File size: 7,549 Bytes
1e0b125
bcc64df
1d738ce
 
 
885cdd2
1d738ce
bcc64df
79ecc0a
1d738ce
bcc64df
1d738ce
 
 
 
 
 
 
 
 
885cdd2
1d738ce
 
79ecc0a
1d738ce
 
79ecc0a
 
 
1d738ce
 
79ecc0a
 
1d738ce
885cdd2
79ecc0a
1d738ce
 
 
79ecc0a
1d738ce
79ecc0a
 
1d738ce
 
 
79ecc0a
1d738ce
79ecc0a
1d738ce
 
79ecc0a
1d738ce
79ecc0a
 
 
 
1d738ce
79ecc0a
1d738ce
 
79ecc0a
1d738ce
 
79ecc0a
7465346
 
 
 
 
 
 
 
1d738ce
885cdd2
79ecc0a
 
 
 
 
 
 
 
 
 
1d738ce
79ecc0a
885cdd2
1d738ce
 
 
 
 
 
 
 
79ecc0a
1d738ce
79ecc0a
 
 
 
 
 
1d738ce
885cdd2
79ecc0a
 
 
1d738ce
79ecc0a
1d738ce
79ecc0a
 
 
885cdd2
79ecc0a
 
 
1d738ce
79ecc0a
1d738ce
79ecc0a
 
 
885cdd2
1d738ce
79ecc0a
1d738ce
 
79ecc0a
 
1d738ce
885cdd2
1d738ce
 
79ecc0a
 
 
1d738ce
885cdd2
79ecc0a
 
 
 
 
 
1d738ce
79ecc0a
 
 
1d738ce
79ecc0a
 
1d738ce
79ecc0a
 
 
1d738ce
79ecc0a
 
 
 
 
1d738ce
79ecc0a
 
 
 
 
1d738ce
79ecc0a
 
1d738ce
79ecc0a
 
 
 
 
 
 
 
90032a4
1d738ce
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import gradio as gr
import time
import threading
import random
from datetime import datetime
from datasets import load_dataset
import pandas as pd

# Global state
class TrainingState:
    def __init__(self):
        self.status = "idle"
        self.progress = 0
        self.logs = ["βœ… System initialized"]
        self.start_time = None
        self.model_name = "tasal9/pashto-base-bloom"
        self.active_process = None
        self.dataset_loaded = False
        self.dataset_info = "No dataset loaded"
        self.dataset_sample = pd.DataFrame()

    def load_dataset(self):
        try:
            self.logs.append("⏳ Loading dataset: tasal9/ZamAi-Pashto-Datasets-V2")
            dataset = load_dataset("tasal9/ZamAi-Pashto-Datasets-V2")
            self.dataset_loaded = True
            self.dataset_info = f"βœ… Dataset loaded!\nName: ZamAi-Pashto-Datasets-V2\nSize: {len(dataset['train'])} examples"
            self.dataset_sample = pd.DataFrame(dataset['train'].select(range(5)))
            self.logs.append(f"πŸ“Š {len(dataset['train'])} Pashto examples loaded")
            return True
        except Exception as e:
            self.logs.append(f"❌ Error loading dataset: {str(e)}")
            self.dataset_info = f"Error: {str(e)}"
            return False

    def start_training(self, size):
        self.status = "training"
        self.progress = 0
        self.logs = [f"πŸ‹οΈ Training started at {datetime.now().strftime('%H:%M:%S')}"]
        self.logs.append(f"πŸ“ Data size: {size} characters")
        self.start_time = time.time()

    def start_finetuning(self, size):
        self.status = "fine-tuning"
        self.progress = 0
        self.logs = [f"🎯 Fine-tuning started at {datetime.now().strftime('%H:%M:%S')}"]
        self.logs.append(f"πŸ“ Data size: {size} characters")
        self.start_time = time.time()

    def update_progress(self, progress):
        self.progress = min(100, max(0, progress))
        if progress >= 100:
            self.complete_process()

    def add_log(self, msg):
        self.logs.append(f"[{datetime.now().strftime('%H:%M:%S')}] {msg}")
        if len(self.logs) > 15:
            self.logs.pop(0)

    def complete_process(self):
        elapsed = time.time() - self.start_time
        self.add_log(f"🏁 {self.status.capitalize()} completed in {elapsed:.1f}s")
        self.status = "idle"
        self.progress = 100

    with gr.Tab("πŸ“Š Status"):
        with gr.Row():
            status_box = gr.Textbox(label="Current Status", interactive=False)
            progress_bar = gr.Slider(minimum=0, maximum=1, value=0, step=0.01, interactive=False, label="Progress")
        log_output = gr.Textbox(label="Logs", lines=10, interactive=False)
        refresh_btn = gr.Button("πŸ”„ Refresh Status")
        refresh_btn.click(get_current_status, outputs=[status_box, progress_bar, log_output])
        
