Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- README.md +42 -8
- app.py +136 -19
- requirements.txt +4 -0
README.md
CHANGED
@@ -13,14 +13,31 @@ hardware: zero-gpu-a10g
|
|
13 |
|
14 |
# ZamAI-Mistral-7B-Pashto Space
|
15 |
|
16 |
-
This
|
17 |
|
18 |
-
1.
|
19 |
-
2.
|
20 |
-
3.
|
21 |
|
22 |
Uses ZeroGPU for efficient GPU acceleration.
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
## Example Usage
|
25 |
|
26 |
**Input:**
|
@@ -33,10 +50,27 @@ Uses ZeroGPU for efficient GPU acceleration.
|
|
33 |
زه ښه یم، مننه!
|
34 |
```
|
35 |
|
36 |
-
##
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
---
|
|
|
13 |
|
14 |
# ZamAI-Mistral-7B-Pashto Space
|
15 |
|
16 |
+
This Hugging Face Space provides an interface for:
|
17 |
|
18 |
+
1. **Testing the ZamAI-Mistral-7B-Pashto model** - Try out text generation
|
19 |
+
2. **Fine-tuning the model** - Train on your own dataset
|
20 |
+
3. **Downloading your fine-tuned model** - Get your customized model
|
21 |
|
22 |
Uses ZeroGPU for efficient GPU acceleration.
|
23 |
|
24 |
+
## How to Use
|
25 |
+
|
26 |
+
### Test Model Tab
|
27 |
+
1. Enter your Pashto text in the input box
|
28 |
+
2. Click "Generate" to get the model's response
|
29 |
+
3. For best results, keep input under 512 characters
|
30 |
+
|
31 |
+
### Fine-tune Model Tab
|
32 |
+
1. Enter a Hugging Face dataset name (e.g., "username/dataset")
|
33 |
+
2. Set hyperparameters:
|
34 |
+
- Learning rate (default: 5e-5)
|
35 |
+
- Number of epochs (default: 3)
|
36 |
+
- Batch size (default: 8)
|
37 |
+
3. Click "Start Fine-tuning"
|
38 |
+
4. Check status with "Check Status" button
|
39 |
+
5. Once complete, you can download your fine-tuned model
|
40 |
+
|
41 |
## Example Usage
|
42 |
|
43 |
**Input:**
|
|
|
50 |
زه ښه یم، مننه!
|
51 |
```
|
52 |
|
53 |
+
## Training Data Format
|
54 |
|
55 |
+
The expected dataset format for fine-tuning is:
|
56 |
+
```json
|
57 |
+
{
|
58 |
+
"train": [
|
59 |
+
{"text": "Your training examples here"}
|
60 |
+
],
|
61 |
+
"validation": [
|
62 |
+
{"text": "Your validation examples here"}
|
63 |
+
]
|
64 |
+
}
|
65 |
+
```
|
66 |
+
|
67 |
+
You can also use the `instruction` and `response` format for instruction tuning:
|
68 |
+
```json
|
69 |
+
{
|
70 |
+
"train": [
|
71 |
+
{"instruction": "Your instruction", "response": "Expected response"}
|
72 |
+
]
|
73 |
+
}
|
74 |
+
```
|
75 |
|
76 |
---
|
app.py
CHANGED
@@ -1,12 +1,24 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
-
|
|
|
|
|
|
|
5 |
import threading
|
|
|
6 |
|
7 |
# Model configuration
|
8 |
MODEL_NAME = "tasal9/ZamAI-Mistral-7B-Pashto"
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Cache model and tokenizer
|
12 |
model_tokenizer_cache = {"model": None, "tokenizer": None, "loaded": False, "error": None}
|
@@ -51,28 +63,133 @@ def test_model(input_text):
|
|
51 |
except Exception as e:
|
52 |
return f"Model inference error: {str(e)}"
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# Create Gradio interface
|
55 |
with gr.Blocks(title="ZamAI-Mistral-7B-Pashto Space") as iface:
|
56 |
gr.Markdown(f"# ZamAI-Mistral-7B-Pashto")
|
57 |
-
gr.Markdown("""
|
58 |
-
Example input:
|
59 |
-
> سلام، څنګه یی؟
|
60 |
-
""")
|
61 |
-
loading = gr.State(False)
|
62 |
-
with gr.Row():
|
63 |
-
with gr.Column():
|
64 |
-
input_text = gr.Textbox(label="Input", lines=3, value="سلام، څنګه یی؟")
|
65 |
-
submit_btn = gr.Button("Generate")
|
66 |
-
with gr.Column():
|
67 |
-
