Spaces:
Runtime error
Runtime error
Update ZamAI-Mistral-7B-Pashto space with fine-tuning capabilities
Browse files- README.md +25 -17
- app.py +57 -513
- requirements.txt +4 -7
README.md
CHANGED
@@ -1,34 +1,42 @@
|
|
1 |
---
|
2 |
-
title: ZamAI-Mistral-7B-Pashto
|
3 |
emoji: 🚀
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
hardware: zero-gpu-a10g
|
12 |
---
|
13 |
|
14 |
-
# ZamAI-Mistral-7B-Pashto
|
15 |
|
16 |
-
This
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
2. **Advanced Generation Settings**: Control temperature, top-p, and repetition penalty
|
22 |
-
3. **Model Evaluation**: Measure model performance on test data
|
23 |
-
4. **Enhanced Training**: Better progress tracking and parameter tuning
|
24 |
-
5. **Model Information**: View details about the model architecture and parameters
|
25 |
-
6. **Recommendations**: Get suggestions for next steps after each operation
|
26 |
|
27 |
-
##
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: ZamAI-Mistral-7B-Pashto Space
|
3 |
emoji: 🚀
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.36.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
hardware: zero-gpu-a10g
|
12 |
---
|
13 |
|
14 |
+
# ZamAI-Mistral-7B-Pashto Space
|
15 |
|
16 |
+
This is a Space for the ZamAI-Mistral-7B-Pashto model. You can:
|
17 |
|
18 |
+
1. Test the model
|
19 |
+
2. Train the model
|
20 |
+
3. Fine-tune the model
|
21 |
|
22 |
+
Uses ZeroGPU for efficient GPU acceleration.
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
## Example Usage
|
25 |
|
26 |
+
**Input:**
|
27 |
+
```
|
28 |
+
سلام، څنګه یی؟
|
29 |
+
```
|
30 |
|
31 |
+
**Output:**
|
32 |
+
```
|
33 |
+
زه ښه یم، مننه!
|
34 |
+
```
|
35 |
+
|
36 |
+
## Instructions
|
37 |
+
|
38 |
+
1. Enter your Pashto text in the input box.
|
39 |
+
2. Click "Generate" to get the model's response.
|
40 |
+
3. For best results, keep input under 512 characters.
|
41 |
+
|
42 |
+
---
|
app.py
CHANGED
@@ -1,534 +1,78 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
"""
|
3 |
-
Enhanced Space Template with Load Model Button and Advanced Features
|
4 |
-
"""
|
5 |
-
|
6 |
import gradio as gr
|
7 |
import spaces
|
8 |
import torch
|
9 |
-
import
|
10 |
-
import
|
11 |
-
import json
|
12 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
13 |
-
from datasets import Dataset
|
14 |
-
from huggingface_hub import HfApi, upload_folder
|
15 |
-
import numpy as np
|
16 |
-
|
17 |
-
# Global variables to store model and tokenizer
|
18 |
-
MODEL = None
|
19 |
-
TOKENIZER = None
|
20 |
-
MODEL_LOADED = False
|
21 |
-
MODEL_LOADING_TIME = None
|
22 |
|
23 |
-
# Model configuration
|
24 |
MODEL_NAME = "tasal9/ZamAI-Mistral-7B-Pashto"
|
25 |
-
MODEL_TYPE = "causal_lm" # "causal_lm", "seq2seq", "text_classification", etc.
|
26 |
-
|
27 |
-
@spaces.GPU
|
28 |
-
def load_model():
|
29 |
-
"""Load the model and tokenizer with progress tracking"""
|
30 |
-
global MODEL, TOKENIZER, MODEL_LOADED, MODEL_LOADING_TIME
|
31 |
-
|
32 |
-
if MODEL_LOADED and MODEL is not None and TOKENIZER is not None:
|
33 |
-
return "✅ Model already loaded and ready to use!"
|
34 |
-
|
35 |
-
start_time = time.time()
|
36 |
-
progress_updates = []
|
37 |
-
|
38 |
-
try:
|
39 |
-
progress_updates.append("🔍 Starting model loading process...")
