smajumdar's picture
Add support for YT transcription
d40d29c
raw
history blame
14.3 kB
import os
import json
import uuid
import tempfile
import subprocess
import re
import gradio as gr
import pytube as pt
import nemo.collections.asr as nemo_asr
import speech_to_text_buffered_infer_ctc as buffered_ctc
import speech_to_text_buffered_infer_rnnt as buffered_rnnt
# Set NeMo cache dir as /tmp
from nemo import constants
os.environ[constants.NEMO_ENV_CACHE_DIR] = "/tmp/nemo"
SAMPLE_RATE = 16000
TITLE = "NeMo ASR Inference on Hugging Face"
DESCRIPTION = "Demo of all languages supported by NeMo ASR"
DEFAULT_EN_MODEL = "nvidia/stt_en_conformer_transducer_xlarge"
MARKDOWN = f"""
# {TITLE}
## {DESCRIPTION}
"""
CSS = """
p.big {
font-size: 20px;
}
"""
ARTICLE = """
<br><br>
<p class='big' style='text-align: center'>
<a href='https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/intro.html' target='_blank'>NeMo ASR</a>
|
<a href='https://github.com/NVIDIA/NeMo#nvidia-nemo' target='_blank'>Github Repo</a>
</p>
"""
SUPPORTED_LANGUAGES = set([])
SUPPORTED_MODEL_NAMES = set([])
# HF models, grouped by language identifier
hf_filter = nemo_asr.models.ASRModel.get_hf_model_filter()
hf_filter.task = "automatic-speech-recognition"
hf_infos = nemo_asr.models.ASRModel.search_huggingface_models(model_filter=hf_filter)
for info in hf_infos:
lang_id = info.modelId.split("_")[1] # obtains lang id as str
SUPPORTED_LANGUAGES.add(lang_id)
SUPPORTED_MODEL_NAMES.add(info.modelId)
SUPPORTED_MODEL_NAMES = sorted(list(SUPPORTED_MODEL_NAMES))
SUPPORTED_MODEL_NAMES = list(filter(lambda x: 'en' in x and 'conformer_transducer_large' in x, SUPPORTED_MODEL_NAMES))
model_dict = {model_name: gr.Interface.load(f'models/{model_name}') for model_name in SUPPORTED_MODEL_NAMES}
SUPPORTED_LANG_MODEL_DICT = {}
for lang in SUPPORTED_LANGUAGES:
for model_id in SUPPORTED_MODEL_NAMES:
if ("_" + lang + "_") in model_id:
# create new lang in dict
if lang not in SUPPORTED_LANG_MODEL_DICT:
SUPPORTED_LANG_MODEL_DICT[lang] = [model_id]
else:
SUPPORTED_LANG_MODEL_DICT[lang].append(model_id)
# Sort model names
for lang in SUPPORTED_LANG_MODEL_DICT.keys():
model_ids = SUPPORTED_LANG_MODEL_DICT[lang]
model_ids = sorted(model_ids)
SUPPORTED_LANG_MODEL_DICT[lang] = model_ids
def parse_duration(audio_file):
"""
FFMPEG to calculate durations. Libraries can do it too, but filetypes cause different libraries to behave differently.
"""
process = subprocess.Popen(['ffmpeg', '-i', audio_file], stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
stdout, stderr = process.communicate()
matches = re.search(
r"Duration:\s{1}(?P<hours>\d+?):(?P<minutes>\d+?):(?P<seconds>\d+\.\d+?),", stdout.decode(), re.DOTALL
).groupdict()
duration = 0.0
duration += float(matches['hours']) * 60.0 * 60.0
duration += float(matches['minutes']) * 60.0
duration += float(matches['seconds']) * 1.0
return duration
def resolve_model_type(model_name: str) -> str:
"""
Map model name to a class type, without loading the model. Has some hardcoded assumptions in
semantics of model naming.
"""
# Loss specific maps
if 'hybrid' in model_name or 'hybrid_ctc' in model_name or 'hybrid_transducer' in model_name:
return 'hybrid'
elif 'transducer' in model_name or 'rnnt' in model_id:
return 'transducer'
elif 'ctc' in model_name:
return 'ctc'
# Model specific maps
elif 'jasper' in model_name:
return 'ctc'
elif 'quartznet' in model_name:
return 'ctc'
elif 'citrinet' in model_name:
return 'ctc'
elif 'contextnet' in model_name:
return 'ctc'
else:
# Unknown model type
return None
def resolve_model_stride(model_name) -> int:
"""
Model specific pre-calc of stride levels.