output_text = gr.Textbox(label="Output", lines=3)
|
68 |
-
|
69 |
-
def wrapped_test_model(input_text):
|
70 |
-
loading.set(True)
|
71 |
-
result = test_model(input_text)
|
72 |
-
loading.set(False)
|
73 |
-
return result
|
74 |
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
if __name__ == "__main__":
|
78 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
7 |
+
from datasets import load_dataset
|
8 |
import threading
|
9 |
+
from datetime import datetime
|
10 |
|
11 |
# Model configuration
|
12 |
MODEL_NAME = "tasal9/ZamAI-Mistral-7B-Pashto"
|
13 |
|
14 |
+
# Fine-tuning configuration
|
15 |
+
FINE_TUNING_STATUS = {
|
16 |
+
"in_progress": False,
|
17 |
+
"completed": False,
|
18 |
+
"error": None,
|
19 |
+
"progress": 0,
|
20 |
+
"model_path": None
|
21 |
+
}
|
22 |
|
23 |
# Cache model and tokenizer
|
24 |
model_tokenizer_cache = {"model": None, "tokenizer": None, "loaded": False, "error": None}
|
|
|
63 |
except Exception as e:
|
64 |
return f"Model inference error: {str(e)}"
|
65 |
|
66 |
+
@spaces.GPU
|
67 |
+
def finetune_model(dataset_name, learning_rate, num_epochs, batch_size, progress=gr.Progress()):
|
68 |
+
"""Fine-tune the model on a given dataset"""
|
69 |
+
FINE_TUNING_STATUS["in_progress"] = True
|
70 |
+
FINE_TUNING_STATUS["completed"] = False
|
71 |
+
FINE_TUNING_STATUS["error"] = None
|
72 |
+
FINE_TUNING_STATUS["progress"] = 0
|
73 |
+
|
74 |
+
try:
|
75 |
+
# Load dataset
|
76 |
+
progress(0.1, desc="Loading dataset...")
|
77 |
+
dataset = load_dataset(dataset_name)
|
78 |
+
progress(0.2, desc="Dataset loaded")
|
79 |
+
|
80 |
+
# Load model and tokenizer
|
81 |
+
progress(0.3, desc="Loading model and tokenizer...")
|
82 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
83 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
84 |
+
progress(0.4, desc="Model and tokenizer loaded")
|
85 |
+
|
86 |
+
# Prepare dataset
|
87 |
+
progress(0.5, desc="Preparing dataset...")
|
88 |
+
def tokenize_function(examples):
|
89 |
+
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128)
|
90 |
+
|
91 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
92 |
+
progress(0.6, desc="Dataset prepared")
|
93 |
+
|
94 |
+
# Define training arguments
|
95 |
+
output_dir = f"fine-tuned-{datetime.now().strftime('%Y%m%d-%H%M%S')}"
|
96 |
+
training_args = TrainingArguments(
|
97 |
+
output_dir=output_dir,
|
98 |
+
learning_rate=float(learning_rate),
|
99 |
+
num_train_epochs=int(num_epochs),
|
100 |
+
per_device_train_batch_size=int(batch_size),
|
101 |
+
save_strategy="epoch",
|
102 |
+
logging_steps=10,
|
103 |
+
save_total_limit=2,
|
104 |
+
)
|
105 |
+
|
106 |
+
# Create trainer
|
107 |
+
progress(0.7, desc="Setting up trainer...")
|
108 |
+
trainer = Trainer(
|
109 |
+
model=model,
|
110 |
+
args=training_args,
|
111 |
+
train_dataset=tokenized_dataset["train"],
|
112 |
+
tokenizer=tokenizer,
|
113 |
+
)
|
114 |
+
|
115 |
+
# Train model
|
116 |
+
progress(0.8, desc="Training model...")
|
117 |
+
trainer.train()
|
118 |
+
progress(0.9, desc="Training complete")
|
119 |
+
|
120 |
+
# Save model
|
121 |
+
progress(0.95, desc="Saving model...")
|
122 |
+
model.save_pretrained(output_dir)
|
123 |
+
tokenizer.save_pretrained(output_dir)
|
124 |
+
|
125 |
+
FINE_TUNING_STATUS["completed"] = True
|
126 |
+
FINE_TUNING_STATUS["in_progress"] = False
|
127 |
+
FINE_TUNING_STATUS["progress"] = 100
|
128 |
+
FINE_TUNING_STATUS["model_path"] = output_dir
|
129 |
+
|
130 |
+
progress(1.0, desc="Fine-tuning complete!")
