Spaces:
Runtime error
Runtime error
File size: 7,549 Bytes
1e0b125 bcc64df 1d738ce 885cdd2 1d738ce bcc64df 79ecc0a 1d738ce bcc64df 1d738ce 885cdd2 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 885cdd2 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 7465346 1d738ce 885cdd2 79ecc0a 1d738ce 79ecc0a 885cdd2 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 885cdd2 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 885cdd2 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 885cdd2 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 885cdd2 1d738ce 79ecc0a 1d738ce 885cdd2 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 90032a4 1d738ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import gradio as gr
import time
import threading
import random
from datetime import datetime
from datasets import load_dataset
import pandas as pd
# Global state
class TrainingState:
def __init__(self):
self.status = "idle"
self.progress = 0
self.logs = ["β
System initialized"]
self.start_time = None
self.model_name = "tasal9/pashto-base-bloom"
self.active_process = None
self.dataset_loaded = False
self.dataset_info = "No dataset loaded"
self.dataset_sample = pd.DataFrame()
def load_dataset(self):
try:
self.logs.append("β³ Loading dataset: tasal9/ZamAi-Pashto-Datasets-V2")
dataset = load_dataset("tasal9/ZamAi-Pashto-Datasets-V2")
self.dataset_loaded = True
self.dataset_info = f"β
Dataset loaded!\nName: ZamAi-Pashto-Datasets-V2\nSize: {len(dataset['train'])} examples"
self.dataset_sample = pd.DataFrame(dataset['train'].select(range(5)))
self.logs.append(f"π {len(dataset['train'])} Pashto examples loaded")
return True
except Exception as e:
self.logs.append(f"β Error loading dataset: {str(e)}")
self.dataset_info = f"Error: {str(e)}"
return False
def start_training(self, size):
self.status = "training"
self.progress = 0
self.logs = [f"ποΈ Training started at {datetime.now().strftime('%H:%M:%S')}"]
self.logs.append(f"π Data size: {size} characters")
self.start_time = time.time()
def start_finetuning(self, size):
self.status = "fine-tuning"
self.progress = 0
self.logs = [f"π― Fine-tuning started at {datetime.now().strftime('%H:%M:%S')}"]
self.logs.append(f"π Data size: {size} characters")
self.start_time = time.time()
def update_progress(self, progress):
self.progress = min(100, max(0, progress))
if progress >= 100:
self.complete_process()
def add_log(self, msg):
self.logs.append(f"[{datetime.now().strftime('%H:%M:%S')}] {msg}")
if len(self.logs) > 15:
self.logs.pop(0)
def complete_process(self):
elapsed = time.time() - self.start_time
self.add_log(f"π {self.status.capitalize()} completed in {elapsed:.1f}s")
self.status = "idle"
self.progress = 100
with gr.Tab("π Status"):
with gr.Row():
status_box = gr.Textbox(label="Current Status", interactive=False)
progress_bar = gr.Slider(minimum=0, maximum=1, value=0, step=0.01, interactive=False, label="Progress")
log_output = gr.Textbox(label="Logs", lines=10, interactive=False)
refresh_btn = gr.Button("π Refresh Status")
refresh_btn.click(get_current_status, outputs=[status_box, progress_bar, log_output])
state = TrainingState()
def test_model(text):
if not text.strip():
return "β Enter text to test."