Dont laod model to get such info.
"""
if 'jasper' in model_name:
return 2
if 'quartznet' in model_name:
return 2
if 'conformer' in model_name:
return 4
if 'squeezeformer' in model_name:
return 4
if 'citrinet' in model_name:
return 8
if 'contextnet' in model_name:
return 8
return -1
def convert_audio(audio_filepath):
"""
Transcode all mp3 files to monochannel 16 kHz wav files.
"""
filedir = os.path.split(audio_filepath)[0]
filename, ext = os.path.splitext(audio_filepath)
if ext == 'wav':
return audio_filepath
out_filename = os.path.join(filedir, filename + '.wav')
process = subprocess.Popen(
['ffmpeg', '-i', audio_filepath, '-ac', '1', '-ar', str(SAMPLE_RATE), out_filename],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
)
stdout, stderr = process.communicate()
if os.path.exists(out_filename):
return out_filename
else:
return None
def extract_result_from_manifest(filepath, model_name) -> (bool, str):
"""
Parse the written manifest which is result of the buffered inference process.
"""
data = []
with open(filepath, 'r', encoding='utf-8') as f:
for line in f:
try:
line = json.loads(line)
data.append(line['pred_text'])
except Exception as e:
pass
if len(data) > 0:
return True, data[0]
else:
return False, f"Could not perform inference on model with name : {model_name}"
def infer_audio(model_name: str, audio_file: str) -> str:
"""
Main method that switches from HF inference for small audio files to Buffered CTC/RNNT mode for long audio files.
Args:
model_name: Str name of the model (potentially with / to denote HF models)
audio_file: Path to an audio file (mp3 or wav)
Returns:
str which is the transcription if successful.
"""
# Parse the duration of the audio file
duration = parse_duration(audio_file)
if duration > 60.0: # Longer than one minute; use buffered mode
# Process audio to be of wav type (possible youtube audio)
audio_file = convert_audio(audio_file)
# If audio file transcoding failed, let user know
if audio_file is None:
return "Failed to convert audio file to wav."
# Extract audio dir from resolved audio filepath
audio_dir = os.path.split(audio_file)[0]
# Next calculate the stride of each model
model_stride = resolve_model_stride(model_name)
if model_stride < 0:
return f"Failed to compute the model stride for model with name : {model_name}"
# Process model type (CTC/RNNT/Hybrid)
model_type = resolve_model_type(model_name)
if model_type is None:
# Model type could not be infered.
# Try all feasible options
RESULT = None
try:
ctc_config = buffered_ctc.TranscriptionConfig(
pretrained_name=model_name,
audio_dir=audio_dir,
output_filename="output.json",
audio_type="wav",
overwrite_transcripts=True,
model_stride=model_stride,
chunk_len_in_secs=20.0,
total_buffer_in_secs=30.0,
)
buffered_ctc.main(ctc_config)
result = extract_result_from_manifest('output.json', model_name)
if result[0]:
RESULT = result[1]
except Exception as e:
pass
try:
rnnt_config = buffered_rnnt.TranscriptionConfig(
pretrained_name=model_name,
audio_dir=audio_dir,
output_filename="output.json",
audio_type="wav",
overwrite_transcripts=True,
model_stride=model_stride,
chunk_len_in_secs=20.0,
total_buffer_in_secs=30.0,
)
buffered_rnnt.main(rnnt_config)
result = extract_result_from_manifest('output.json', model_name)[-1]
if result[0]:
RESULT = result[1]
except Exception as e:
pass
if RESULT is None:
return f"Could not parse model type; failed to perform inference with model {model_name}!"