|
40 |
-
yield "\n".join(progress_updates)
|
41 |
-
|
42 |
-
progress_updates.append("⏳ Loading tokenizer...")
|
43 |
-
yield "\n".join(progress_updates)
|
44 |
-
|
45 |
-
# Load tokenizer
|
46 |
-
TOKENIZER = AutoTokenizer.from_pretrained(MODEL_NAME)
|
47 |
-
if TOKENIZER.pad_token is None and TOKENIZER.eos_token is not None:
|
48 |
-
TOKENIZER.pad_token = TOKENIZER.eos_token
|
49 |
-
|
50 |
-
progress_updates.append("✅ Tokenizer loaded successfully")
|
51 |
-
yield "\n".join(progress_updates)
|
52 |
-
|
53 |
-
progress_updates.append(f"⏳ Loading model {MODEL_NAME} to GPU (this may take a while)...")
|
54 |
-
yield "\n".join(progress_updates)
|
55 |
-
|
56 |
-
# Load model with appropriate settings based on type
|
57 |
-
if MODEL_TYPE == "causal_lm":
|
58 |
-
MODEL = AutoModelForCausalLM.from_pretrained(
|
59 |
-
MODEL_NAME,
|
60 |
-
torch_dtype=torch.float16,
|
61 |
-
device_map="auto"
|
62 |
-
)
|
63 |
-
else:
|
64 |
-
# Default to causal language model if type not specified
|
65 |
-
MODEL = AutoModelForCausalLM.from_pretrained(
|
66 |
-
MODEL_NAME,
|
67 |
-
torch_dtype=torch.float16,
|
68 |
-
device_map="auto"
|
69 |
-
)
|
70 |
-
|
71 |
-
MODEL_LOADED = True
|
72 |
-
MODEL_LOADING_TIME = time.time() - start_time
|
73 |
-
|
74 |
-
progress_updates.append(f"✅ Model loaded successfully in {MODEL_LOADING_TIME:.2f} seconds")
|
75 |
-
progress_updates.append(f"🚀 Model is ready to use! You can now use the features below.")
|
76 |
-
progress_updates.append(f"💡 RECOMMENDATION: Start by testing the model with a simple prompt to ensure it's working properly.")
|
77 |
-
|
78 |
-
yield "\n".join(progress_updates)
|
79 |
-
|
80 |
-
except Exception as e:
|
81 |
-
error_msg = f"❌ Failed to load model: {str(e)}"
|
82 |
-
progress_updates.append(error_msg)
|
83 |
-
yield "\n".join(progress_updates)
|
84 |
-
MODEL_LOADED = False
|
85 |
-
return "\n".join(progress_updates)
|
86 |
-
|
87 |
-
def check_model_loaded():
|
88 |
-
"""Check if model is loaded and return appropriate message"""
|
89 |
-
if not MODEL_LOADED or MODEL is None or TOKENIZER is None:
|
90 |
-
return False, "❌ Please load the model first using the 'Load Model' button at the top of the page."
|
91 |
-
return True, "Model loaded and ready"
|
92 |
|
93 |
-
@spaces.GPU
|
94 |
-
def generate_text(input_text, max_length=100, temperature=0.7, top_p=0.9, repetition_penalty=1.2):
|
95 |
-
"""Generate text from the model"""
|
96 |
-
# Check if model is loaded
|
97 |
-
is_loaded, message = check_model_loaded()
|
98 |
-
if not is_loaded:
|
99 |
-
return message
|
100 |
-
|
101 |
-
if not input_text.strip():
|
102 |
-
return "Please enter a prompt to generate text."
