§ Ultimate AI Audio Studio\nUpload, edit, export β powered by AI!")
# --- Single File Studio ---
with gr.Tab("π΅ Single File Studio"):
gr.Interface(
fn=process_audio,
inputs=[
gr.Audio(label="Upload Audio", type="filepath"),
gr.CheckboxGroup(choices=effect_options, label="Apply Effects in Order"),
gr.Checkbox(label="Isolate Vocals After Effects"),
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0] if preset_names else None),
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
],
outputs=[
gr.Audio(label="Processed Audio", type="filepath"),
gr.Image(label="Waveform Preview"),
gr.Textbox(label="Session Log (JSON)", lines=5),
gr.Textbox(label="Detected Genre", lines=1),
gr.Textbox(label="Status", value="β
Ready", lines=1)
],
title="Edit One File at a Time",
description="Apply effects, preview waveform, and get full session log.",
flagging_mode="never",
submit_btn="Process Audio",
clear_btn=None
)
# --- Batch Processing ---
with gr.Tab("π Batch Processing"):
gr.Interface(
fn=batch_process_audio,
inputs=[
gr.File(label="Upload Multiple Files", file_count="multiple"),
gr.CheckboxGroup(choices=effect_options, label="Apply Effects in Order"),
gr.Checkbox(label="Isolate Vocals After Effects"),
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0]),
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
],
outputs=[
gr.File(label="Download ZIP of All Processed Files"),
gr.Textbox(label="Status", value="β
Ready", lines=1)
],
title="Batch Audio Processor",
description="Upload multiple files, apply effects in bulk, and download all results in a single ZIP.",
flagging_mode="never",
submit_btn="Process All Files",
clear_btn=None
)
# --- Remix Mode ---
with gr.Tab("π Remix Mode"):
gr.Interface(
fn=stem_split,
inputs=gr.Audio(label="Upload Music Track", type="filepath"),
outputs=[
gr.File(label="Vocals"),
gr.File(label="Drums"),
gr.File(label="Bass"),
gr.File(label="Other")
],
title="Split Into Drums, Bass, Vocals, and More",
description="Use AI to separate musical elements like vocals, drums, and bass.",
flagging_mode="never",
clear_btn=None
)
# --- Genre Mastering Tab ===
with gr.Tab("π§ Genre Mastering"):
gr.Interface(
fn=lambda audio, genre: auto_eq(audio, genre),
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Dropdown(choices=list(genre_preset_map.keys()), label="Select Genre", value="Pop")
],
outputs=gr.Audio(label="Mastered Output", type="filepath"),
title="Genre-Specific Mastering",
description="Apply professionally tuned mastering settings for popular music genres."
)
# --- Real-Time EQ ===
with gr.Tab("π Real-Time EQ"):
gr.Interface(
fn=real_time_eq_slider,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Slider(minimum=-12, maximum=12, value=0, label="Low Gain (-200β500Hz)"),
gr.Slider(minimum=-12, maximum=12, value=0, label="Mid Gain (500Hzβ4kHz)"),
gr.Slider(minimum=-12, maximum=12, value=0, label="High Gain (4kHz+)"),
],
outputs=gr.Audio(label="EQ'd Output", type="filepath"),
title="Adjust Frequency Bands Live",
description="Fine-tune your sound using real-time sliders for low, mid, and high frequencies."
)
# --- Spectrum Visualizer ===
with gr.Tab("π Frequency Spectrum"):
gr.Interface(
fn=visualize_spectrum,
inputs=gr.Audio(label="Upload Track", type="filepath"),
outputs=gr.Image(label="Spectrum Analysis"),
title="Real-Time Spectrum Analyzer",
description="See the frequency breakdown of your audio"
)
# --- Prompt-Based Editing Tab ===
with gr.Tab("π§ Prompt-Based Editing"):
gr.Interface(
fn=process_prompt,
inputs=[
gr.File(label="Upload Audio", type="filepath"),
gr.Textbox(label="Describe What You Want", lines=5)
],
outputs=gr.Audio(label="Edited Output", type="filepath"),
title="Type Your Edits β AI Does the Rest",
description="Say what you want done and let AI handle it.",
allow_flagging="never"
)
# --- Vocal Presets for Singers ===
with gr.Tab("π€ Vocal Presets for Singers"):
gr.Interface(
fn=process_audio,
inputs=[
gr.Audio(label="Upload Vocal Track", type="filepath"),
gr.CheckboxGroup(choices=[
"Noise Reduction",
"Normalize",
"Compress Dynamic Range",
"Bass Boost",
"Treble Boost",
"Reverb",
"Auto Gain",
"Vocal Distortion",
"Harmony",
"Stage Mode"
]),
gr.Checkbox(label="Isolate Vocals After Effects"),
gr.Dropdown(choices=preset_names, label="Select Vocal Preset", value=preset_names[0]),
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
],
outputs=[
gr.Audio(label="Processed Vocal", type="filepath"),
gr.Image(label="Waveform Preview"),
gr.Textbox(label="Session Log (JSON)", lines=5),
gr.Textbox(label="Detected Genre", lines=1),
gr.Textbox(label="Status", value="β
Ready", lines=1)
],
title="Create Studio-Quality Vocal Tracks",
description="Apply singer-friendly presets and effects to enhance vocals.",
allow_flagging="never"
)
# --- Voice Cloning (Local Only) ===
with gr.Tab("π Voice Cloning (Local Only)"):
gr.Interface(
fn=clone_voice,
inputs=[
gr.File(label="Source Voice Clip"),
gr.File(label="Target Voice Clip"),
gr.Textbox(label="Text to Clone", lines=5)
],
outputs=gr.Audio(label="Cloned Output", type="filepath"),
title="Replace One Voice With Another",
description="Clone voice from source to target speaker using AI"
)
# --- Speaker Diarization ("Who Spoke When?") ===
if diarize_pipeline:
with gr.Tab("π§ββοΈ Who Spoke When?"):
gr.Interface(
fn=diarize_and_transcribe,
inputs=gr.Audio(label="Upload Interview/Podcast", type="filepath"),
outputs=gr.JSON(label="Diarized Transcript"),
title="Split By Speaker + Transcribe",
description="Detect speakers and transcribe their speech automatically."
