Spaces:
Runtime error
Runtime error
Add support for YT transcription
Browse files- app.py +324 -16
- requirements.txt +2 -1
- speech_to_text_buffered_infer_ctc.py +193 -0
- speech_to_text_buffered_infer_rnnt.py +247 -0
app.py
CHANGED
|
@@ -1,7 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
|
| 4 |
import nemo.collections.asr as nemo_asr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
SAMPLE_RATE = 16000
|
| 7 |
TITLE = "NeMo ASR Inference on Hugging Face"
|
|
@@ -32,7 +46,7 @@ ARTICLE = """
|
|
| 32 |
SUPPORTED_LANGUAGES = set([])
|
| 33 |
SUPPORTED_MODEL_NAMES = set([])
|
| 34 |
|
| 35 |
-
# HF models
|
| 36 |
hf_filter = nemo_asr.models.ASRModel.get_hf_model_filter()
|
| 37 |
hf_filter.task = "automatic-speech-recognition"
|
| 38 |
|
|
@@ -44,6 +58,8 @@ for info in hf_infos:
|
|
| 44 |
|
| 45 |
SUPPORTED_MODEL_NAMES = sorted(list(SUPPORTED_MODEL_NAMES))
|
| 46 |
|
|
|
|
|
|
|
| 47 |
model_dict = {model_name: gr.Interface.load(f'models/{model_name}') for model_name in SUPPORTED_MODEL_NAMES}
|
| 48 |
|
| 49 |
SUPPORTED_LANG_MODEL_DICT = {}
|
|
@@ -63,8 +79,253 @@ for lang in SUPPORTED_LANG_MODEL_DICT.keys():
|
|
| 63 |
SUPPORTED_LANG_MODEL_DICT[lang] = model_ids
|
| 64 |
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
def transcribe(microphone, audio_file, model_name):
|
| 67 |
-
model = model_dict[model_name]
|
| 68 |
|
| 69 |
warn_output = ""
|
| 70 |
if (microphone is not None) and (audio_file is not None):
|
|
@@ -84,7 +345,7 @@ def transcribe(microphone, audio_file, model_name):
|
|
| 84 |
|
| 85 |
try:
|
| 86 |
# Use HF API for transcription
|
| 87 |
-
transcriptions =
|
| 88 |
|
| 89 |
except Exception as e:
|
| 90 |
transcriptions = ""
|
|
@@ -98,21 +359,38 @@ def transcribe(microphone, audio_file, model_name):
|
|
| 98 |
return warn_output + transcriptions
|
| 99 |
|
| 100 |
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
-
with demo:
|
| 104 |
-
header = gr.Markdown(MARKDOWN)
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
lang_selector = gr.components.Dropdown(
|
| 111 |
choices=sorted(list(SUPPORTED_LANGUAGES)), value="en", type="value", label="Languages", interactive=True,
|
| 112 |
)
|
| 113 |
models_in_lang = gr.components.Dropdown(
|
| 114 |
choices=sorted(list(SUPPORTED_LANG_MODEL_DICT["en"])),
|
| 115 |
-
value=
|
| 116 |
label="Models",
|
| 117 |
interactive=True,
|
| 118 |
)
|
|
@@ -122,17 +400,47 @@ with demo:
|
|
| 122 |
default = models_names[0]
|
| 123 |
|
| 124 |
if lang == 'en':
|
| 125 |
-
default =
|
| 126 |
return models_in_lang.update(choices=models_names, value=default)
|
| 127 |
|
| 128 |
lang_selector.change(update_models_with_lang, inputs=[lang_selector], outputs=[models_in_lang])
|
| 129 |
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
|
| 135 |
gr.components.HTML(ARTICLE)
|
| 136 |
|
| 137 |
demo.queue(concurrency_count=1)
|
| 138 |
-
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import uuid
|
| 4 |
+
import tempfile
|
| 5 |
+
import subprocess
|
| 6 |
+
import re
|
| 7 |
+
|
| 8 |
import gradio as gr
|
| 9 |
+
import pytube as pt
|
| 10 |
|
| 11 |
import nemo.collections.asr as nemo_asr
|
| 12 |
+
import speech_to_text_buffered_infer_ctc as buffered_ctc
|
| 13 |
+
import speech_to_text_buffered_infer_rnnt as buffered_rnnt
|
| 14 |
+
|
| 15 |
+
# Set NeMo cache dir as /tmp
|
| 16 |
+
from nemo import constants
|
| 17 |
+
os.environ[constants.NEMO_ENV_CACHE_DIR] = "/tmp/nemo"
|
| 18 |
+
|
| 19 |
|
| 20 |
SAMPLE_RATE = 16000
|
| 21 |
TITLE = "NeMo ASR Inference on Hugging Face"
|
|
|
|
| 46 |
SUPPORTED_LANGUAGES = set([])
|
| 47 |
SUPPORTED_MODEL_NAMES = set([])
|
| 48 |
|
| 49 |
+
# HF models, grouped by language identifier
|
| 50 |
hf_filter = nemo_asr.models.ASRModel.get_hf_model_filter()
|
| 51 |
hf_filter.task = "automatic-speech-recognition"
|
| 52 |
|
|
|
|
| 58 |
|
| 59 |
SUPPORTED_MODEL_NAMES = sorted(list(SUPPORTED_MODEL_NAMES))
|
| 60 |
|
| 61 |
+
SUPPORTED_MODEL_NAMES = list(filter(lambda x: 'en' in x and 'conformer_transducer_large' in x, SUPPORTED_MODEL_NAMES))
|
| 62 |
+
|
| 63 |
model_dict = {model_name: gr.Interface.load(f'models/{model_name}') for model_name in SUPPORTED_MODEL_NAMES}
|
| 64 |
|
| 65 |
SUPPORTED_LANG_MODEL_DICT = {}
|
|
|
|
| 79 |
SUPPORTED_LANG_MODEL_DICT[lang] = model_ids
|
| 80 |
|
| 81 |
|
| 82 |
+
def parse_duration(audio_file):
|
| 83 |
+
"""
|
| 84 |
+
FFMPEG to calculate durations. Libraries can do it too, but filetypes cause different libraries to behave differently.