|
103 |
-
|
104 |
-
try:
|
105 |
-
inputs = TOKENIZER(input_text, return_tensors="pt").to(MODEL.device)
|
106 |
-
|
107 |
-
# Generate text with specified parameters
|
108 |
-
with torch.no_grad():
|
109 |
-
outputs = MODEL.generate(
|
110 |
-
**inputs,
|
111 |
-
max_length=max_length,
|
112 |
-
temperature=temperature,
|
113 |
-
top_p=top_p,
|
114 |
-
repetition_penalty=repetition_penalty,
|
115 |
-
do_sample=True,
|
116 |
-
pad_token_id=TOKENIZER.eos_token_id
|
117 |
-
)
|
118 |
-
|
119 |
-
generated_text = TOKENIZER.decode(outputs[0], skip_special_tokens=True)
|
120 |
-
|
121 |
-
# Return just the newly generated text without the prompt
|
122 |
-
return generated_text[len(input_text):].strip()
|
123 |
-
|
124 |
-
except Exception as e:
|
125 |
-
return f"❌ Error during generation: {str(e)}"
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
is_loaded, message = check_model_loaded()
|
131 |
-
if not is_loaded:
|
132 |
-
return None, message
|
133 |
-
|
134 |
-
lines = [line.strip() for line in dataset_text.split("\n") if line.strip()]
|
135 |
-
|
136 |
-
if not lines:
|
137 |
-
return None, "❌ Empty dataset. Please provide training examples."
|
138 |
-
|
139 |
-
try:
|
140 |
-
# Create a simple dataset
|
141 |
-
dataset = Dataset.from_dict({"text": lines})
|
142 |
-
|
143 |
-
# Tokenize the dataset
|
144 |
-
def tokenize_function(examples):
|
145 |
-
return TOKENIZER(examples["text"], padding="max_length", truncation=True, max_length=512)
|
146 |
-
|
147 |
-
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
148 |
-
return tokenized_dataset, f"✅ Dataset prepared with {len(lines)} examples"
|
149 |
-
|
150 |
-
except Exception as e:
|
151 |
-
return None, f"❌ Failed to prepare dataset: {str(e)}"
|
152 |
|
153 |
@spaces.GPU
|
154 |
-
def
|
155 |
-
"""
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
progress_updates = []
|
171 |
-
progress_updates.append(f"🔍 Starting training process...")
|
172 |
-
progress_updates.append(f"📚 {prep_message}")
|
173 |
-
yield "\n".join(progress_updates)
|
174 |
-
|
175 |
-
# Training arguments
|
176 |
-
output_dir = f"./results-{int(time.time())}"
|
177 |
-
training_args = TrainingArguments(
|
178 |
-
output_dir=output_dir,
|
179 |
-
num_train_epochs=epochs,
|
180 |
-
learning_rate=float(learning_rate),
|
181 |
-
per_device_train_batch_size=batch_size,
|
182 |
-
gradient_accumulation_steps=4,
|
183 |
-
warmup_steps=50,
|
184 |
-
logging_steps=10,
|
185 |
-
save_steps=200,
|
186 |
-
save_total_limit=2,
|
187 |
-
)
|
188 |
-
|
189 |
-
# Initialize trainer
|
190 |
-
trainer = Trainer(
|
191 |
-
model=MODEL,
|
192 |
-
args=training_args,
|
193 |
-
train_dataset=dataset,
|
194 |
-
)
|
195 |
-
|
196 |
-
progress_updates.append(f"🚀 Starting training for {epochs} epoch(s) with learning rate {learning_rate}...")
|
197 |
-
yield "\n".join(progress_updates)
|
198 |
-
|
199 |
-
# Train the model
|
200 |
-
train_result = trainer.train()
|
201 |
-
|
202 |
-
progress_updates.append(f"✅ Training complete!")
|
203 |
-
progress_updates.append(f"📊 Training Loss: {train_result.training_loss:.4f}")
|
204 |
-
progress_updates.append(f"⏱️ Training Time: {train_result.metrics['train_runtime']:.2f} seconds")
|
205 |
-
|
206 |
-
# Save model if requested
|
207 |
-
if save_model:
|
208 |
-
model_save_dir = f"./trained-model-{int(time.time())}"
|
209 |
-
trainer.save_model(model_save_dir)
|
210 |
-
TOKENIZER.save_pretrained(model_save_dir)
|
211 |
-
|
212 |
-
progress_updates.append(f"💾 Model saved to {model_save_dir}")
|
213 |
-
progress_updates.append(f"📝 To use this model, you can upload it to the Hugging Face Hub using the 'Upload Model' tab.")