)
# --- TTS Voice Generator ===
with gr.Tab("π¬ TTS Voice Generator"):
gr.Interface(
fn=generate_tts,
inputs=gr.Textbox(label="Enter Text", lines=5),
outputs=gr.Audio(label="Generated Speech", type="filepath"),
title="Text-to-Speech Generator",
description="Type anything and turn it into natural-sounding speech."
)
# --- Auto-Save / Resume Sessions ===
session_state = gr.State()
def save_or_resume_session(audio, preset, effects, action="save"):
if action == "save":
return {"audio": audio, "preset": preset, "effects": effects}, None, None, None
elif action == "load" and isinstance(audio, dict):
return (
None,
audio.get("audio"),
audio.get("preset"),
audio.get("effects")
)
return None, None, None, None
with gr.Tab("π§Ύ Auto-Save & Resume"):
gr.Markdown("Save your current state and resume later.")
action_radio = gr.Radio(["save", "load"], label="Action", value="save")
audio_input = gr.Audio(label="Upload or Load Audio", type="filepath")
preset_dropdown = gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0] if preset_names else None)
effect_checkbox = gr.CheckboxGroup(choices=effect_options, label="Applied Effects")
action_btn = gr.Button("Save or Load Session")
session_data = gr.State()
loaded_audio = gr.Audio(label="Loaded Audio", type="filepath")
loaded_preset = gr.Dropdown(choices=preset_names, label="Loaded Preset")
loaded_effects = gr.CheckboxGroup(choices=effect_options, label="Loaded Effects")
action_btn.click(
fn=save_or_resume_session,
inputs=[audio_input, preset_dropdown, effect_checkbox, action_radio],
outputs=[session_data, loaded_audio, loaded_preset, loaded_effects]
)
# --- VAD β Detect & Remove Silence ===
with gr.Tab("βοΈ Trim Silence Automatically"):
gr.Interface(
fn=detect_silence,
inputs=[
gr.File(label="Upload Track"),
gr.Slider(minimum=-100, maximum=-10, value=-50, label="Silence Threshold (dB)"),
gr.Number(label="Min Silence Length (ms)", value=1000)
],
outputs=gr.File(label="Trimmed Output"),
title="Auto-Detect & Remove Silence",
description="Detect and trim silence at start/end or between words"
)
# --- Save/Load Project File (.aiproj) ===
with gr.Tab("π Save/Load Project"):
gr.Interface(
fn=save_project,
inputs=[
gr.File(label="Original Audio"),
gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0]),
gr.CheckboxGroup(choices=effect_options, label="Applied Effects")
],
outputs=gr.File(label="Project File (.aiproj)"),
title="Save Everything Together",
description="Save your session, effects, and settings in one file to reuse later."
)
gr.Interface(
fn=load_project,
inputs=gr.File(label="Upload .aiproj File"),
outputs=[
gr.Dropdown(choices=preset_names, label="Loaded Preset"),
gr.CheckboxGroup(choices=effect_options, label="Loaded Effects")
],
title="Resume Last Project",
description="Load your saved session"
)
# --- Cloud Project Sync (Premium Feature) ===
with gr.Tab("βοΈ Cloud Project Sync"):
gr.Markdown("Save your projects online and resume them from any device.")
gr.Interface(
fn=cloud_save_project,
inputs=[
gr.File(label="Upload Audio", type="filepath"),
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0]),
gr.CheckboxGroup(choices=effect_options, label="Effects Applied"),
gr.Textbox(label="Project Name"),
gr.Textbox(label="Project ID (Optional)")
],
outputs=[
gr.File(label="Downloadable Project File"),
gr.Textbox(label="Status", value="β
Ready", lines=1)
],
title="Save to Cloud",
description="Save your project online and share it across devices."
)
gr.Interface(
fn=cloud_load_project,
inputs=gr.Textbox(label="Enter Project ID"),
outputs=[
gr.Audio(label="Loaded Audio", type="filepath"),
gr.Dropdown(choices=preset_names, label="Loaded Preset"),
gr.CheckboxGroup(choices=effect_options, label="Loaded Effects")
],
title="Load from Cloud",
description="Resume a project from the cloud",
allow_flagging="never"
)
# --- AI Suggest Presets Based on Genre ===
with gr.Tab("π§ AI Suggest Preset"):
gr.Interface(
fn=suggest_preset_by_genre,
inputs=gr.Audio(label="Upload Track", type="filepath"),
outputs=gr.Dropdown(choices=preset_names, label="Recommended Preset"),
title="Let AI Recommend Best Preset",
description="Upload a track and let AI recommend the best preset based on genre."
)
# --- Create Karaoke Video from Audio + Lyrics ===
with gr.Tab("πΉ Create Karaoke Video"):
gr.Interface(
fn=create_karaoke_video,
inputs=[
gr.Audio(label="Upload Track", type="filepath"),
gr.Textbox(label="Lyrics", lines=10),
gr.File(label="Background (Optional)"),
],
outputs=gr.Video(label="Karaoke Video"),
title="Make Karaoke Videos from Audio + Lyrics",
description="Generate karaoke-style videos with real-time sync."
)
demo.launch() |