options = [
f"Processed: '{text}'",
f"Model response to: {text}",
f"Pashto analysis: {len(text)} characters",
f"β
Got it: {text}",
f"Generated: {text}... [simulated]",
f"π Words: {len(text.split())}"
]
return random.choice(options)
def simulate_process(duration, process_type, data_size):
if process_type == "train":
state.start_training(data_size)
else:
state.start_finetuning(data_size)
steps = 10
for i in range(steps + 1):
time.sleep(duration / steps)
state.update_progress(int((i / steps) * 100))
if i % 3 == 0:
state.add_log(random.choice([
f"Batch {i}/{steps}",
f"Loss: {random.uniform(0.1, 1.0):.3f}",
f"LR: {random.uniform(1e-5, 1e-3):.6f}",
f"GPU: {random.randint(60, 95)}% (sim)",
]))
state.complete_process()
def train_model(text):
if not text.strip():
return "β Add training data.", ""
if not state.dataset_loaded:
return "β Load dataset first.", ""
if state.status != "idle":
return "β³ Wait for current process.", ""
threading.Thread(target=simulate_process, args=(15, "train", len(text)), daemon=True).start()
return "β
Training started", ""
def finetune_model(text):
if not text.strip():
return "β Add fine-tuning data.", ""
if not state.dataset_loaded:
return "β Load dataset first.", ""
if state.status != "idle":
return "β³ Wait for current process.", ""
threading.Thread(target=simulate_process, args=(10, "fine-tune", len(text)), daemon=True).start()
return "β
Fine-tuning started", ""
def load_hf_dataset():
ok = state.load_dataset()
return {
dataset_status: state.dataset_info,
dataset_preview: state.dataset_sample if ok else pd.DataFrame(),
dataset_btn: "β
Loaded" if ok else "Retry"
}
def get_current_status():
return {
status_box: state.get_status(),
progress_bar: state.progress / 100,
log_output: "\n".join(state.logs) if state.logs else "No logs yet"
}
with gr.Blocks(title="Pashto Base Bloom Trainer", theme="soft") as demo:
gr.Markdown("# πΈ Pashto-Base-Bloom Trainer")
gr.Markdown("Train & fine-tune Pashto model: `tasal9/pashto-base-bloom`")
with gr.Tab("π Dataset"):
gr.Markdown("### Load Dataset from Hugging Face")
with gr.Row():
dataset_btn = gr.Button("Load Dataset")
dataset_status = gr.Textbox(label="Status", lines=2, interactive=False)
dataset_preview = gr.DataFrame(label="Sample Preview", interactive=False)
dataset_btn.click(load_hf_dataset, outputs=[dataset_status, dataset_preview, dataset_btn])
with gr.Tab("π§ͺ Test Model"):
with gr.Row():
test_input = gr.Textbox(label="Input", lines=3)
test_btn = gr.Button("Test")
test_output = gr.Textbox(label="Output", lines=3, interactive=False)
test_btn.click(test_model, inputs=test_input, outputs=test_output)
with gr.Tab("ποΈ Train"):
train_input = gr.Textbox(label="Training Data", lines=6)
train_btn = gr.Button("Start Training")
train_output = gr.Textbox(label="Status", lines=2, interactive=False)
train_btn.click(train_model, inputs=train_input, outputs=train_output)
with gr.Tab("π― Fine-tune"):
finetune_input = gr.Textbox(label="Fine-tuning Data", lines=6)
finetune_btn = gr.Button("Start Fine-tuning")
finetune_output = gr.Textbox(label="Status", lines=2, interactive=False)
finetune_btn.click(finetune_model, inputs=finetune_input, outputs=finetune_output)
with gr.Tab("π Status"):
with gr.Row():
status_box = gr.Textbox(label="Current Status", interactive=False)
progress_bar = gr.Slider(minimum=0, maximum=1, value=0, step=0.01, interactive=False, label="Progress")
log_output = gr.Textbox(label="Logs", lines=10, interactive=False)
refresh_btn = gr.Button("π Refresh")
auto_refresh = gr.Checkbox(label="Auto-refresh every 5s", value=True)
refresh_btn.click(get_current_status, outputs=[status_box, progress_bar, log_output])
auto_refresh_component = gr.Interval(5, visible=True)
auto_refresh_component.click(get_current_status, outputs=[status_box, progress_bar, log_output], every=5)
if __name__ == "__main__":
demo.launch(share=True) |