state = TrainingState()

def test_model(text):
    if not text.strip():
        return "❗ Enter text to test."
    options = [
        f"Processed: '{text}'",
        f"Model response to: {text}",
        f"Pashto analysis: {len(text)} characters",
        f"βœ… Got it: {text}",
        f"Generated: {text}... [simulated]",
        f"πŸ” Words: {len(text.split())}"
    ]
    return random.choice(options)

def simulate_process(duration, process_type, data_size):
    if process_type == "train":
        state.start_training(data_size)
    else:
        state.start_finetuning(data_size)
    steps = 10
    for i in range(steps + 1):
        time.sleep(duration / steps)
        state.update_progress(int((i / steps) * 100))
        if i % 3 == 0:
            state.add_log(random.choice([
                f"Batch {i}/{steps}",
                f"Loss: {random.uniform(0.1, 1.0):.3f}",
                f"LR: {random.uniform(1e-5, 1e-3):.6f}",
                f"GPU: {random.randint(60, 95)}% (sim)",
            ]))
    state.complete_process()

def train_model(text):
    if not text.strip():
        return "❌ Add training data.", ""
    if not state.dataset_loaded:
        return "❌ Load dataset first.", ""
    if state.status != "idle":
        return "⏳ Wait for current process.", ""
    threading.Thread(target=simulate_process, args=(15, "train", len(text)), daemon=True).start()
    return "βœ… Training started", ""

def finetune_model(text):
    if not text.strip():
        return "❌ Add fine-tuning data.", ""
    if not state.dataset_loaded:
        return "❌ Load dataset first.", ""
    if state.status != "idle":
        return "⏳ Wait for current process.", ""
    threading.Thread(target=simulate_process, args=(10, "fine-tune", len(text)), daemon=True).start()
    return "βœ… Fine-tuning started", ""

def load_hf_dataset():
    ok = state.load_dataset()
    return {
        dataset_status: state.dataset_info,
        dataset_preview: state.dataset_sample if ok else pd.DataFrame(),
        dataset_btn: "βœ… Loaded" if ok else "Retry"
    }

def get_current_status():
    return {
        status_box: state.get_status(),
        progress_bar: state.progress / 100,
        log_output: "\n".join(state.logs) if state.logs else "No logs yet"
    }

with gr.Blocks(title="Pashto Base Bloom Trainer", theme="soft") as demo:
    gr.Markdown("# 🌸 Pashto-Base-Bloom Trainer")
    gr.Markdown("Train & fine-tune Pashto model: `tasal9/pashto-base-bloom`")

    with gr.Tab("πŸ“‚ Dataset"):
        gr.Markdown("### Load Dataset from Hugging Face")
        with gr.Row():
            dataset_btn = gr.Button("Load Dataset")
            dataset_status = gr.Textbox(label="Status", lines=2, interactive=False)
        dataset_preview = gr.DataFrame(label="Sample Preview", interactive=False)
        dataset_btn.click(load_hf_dataset, outputs=[dataset_status, dataset_preview, dataset_btn])

    with gr.Tab("πŸ§ͺ Test Model"):
        with gr.Row():
            test_input = gr.Textbox(label="Input", lines=3)
            test_btn = gr.Button("Test")
        test_output = gr.Textbox(label="Output", lines=3, interactive=False)
        test_btn.click(test_model, inputs=test_input, outputs=test_output)

    with gr.Tab("πŸ‹οΈ Train"):
        train_input = gr.Textbox(label="Training Data", lines=6)
        train_btn = gr.Button("Start Training")
        train_output = gr.Textbox(label="Status", lines=2, interactive=False)
        train_btn.click(train_model, inputs=train_input, outputs=train_output)

    with gr.Tab("🎯 Fine-tune"):
        finetune_input = gr.Textbox(label="Fine-tuning Data", lines=6)
        finetune_btn = gr.Button("Start Fine-tuning")
        finetune_output = gr.Textbox(label="Status", lines=2, interactive=False)
        finetune_btn.click(finetune_model, inputs=finetune_input, outputs=finetune_output)

    with gr.Tab("πŸ“Š Status"):
        with gr.Row():
            status_box = gr.Textbox(label="Current Status", interactive=False)
            progress_bar = gr.Slider(minimum=0, maximum=1, value=0, step=0.01, interactive=False, label="Progress")
        log_output = gr.Textbox(label="Logs", lines=10, interactive=False)
        refresh_btn = gr.Button("πŸ”„ Refresh")
        auto_refresh = gr.Checkbox(label="Auto-refresh every 5s", value=True)
        refresh_btn.click(get_current_status, outputs=[status_box, progress_bar, log_output])
        auto_refresh_component = gr.Interval(5, visible=True)
        auto_refresh_component.click(get_current_status, outputs=[status_box, progress_bar, log_output], every=5)

if __name__ == "__main__":
    demo.launch(share=True)