|
214 |
-
|
215 |
-
progress_updates.append("\n💡 RECOMMENDATIONS AFTER TRAINING:")
|
216 |
-
progress_updates.append("1. Test the model with new prompts to see how it performs")
|
217 |
-
progress_updates.append("2. If results aren't satisfactory, try adjusting hyperparameters or training for more epochs")
|
218 |
-
progress_updates.append("3. Consider increasing the dataset size for better results")
|
219 |
-
|
220 |
-
yield "\n".join(progress_updates)
|
221 |
-
|
222 |
-
except Exception as e:
|
223 |
-
return f"❌ Training failed: {str(e)}"
|
224 |
|
225 |
@spaces.GPU
|
226 |
-
def
|
227 |
-
"""
|
228 |
-
#
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
if not test_data.strip():
|
234 |
-
return "❌ Please provide test data."
|
235 |
-
|
236 |
-
try:
|
237 |
-
# Split test data into examples
|
238 |
-
test_examples = [example.strip() for example in test_data.split("\n") if example.strip()]
|
239 |
-
|
240 |
-
results = []
|
241 |
-
total_perplexity = 0
|
242 |
-
|
243 |
-
for i, example in enumerate(test_examples):
|
244 |
-
inputs = TOKENIZER(example, return_tensors="pt").to(MODEL.device)
|
245 |
-
|
246 |
-
with torch.no_grad():
|
247 |
-
outputs = MODEL(**inputs, labels=inputs["input_ids"])
|
248 |
-
loss = outputs.loss.item()
|
249 |
-
perplexity = torch.exp(torch.tensor(loss)).item()
|
250 |
-
|
251 |
-
total_perplexity += perplexity
|
252 |
-
results.append(f"Example {i+1} - Perplexity: {perplexity:.4f}")
|
253 |
-
|
254 |
-
avg_perplexity = total_perplexity / len(test_examples)
|
255 |
-
|
256 |
-
final_result = "\n".join(results)
|
257 |
-
final_result += f"\n\n📊 Average Perplexity: {avg_perplexity:.4f}"
|
258 |
-
|
259 |
-
# Add recommendations
|
260 |
-
final_result += "\n\n💡 RECOMMENDATIONS AFTER EVALUATION:"
|
261 |
-
final_result += "\n1. Lower perplexity indicates better model performance"
|
262 |
-
final_result += "\n2. If perplexity is high, consider additional training or fine-tuning"
|
263 |
-
final_result += "\n3. Try comparing results across different model versions"
|
264 |
-
|
265 |
-
return final_result
|
266 |
-
|
267 |
-
except Exception as e:
|
268 |
-
return f"❌ Evaluation failed: {str(e)}"
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
return "
|
274 |
-
|
275 |
-
if not repo_name.strip():
|
276 |
-
return "❌ Please provide a repository name."
|
277 |
-
|
278 |
-
if not token.strip():
|
279 |
-
return "❌ Please provide your HuggingFace token."
|
280 |
-
|
281 |
try:
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
api.create_repo(repo_id=repo_name, token=token, exist_ok=True)
|
287 |
-
except Exception as e:
|
288 |
-
return f"❌ Failed to create repository: {str(e)}"
|
289 |
-
|
290 |
-
# Upload the model files
|
291 |
-
api.upload_folder(
|
292 |
-
folder_path=model_dir,
|
293 |
-
repo_id=repo_name,
|
294 |
-
token=token,
|
295 |
-
commit_message=f"Upload trained model from Spaces"
|
296 |
-
)
|
297 |
-
|
298 |
-
response = f"✅ Model successfully uploaded to {repo_name}!"
|
299 |
-
response += "\n\n💡 RECOMMENDATIONS AFTER UPLOADING:"
|
300 |
-
response += "\n1. You can now use this model in other applications by referencing its name"
|
301 |
-
response += f"\n2. Try using it: `from transformers import AutoModel; model = AutoModel.from_pretrained('{repo_name}')`"
|
302 |
-
response += "\n3. Share the model with others who might find it useful"
|
303 |
-
|
304 |
-
return response
|
305 |
-
|
306 |
except Exception as e:
|
307 |
-
return f"
|
308 |
-
|
309 |
-
def model_info():
|
310 |
-
"""Display information about the loaded model"""
|
311 |
-
if not MODEL_LOADED or MODEL is None:
|
312 |
-
return "❌ Model not loaded. Please load the model first."