elif model_type == 'ctc':
# CTC Buffered Inference
ctc_config = buffered_ctc.TranscriptionConfig(
pretrained_name=model_name,
audio_dir=audio_dir,
output_filename="output.json",
audio_type="wav",
overwrite_transcripts=True,
model_stride=model_stride,
chunk_len_in_secs=20.0,
total_buffer_in_secs=30.0,
)
buffered_ctc.main(ctc_config)
return extract_result_from_manifest('output.json', model_name)[-1]
elif model_type == 'transducer':
# RNNT Buffered Inference
rnnt_config = buffered_rnnt.TranscriptionConfig(
pretrained_name=model_name,
audio_dir=audio_dir,
output_filename="output.json",
audio_type="wav",
overwrite_transcripts=True,
model_stride=model_stride,
chunk_len_in_secs=20.0,
total_buffer_in_secs=30.0,
)
buffered_rnnt.main(rnnt_config)
return extract_result_from_manifest('output.json', model_name)[-1]
else:
return f"Could not parse model type; failed to perform inference with model {model_name}!"
else:
if model_name in model_dict:
model = model_dict[model_name]
else:
model = None
if model is not None:
# Use HF API for transcription
transcriptions = model(audio_file)
return transcriptions
else:
error = (
f"Could not find model {model_name} in list of available models : "
f"{list([k for k in model_dict.keys()])}"
)
return error
def transcribe(microphone, audio_file, model_name):
warn_output = ""
if (microphone is not None) and (audio_file is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
audio_data = microphone
elif (microphone is None) and (audio_file is None):
return "ERROR: You have to either use the microphone or upload an audio file"
elif microphone is not None:
audio_data = microphone
else:
audio_data = audio_file
try:
# Use HF API for transcription
transcriptions = infer_audio(model_name, audio_data)
except Exception as e:
transcriptions = ""
warn_output = warn_output + "\n\n"
warn_output += (
f"The model `{model_name}` is currently loading and cannot be used "
f"for transcription.\n"
f"Please try another model or wait a few minutes."
)
return warn_output + transcriptions
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def yt_transcribe(yt_url, model_name):
yt = pt.YouTube(yt_url)
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tempdir:
file_uuid = str(uuid.uuid4().hex)
file_uuid = f"{tempdir}/{file_uuid}.mp3"
stream = yt.streams.filter(only_audio=True)[0]
stream.download(filename=file_uuid)
text = infer_audio(model_name, file_uuid)
return html_embed_str, text
def create_lang_selector_component(default_en_model=DEFAULT_EN_MODEL):
lang_selector = gr.components.Dropdown(
choices=sorted(list(SUPPORTED_LANGUAGES)), value="en", type="value", label="Languages", interactive=True,
)
models_in_lang = gr.components.Dropdown(
choices=sorted(list(SUPPORTED_LANG_MODEL_DICT["en"])),
value=default_en_model,
label="Models",
interactive=True,
)
def update_models_with_lang(lang):
models_names = sorted(list(SUPPORTED_LANG_MODEL_DICT[lang]))
default = models_names[0]
if lang == 'en':
default = default_en_model
return models_in_lang.update(choices=models_names, value=default)
lang_selector.change(update_models_with_lang, inputs=[lang_selector], outputs=[models_in_lang])
return lang_selector, models_in_lang
demo = gr.Blocks(title=TITLE, css=CSS)
with demo:
header = gr.Markdown(MARKDOWN)
with gr.Tab("Transcribe Audio"):
with gr.Row() as row:
file_upload = gr.components.Audio(source="upload", type='filepath', label='Upload File')
microphone = gr.components.Audio(source="microphone", type='filepath', label='Microphone')
lang_selector, models_in_lang = create_lang_selector_component()
transcript = gr.components.Label(label='Transcript')
run = gr.components.Button('Transcribe')
run.click(transcribe, inputs=[microphone, file_upload, models_in_lang], outputs=[transcript])
with gr.Tab("Transcribe Youtube"):
yt_url = gr.components.Textbox(
lines=1, label="Youtube URL", placeholder="Paste the URL to a YouTube video here"
)
lang_selector_yt, models_in_lang_yt = create_lang_selector_component(
default_en_model='nvidia/stt_en_conformer_transducer_large'
)
embedded_video = gr.components.HTML()
transcript = gr.components.Label(label='Transcript')
run = gr.components.Button('Transcribe YouTube')
run.click(yt_transcribe, inputs=[yt_url, models_in_lang_yt], outputs=[embedded_video, transcript])
gr.components.HTML(ARTICLE)
demo.queue(concurrency_count=1)
demo.launch(enable_queue=True)