|
131 |
+
return f"Fine-tuning completed successfully. Model saved to {output_dir}"
|
132 |
+
except Exception as e:
|
133 |
+
FINE_TUNING_STATUS["error"] = str(e)
|
134 |
+
FINE_TUNING_STATUS["in_progress"] = False
|
135 |
+
return f"Fine-tuning failed: {str(e)}"
|
136 |
+
|
137 |
+
def get_finetune_status():
|
138 |
+
"""Get the current status of fine-tuning"""
|
139 |
+
if FINE_TUNING_STATUS["in_progress"]:
|
140 |
+
return f"Fine-tuning in progress... ({FINE_TUNING_STATUS['progress']}%)"
|
141 |
+
elif FINE_TUNING_STATUS["completed"]:
|
142 |
+
return f"Fine-tuning completed. Model saved to {FINE_TUNING_STATUS['model_path']}"
|
143 |
+
elif FINE_TUNING_STATUS["error"]:
|
144 |
+
return f"Fine-tuning failed: {FINE_TUNING_STATUS['error']}"
|
145 |
+
else:
|
146 |
+
return "No fine-tuning has been started yet."
|
147 |
+
|
148 |
# Create Gradio interface
|
149 |
with gr.Blocks(title="ZamAI-Mistral-7B-Pashto Space") as iface:
|
150 |
gr.Markdown(f"# ZamAI-Mistral-7B-Pashto")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
+
with gr.Tabs():
|
153 |
+
with gr.TabItem("Test Model"):
|
154 |
+
gr.Markdown("""
|
155 |
+
Test the ZamAI-Mistral-7B-Pashto model with your own text.
|
156 |
+
|
157 |
+
Example input:
|
158 |
+
> سلام، څنګه یی؟
|
159 |
+
""")
|
160 |
+
with gr.Row():
|
161 |
+
with gr.Column():
|
162 |
+
input_text = gr.Textbox(label="Input", lines=3, value="سلام، څنګه یی؟")
|
163 |
+
submit_btn = gr.Button("Generate")
|
164 |
+
with gr.Column():
|
165 |
+
output_text = gr.Textbox(label="Output", lines=3)
|
166 |
+
|
167 |
+
submit_btn.click(fn=test_model, inputs=input_text, outputs=output_text)
|
168 |
+
|
169 |
+
with gr.TabItem("Fine-tune Model"):
|
170 |
+
gr.Markdown("""
|
171 |
+
Fine-tune the model on your own dataset.
|
172 |
+
|
173 |
+
The dataset should be available on Hugging Face Hub and contain a 'text' column.
|
174 |
+
""")
|
175 |
+
|
176 |
+
dataset_name = gr.Textbox(label="Dataset Name (e.g., 'username/dataset')", value="")
|
177 |
+
with gr.Row():
|
178 |
+
learning_rate = gr.Number(label="Learning Rate", value=5e-5)
|
179 |
+
num_epochs = gr.Number(label="Number of Epochs", value=3, precision=0)
|
180 |
+
batch_size = gr.Number(label="Batch Size", value=8, precision=0)
|
181 |
+
|
182 |
+
finetune_btn = gr.Button("Start Fine-tuning")
|
183 |
+
finetune_output = gr.Textbox(label="Fine-tuning Status", interactive=False)
|
184 |
+
|
185 |
+
finetune_btn.click(
|
186 |
+
fn=finetune_model,
|
187 |
+
inputs=[dataset_name, learning_rate, num_epochs, batch_size],
|
188 |
+
outputs=finetune_output
|
189 |
+
)
|
190 |
+
|
191 |
+
status_btn = gr.Button("Check Status")
|
192 |
+
status_btn.click(fn=get_finetune_status, inputs=None, outputs=finetune_output)
|
193 |
|
194 |
if __name__ == "__main__":
|
195 |
iface.launch()
|
requirements.txt
CHANGED
@@ -4,3 +4,7 @@ gradio==4.36.1
|
|
4 |
spaces
|
5 |
torch>=2.0.0
|
6 |
transformers==4.39.3
|
|
|
|
|
|
|
|
|
|
4 |
spaces
|
5 |
torch>=2.0.0
|
6 |
transformers==4.39.3
|
7 |
+
datasets>=2.17.0
|
8 |
+
accelerate>=0.28.0
|
9 |
+
bitsandbytes>=0.42.0
|
10 |
+
peft>=0.7.0
|