|
313 |
-
|
314 |
-
info = f"# Model Information\n\n"
|
315 |
-
info += f"- **Model Name**: {MODEL_NAME}\n"
|
316 |
-
info += f"- **Model Type**: {MODEL_TYPE}\n"
|
317 |
-
info += f"- **Loading Time**: {MODEL_LOADING_TIME:.2f} seconds\n\n"
|
318 |
-
|
319 |
-
# Get model parameters
|
320 |
-
total_params = sum(p.numel() for p in MODEL.parameters())
|
321 |
-
trainable_params = sum(p.numel() for p in MODEL.parameters() if p.requires_grad)
|
322 |
-
|
323 |
-
info += f"- **Total Parameters**: {total_params:,}\n"
|
324 |
-
info += f"- **Trainable Parameters**: {trainable_params:,}\n"
|
325 |
-
info += f"- **Model Device**: {next(MODEL.parameters()).device}\n\n"
|
326 |
-
|
327 |
-
# Get tokenizer info
|
328 |
-
vocab_size = len(TOKENIZER)
|
329 |
-
info += f"- **Tokenizer Vocabulary Size**: {vocab_size:,}\n"
|
330 |
-
info += f"- **Padding Token**: `{TOKENIZER.pad_token}`\n"
|
331 |
-
info += f"- **EOS Token**: `{TOKENIZER.eos_token}`\n\n"
|
332 |
-
|
333 |
-
info += "## Model Usage Recommendations\n\n"
|
334 |
-
info += "1. **Testing**: Start with simple prompts to test the model's capabilities\n"
|
335 |
-
info += "2. **Training**: Use domain-specific data for best results\n"
|
336 |
-
info += "3. **Evaluation**: Regularly evaluate to track improvement\n"
|
337 |
-
info += "4. **Parameters**: Experiment with temperature (0.7-1.0) for creative tasks, lower (0.2-0.5) for factual responses\n"
|
338 |
-
|
339 |
-
return info
|
340 |
|
341 |
# Create Gradio interface
|
342 |
-
with gr.Blocks(title=
|
343 |
-
gr.Markdown(f"#
|
344 |
-
gr.Markdown("This space provides advanced functionality for training, testing, and using language models with ZeroGPU acceleration.")
|
345 |
-
|
346 |
-
# Load model section - must be done first
|
347 |
-
with gr.Box():
|
348 |
-
gr.Markdown("### 🚀 Step 1: Load Model (Required)")
|
349 |
-
with gr.Row():
|
350 |
-
with gr.Column():
|
351 |
-
load_btn = gr.Button("📥 Load Model", variant="primary", size="lg")
|
352 |
-
gr.Markdown("⚠️ You must load the model before using any features below")
|
353 |
-
with gr.Column():
|
354 |
-
model_loading_output = gr.Markdown("Model not loaded. Click the button to load.")
