tasal9's picture
Update app.py
7465346 verified
import gradio as gr
import time
import threading
import random
from datetime import datetime
from datasets import load_dataset
import pandas as pd
# Global state
class TrainingState:
def __init__(self):
self.status = "idle"
self.progress = 0
self.logs = ["βœ… System initialized"]
self.start_time = None
self.model_name = "tasal9/pashto-base-bloom"
self.active_process = None
self.dataset_loaded = False
self.dataset_info = "No dataset loaded"
self.dataset_sample = pd.DataFrame()
def load_dataset(self):
try:
self.logs.append("⏳ Loading dataset: tasal9/ZamAi-Pashto-Datasets-V2")
dataset = load_dataset("tasal9/ZamAi-Pashto-Datasets-V2")
self.dataset_loaded = True
self.dataset_info = f"βœ… Dataset loaded!\nName: ZamAi-Pashto-Datasets-V2\nSize: {len(dataset['train'])} examples"
self.dataset_sample = pd.DataFrame(dataset['train'].select(range(5)))
self.logs.append(f"πŸ“Š {len(dataset['train'])} Pashto examples loaded")
return True
except Exception as e:
self.logs.append(f"❌ Error loading dataset: {str(e)}")
self.dataset_info = f"Error: {str(e)}"
return False
def start_training(self, size):
self.status = "training"
self.progress = 0
self.logs = [f"πŸ‹οΈ Training started at {datetime.now().strftime('%H:%M:%S')}"]
self.logs.append(f"πŸ“ Data size: {size} characters")
self.start_time = time.time()
def start_finetuning(self, size):
self.status = "fine-tuning"
self.progress = 0
self.logs = [f"🎯 Fine-tuning started at {datetime.now().strftime('%H:%M:%S')}"]
self.logs.append(f"πŸ“ Data size: {size} characters")
self.start_time = time.time()
def update_progress(self, progress):
self.progress = min(100, max(0, progress))
if progress >= 100:
self.complete_process()
def add_log(self, msg):
self.logs.append(f"[{datetime.now().strftime('%H:%M:%S')}] {msg}")
if len(self.logs) > 15:
self.logs.pop(0)
def complete_process(self):
elapsed = time.time() - self.start_time
self.add_log(f"🏁 {self.status.capitalize()} completed in {elapsed:.1f}s")
self.status = "idle"
self.progress = 100
with gr.Tab("πŸ“Š Status"):
with gr.Row():
status_box = gr.Textbox(label="Current Status", interactive=False)
progress_bar = gr.Slider(minimum=0, maximum=1, value=0, step=0.01, interactive=False, label="Progress")
log_output = gr.Textbox(label="Logs", lines=10, interactive=False)
refresh_btn = gr.Button("πŸ”„ Refresh Status")
refresh_btn.click(get_current_status, outputs=[status_box, progress_bar, log_output])
state = TrainingState()
def test_model(text):
if not text.strip():
return "❗ Enter text to test."
options = [
f"Processed: '{text}'",
f"Model response to: {text}",
f"Pashto analysis: {len(text)} characters",
f"βœ… Got it: {text}",
f"Generated: {text}... [simulated]",
f"πŸ” Words: {len(text.split())}"
]
return random.choice(options)
def simulate_process(duration, process_type, data_size):
if process_type == "train":
state.start_training(data_size)
else:
state.start_finetuning(data_size)
steps = 10
for i in range(steps + 1):
time.sleep(duration / steps)
state.update_progress(int((i / steps) * 100))
if i % 3 == 0:
state.add_log(random.choice([
f"Batch {i}/{steps}",
f"Loss: {random.uniform(0.1, 1.0):.3f}",
f"LR: {random.uniform(1e-5, 1e-3):.6f}",
f"GPU: {random.randint(60, 95)}% (sim)",
]))
state.complete_process()
def train_model(text):
if not text.strip():
return "❌ Add training data.", ""
if not state.dataset_loaded:
return "❌ Load dataset first.", ""
if state.status != "idle":
return "⏳ Wait for current process.", ""
threading.Thread(target=simulate_process, args=(15, "train", len(text)), daemon=True).start()
return "βœ… Training started", ""
def finetune_model(text):
if not text.strip():
return "❌ Add fine-tuning data.", ""
if not state.dataset_loaded:
return "❌ Load dataset first.", ""
if state.status != "idle":
return "⏳ Wait for current process.", ""
threading.Thread(target=simulate_process, args=(10, "fine-tune", len(text)), daemon=True).start()
return "βœ… Fine-tuning started", ""
def load_hf_dataset():
ok = state.load_dataset()
return {
dataset_status: state.dataset_info,
dataset_preview: state.dataset_sample if ok else pd.DataFrame(),
dataset_btn: "βœ… Loaded" if ok else "Retry"
}
def get_current_status():
return {
status_box: state.get_status(),
progress_bar: state.progress / 100,
log_output: "\n".join(state.logs) if state.logs else "No logs yet"
}
with gr.Blocks(title="Pashto Base Bloom Trainer", theme="soft") as demo:
gr.Markdown("# 🌸 Pashto-Base-Bloom Trainer")
gr.Markdown("Train & fine-tune Pashto model: `tasal9/pashto-base-bloom`")
with gr.Tab("πŸ“‚ Dataset"):
gr.Markdown("### Load Dataset from Hugging Face")
with gr.Row():
dataset_btn = gr.Button("Load Dataset")
dataset_status = gr.Textbox(label="Status", lines=2, interactive=False)
dataset_preview = gr.DataFrame(label="Sample Preview", interactive=False)
dataset_btn.click(load_hf_dataset, outputs=[dataset_status, dataset_preview, dataset_btn])
with gr.Tab("πŸ§ͺ Test Model"):
with gr.Row():
test_input = gr.Textbox(label="Input", lines=3)
test_btn = gr.Button("Test")
test_output = gr.Textbox(label="Output", lines=3, interactive=False)
test_btn.click(test_model, inputs=test_input, outputs=test_output)
with gr.Tab("πŸ‹οΈ Train"):
train_input = gr.Textbox(label="Training Data", lines=6)
train_btn = gr.Button("Start Training")
train_output = gr.Textbox(label="Status", lines=2, interactive=False)
train_btn.click(train_model, inputs=train_input, outputs=train_output)
with gr.Tab("🎯 Fine-tune"):
finetune_input = gr.Textbox(label="Fine-tuning Data", lines=6)
finetune_btn = gr.Button("Start Fine-tuning")
finetune_output = gr.Textbox(label="Status", lines=2, interactive=False)
finetune_btn.click(finetune_model, inputs=finetune_input, outputs=finetune_output)
with gr.Tab("πŸ“Š Status"):
with gr.Row():
status_box = gr.Textbox(label="Current Status", interactive=False)
progress_bar = gr.Slider(minimum=0, maximum=1, value=0, step=0.01, interactive=False, label="Progress")
log_output = gr.Textbox(label="Logs", lines=10, interactive=False)
refresh_btn = gr.Button("πŸ”„ Refresh")
auto_refresh = gr.Checkbox(label="Auto-refresh every 5s", value=True)
refresh_btn.click(get_current_status, outputs=[status_box, progress_bar, log_output])
auto_refresh_component = gr.Interval(5, visible=True)
auto_refresh_component.click(get_current_status, outputs=[status_box, progress_bar, log_output], every=5)
if __name__ == "__main__":
demo.launch(share=True)