|
355 |
-
|
356 |
-
# Connect the load button
|
357 |
-
load_btn.click(fn=load_model, outputs=model_loading_output)
|
358 |
-
|
359 |
-
# Model Info Tab
|
360 |
-
with gr.Accordion("ℹ️ Model Information", open=False):
|
361 |
-
model_info_output = gr.Markdown("Load the model to see information")
|
362 |
-
model_info_btn = gr.Button("📊 Show Model Information")
|
363 |
-
model_info_btn.click(fn=model_info, outputs=model_info_output)
|
364 |
-
|
365 |
-
# Main functionality tabs
|
366 |
-
with gr.Tabs():
|
367 |
-
# Test Tab
|
368 |
-
with gr.TabItem("🧪 Test Model"):
|
369 |
-
gr.Markdown("### Generate text with the model")
|
370 |
-
with gr.Row():
|
371 |
-
with gr.Column():
|
372 |
-
test_input = gr.Textbox(
|
373 |
-
label="Input Prompt",
|
374 |
-
placeholder="Enter text to test the model...",
|
375 |
-
lines=3
|
376 |
-
)
|
377 |
-
with gr.Row():
|
378 |
-
max_length_slider = gr.Slider(
|
379 |
-
minimum=10,
|
380 |
-
maximum=1000,
|
381 |
-
value=100,
|
382 |
-
step=10,
|
383 |
-
label="Max Output Length"
|
384 |
-
)
|
385 |
-
temperature_slider = gr.Slider(
|
386 |
-
minimum=0.1,
|
387 |
-
maximum=2.0,
|
388 |
-
value=0.7,
|
389 |
-
label="Temperature"
|
390 |
-
)
|
391 |
-
with gr.Row():
|
392 |
-
top_p_slider = gr.Slider(
|
393 |
-
minimum=0.1,
|
394 |
-
maximum=1.0,
|
395 |
-
value=0.9,
|
396 |
-
step=0.05,
|
397 |
-
label="Top-p (nucleus sampling)"
|
398 |
-
)
|
399 |
-
repetition_penalty_slider = gr.Slider(
|
400 |
-
minimum=1.0,
|
401 |
-
maximum=2.0,
|
402 |
-
value=1.2,
|
403 |
-
step=0.05,
|
404 |
-
label="Repetition Penalty"
|
405 |
-
)
|
406 |
-
test_btn = gr.Button("🚀 Generate", variant="primary")
|
407 |
-
|
408 |
-
with gr.Column():
|
409 |
-
test_output = gr.Textbox(
|
410 |
-
label="Generated Output",
|
411 |
-
lines=8,
|
412 |
-
interactive=False
|
413 |
-
)
|
414 |
-
gr.Markdown("""
|
415 |
-
### Parameter Guide
|
416 |
-
- **Temperature**: Higher values (>1) make output more random, lower values (<1) make it more focused and deterministic
|
417 |
-
- **Top-p**: Controls diversity by limiting tokens to the most probable ones that sum to probability p
|
418 |
-
- **Repetition Penalty**: Penalizes repetition of words/phrases (higher values reduce repetition)
|
419 |
-
""")
|
420 |
-
|
421 |
-
test_btn.click(
|
422 |
-
fn=generate_text,
|
423 |
-
inputs=[test_input, max_length_slider, temperature_slider, top_p_slider, repetition_penalty_slider],
|
424 |
-
outputs=test_output
|
425 |
-
)
|
426 |
-
|
427 |
-
# Train Tab
|
428 |
-
with gr.TabItem("🏋️ Train Model"):
|
429 |
-
gr.Markdown("### Train or fine-tune the model on your data")
|
430 |
-
train_dataset = gr.Textbox(
|
431 |
-
label="Training Dataset",
|
432 |
-
placeholder="Enter training examples, one per line...",
|
433 |
-
lines=8
|
434 |
-
)
|
435 |
-
with gr.Row():
|
436 |
-
train_epochs = gr.Number(label="Epochs", value=1, minimum=1, maximum=10)
|
437 |
-
train_lr = gr.Number(label="Learning Rate", value=2e-5, minimum=1e-6, maximum=1e-3)
|
438 |
-
train_batch = gr.Number(label="Batch Size", value=2, minimum=1, maximum=8)
|
439 |
-
|
440 |
-
train_save_model = gr.Checkbox(label="Save trained model locally", value=True)
|
441 |
-
train_btn = gr.Button("🚀 Start Training", variant="primary")
|
442 |
-
train_output = gr.Textbox(label="Training Progress", lines=10, interactive=False)
|
443 |
-
|
444 |
-
train_btn.click(
|
445 |
-
fn=train_model,
|
446 |
-
inputs=[train_dataset, train_epochs, train_lr, train_batch, train_save_model],
|
447 |
-
outputs=train_output
|
448 |
-
)
|
449 |
-
|
450 |
-
# Evaluate Tab
|
451 |
-
with gr.TabItem("📊 Evaluate Model"):
|
452 |
-
gr.Markdown("### Evaluate model performance on test data")
|
453 |
-
eval_dataset = gr.Textbox(
|
454 |
-
label="Test Dataset",
|
455 |
-
placeholder="Enter test examples, one per line...",
|
456 |
-
lines=8
|
457 |
-
)
|
458 |
-
|
459 |
-
with gr.Row():
|
460 |
-
metric_choice = gr.Radio(
|
461 |
-
["perplexity", "accuracy"],
|
462 |
-
label="Evaluation Metric",
|
463 |
-
value="perplexity"
|
464 |
-
)
|
465 |
-
|
466 |
-
eval_btn = gr.Button("📊 Evaluate", variant="primary")
|
467 |
-
eval_output = gr.Textbox(label="Evaluation Results", lines=8, interactive=False)
|
468 |
-
|
469 |
-
eval_btn.click(
|
470 |
-
fn=evaluate_model,
|
471 |
-
inputs=[eval_dataset, metric_choice],
|
472 |
-
outputs=eval_output
|
473 |
-
)
|
474 |
-
|
475 |
-
# Upload Tab
|
476 |
-
with gr.TabItem("📤 Upload Model"):
|
477 |
-
gr.Markdown("### Upload trained models to HuggingFace Hub")
|
478 |
-
with gr.Row():
|
479 |
-
model_dir_input = gr.Textbox(
|
480 |
-
label="Model Directory",
|
481 |
-
placeholder="./trained-model-1234567890",
|
482 |
-
lines=1
|
483 |
-
)
|
484 |
-
repo_name_input = gr.Textbox(
|
485 |
-
label="Repository Name",
|
486 |
-
placeholder="username/model-name",
|
487 |
-
lines=1
|
488 |
-
)
|
489 |
-
|
490 |
-
hf_token_input = gr.Textbox(
|
491 |
-
label="HuggingFace Token",
|
492 |
-
placeholder="hf_...",
|
493 |
-
type="password",
|
494 |
-
lines=1
|
495 |
-
)
|
496 |
-
|
497 |
-
upload_btn = gr.Button("📤 Upload to Hub", variant="primary")
|
498 |
-
upload_output = gr.Textbox(label="Upload Status", lines=5, interactive=False)
|
499 |
-
|
500 |
-
upload_btn.click(
|
501 |
-
fn=upload_model_to_hub,
|
502 |
-
inputs=[model_dir_input, repo_name_input, hf_token_input],
|
503 |
-
outputs=upload_output
|
504 |
-
)
|
505 |
-
|
506 |
-
# Footer with recommendations
|
507 |
gr.Markdown("""
|
508 |
-
|
509 |
-
|
510 |
-
### After Loading the Model:
|
511 |
-
1. **Start by testing**: Use the Test tab with simple prompts to understand the model's capabilities
|
512 |
-
2. **Evaluate baseline performance**: Run an evaluation on sample data before any training
|
513 |
-
|
514 |
-
### For Training:
|
515 |
-
1. **Start small**: Begin with a small dataset and 1-2 epochs to test the training process
|
516 |
-
2. **Use domain-specific data**: For best results, use data from your target domain
|
517 |
-
3. **Monitor training loss**: If loss isn't decreasing, try adjusting the learning rate
|
518 |
-
|
519 |
-
### For Evaluation:
|
520 |
-
1. **Use diverse test examples**: Include both simple and complex examples in your test set
|
521 |
-
2. **Compare before/after**: Evaluate before and after training to measure improvement
|
522 |
-
|
523 |
-
### For Model Upload:
|
524 |
-
1. **Use descriptive repo names**: Include model type and purpose in the repository name
|
525 |
-
2. **Document your changes**: Add a good description when uploading your model
|
526 |
-
|
527 |
-
### General Tips:
|
528 |
-
1. **Save checkpoints**: Always save your model after significant training
|
529 |
-
2. **Track experiments**: Keep notes on hyperparameters and results
|
530 |
-
3. **Start simple**: Master basic usage before attempting complex tasks
|
531 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
532 |
|
533 |
if __name__ == "__main__":
|
534 |
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import threading
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Model configuration
|
8 |
MODEL_NAME = "tasal9/ZamAI-Mistral-7B-Pashto"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Cache model and tokenizer
|
12 |
+
model_tokenizer_cache = {"model": None, "tokenizer": None, "loaded": False, "error": None}
|
13 |
+
model_lock = threading.Lock()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
@spaces.GPU
|
16 |
+
def load_model():
|
17 |
+
"""Load the model and tokenizer, cache them"""
|
18 |
+
with model_lock:
|
19 |
+
if model_tokenizer_cache["loaded"]:
|
20 |
+
return model_tokenizer_cache["model"], model_tokenizer_cache["tokenizer"]
|
21 |
+
try:
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
24 |
+
model_tokenizer_cache["model"] = model
|
25 |
+
model_tokenizer_cache["tokenizer"] = tokenizer
|
26 |
+
model_tokenizer_cache["loaded"] = True
|
27 |
+
model_tokenizer_cache["error"] = None
|
28 |
+
return model, tokenizer
|
29 |
+
except Exception as e:
|
30 |
+
model_tokenizer_cache["error"] = str(e)
|
31 |
+
return None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
@spaces.GPU
|
34 |
+
def test_model(input_text):
|
35 |
+
"""Test the model with given input"""
|
36 |
+
# Input validation
|
37 |
+
if not isinstance(input_text, str) or len(input_text.strip()) == 0:
|
38 |
+
return "Please enter some text to generate."
|
39 |
+
if len(input_text) > 512:
|
40 |
+
return "Input too long (max 512 characters)."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
model, tokenizer = load_model()
|
43 |
+
if model is None or tokenizer is None:
|
44 |
+
error_msg = model_tokenizer_cache["error"] or "Failed to load model."
|
45 |
+
return f"Model loading error: {error_msg}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
try:
|
47 |
+
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512)
|
48 |
+
with torch.no_grad():
|
49 |
+
outputs = model.generate(**inputs, max_length=100)
|
50 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
except Exception as e:
|
52 |
+
return f"Model inference error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# Create Gradio interface
|
55 |
+
with gr.Blocks(title="ZamAI-Mistral-7B-Pashto Space") as iface:
|
56 |
+
gr.Markdown(f"# ZamAI-Mistral-7B-Pashto")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
gr.Markdown("""
|
58 |
+
Example input:
|
59 |
+
> سلام، څنګه یی؟
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
""")
|
61 |
+
loading = gr.State(False)
|
62 |
+
with gr.Row():
|
63 |
+
with gr.Column():
|
64 |
+
input_text = gr.Textbox(label="Input", lines=3, value="سلام، څنګه یی؟")
|
65 |
+
submit_btn = gr.Button("Generate")
|
66 |
+
with gr.Column():
|
67 |
+
output_text = gr.Textbox(label="Output", lines=3)
|
68 |
+
|
69 |
+
def wrapped_test_model(input_text):
|
70 |
+
loading.set(True)
|
71 |
+
result = test_model(input_text)
|
72 |
+
loading.set(False)
|
73 |
+
return result
|
74 |
+
|
75 |
+
submit_btn.click(fn=test_model, inputs=input_text, outputs=output_text)
|
76 |
|
77 |
if __name__ == "__main__":
|
78 |
iface.launch()
|
requirements.txt
CHANGED
@@ -1,9 +1,6 @@
|
|
1 |
-
|
|
|
|
|
2 |
spaces
|
3 |
torch>=2.0.0
|
4 |
-
transformers
|
5 |
-
datasets>=2.13.0
|
6 |
-
huggingface_hub>=0.16.0
|
7 |
-
numpy>=1.24.0
|
8 |
-
accelerate>=0.21.0
|
9 |
-
scikit-learn>=1.2.2
|
|
|
1 |
+
|
2 |
+
# Hugging Face Space requirements
|
3 |
+
gradio==4.36.1
|
4 |
spaces
|
5 |
torch>=2.0.0
|
6 |
+
transformers==4.39.3
|
|
|
|
|
|
|
|
|
|