|
| 85 |
+
"""
|
| 86 |
+
process = subprocess.Popen(['ffmpeg', '-i', audio_file], stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
| 87 |
+
stdout, stderr = process.communicate()
|
| 88 |
+
matches = re.search(
|
| 89 |
+
r"Duration:\s{1}(?P<hours>\d+?):(?P<minutes>\d+?):(?P<seconds>\d+\.\d+?),", stdout.decode(), re.DOTALL
|
| 90 |
+
).groupdict()
|
| 91 |
+
|
| 92 |
+
duration = 0.0
|
| 93 |
+
duration += float(matches['hours']) * 60.0 * 60.0
|
| 94 |
+
duration += float(matches['minutes']) * 60.0
|
| 95 |
+
duration += float(matches['seconds']) * 1.0
|
| 96 |
+
return duration
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def resolve_model_type(model_name: str) -> str:
|
| 100 |
+
"""
|
| 101 |
+
Map model name to a class type, without loading the model. Has some hardcoded assumptions in
|
| 102 |
+
semantics of model naming.
|
| 103 |
+
"""
|
| 104 |
+
# Loss specific maps
|
| 105 |
+
if 'hybrid' in model_name or 'hybrid_ctc' in model_name or 'hybrid_transducer' in model_name:
|
| 106 |
+
return 'hybrid'
|
| 107 |
+
elif 'transducer' in model_name or 'rnnt' in model_id:
|
| 108 |
+
return 'transducer'
|
| 109 |
+
elif 'ctc' in model_name:
|
| 110 |
+
return 'ctc'
|
| 111 |
+
|
| 112 |
+
# Model specific maps
|
| 113 |
+
elif 'jasper' in model_name:
|
| 114 |
+
return 'ctc'
|
| 115 |
+
elif 'quartznet' in model_name:
|
| 116 |
+
return 'ctc'
|
| 117 |
+
elif 'citrinet' in model_name:
|
| 118 |
+
return 'ctc'
|
| 119 |
+
elif 'contextnet' in model_name:
|
| 120 |
+
return 'ctc'
|
| 121 |
+
else:
|
| 122 |
+
# Unknown model type
|
| 123 |
+
return None
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def resolve_model_stride(model_name) -> int:
|
| 127 |
+
"""
|
| 128 |
+
Model specific pre-calc of stride levels.
|
| 129 |
+
Dont laod model to get such info.
|
| 130 |
+
"""
|
| 131 |
+
if 'jasper' in model_name:
|
| 132 |
+
return 2
|
| 133 |
+
if 'quartznet' in model_name:
|
| 134 |
+
return 2
|
| 135 |
+
if 'conformer' in model_name:
|
| 136 |
+
return 4
|
| 137 |
+
if 'squeezeformer' in model_name:
|
| 138 |
+
return 4
|
| 139 |
+
if 'citrinet' in model_name:
|
| 140 |
+
return 8
|
| 141 |
+
if 'contextnet' in model_name:
|
| 142 |
+
return 8
|
| 143 |
+
|
| 144 |
+
return -1
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def convert_audio(audio_filepath):
|
| 148 |
+
"""
|
| 149 |
+
Transcode all mp3 files to monochannel 16 kHz wav files.
|
| 150 |
+
"""
|
| 151 |
+
filedir = os.path.split(audio_filepath)[0]
|
| 152 |
+
filename, ext = os.path.splitext(audio_filepath)
|
| 153 |
+
|
| 154 |
+
if ext == 'wav':
|
| 155 |
+
return audio_filepath
|
| 156 |
+
|
| 157 |
+
out_filename = os.path.join(filedir, filename + '.wav')
|
| 158 |
+
process = subprocess.Popen(
|
| 159 |
+
['ffmpeg', '-i', audio_filepath, '-ac', '1', '-ar', str(SAMPLE_RATE), out_filename],
|
| 160 |
+
stdout=subprocess.PIPE,
|
| 161 |
+
stderr=subprocess.STDOUT,
|
| 162 |
+
)
|
| 163 |
+
stdout, stderr = process.communicate()
|
| 164 |
+
|
| 165 |
+
if os.path.exists(out_filename):
|
| 166 |
+
return out_filename
|
| 167 |
+
else:
|
| 168 |
+
return None
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def extract_result_from_manifest(filepath, model_name) -> (bool, str):
|
| 172 |
+
"""
|
| 173 |
+
Parse the written manifest which is result of the buffered inference process.
|
| 174 |
+
"""
|
| 175 |
+
data = []
|
| 176 |
+
with open(filepath, 'r', encoding='utf-8') as f:
|
| 177 |
+
for line in f:
|
| 178 |
+
try:
|
| 179 |
+
line = json.loads(line)
|
| 180 |
+
data.append(line['pred_text'])
|
| 181 |
+
except Exception as e:
|
| 182 |
+
pass
|
| 183 |
+
|
| 184 |
+
if len(data) > 0:
|
| 185 |
+
return True, data[0]
|
| 186 |
+
else:
|
| 187 |
+
return False, f"Could not perform inference on model with name : {model_name}"
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def infer_audio(model_name: str, audio_file: str) -> str:
|
| 191 |
+
"""
|
| 192 |
+
Main method that switches from HF inference for small audio files to Buffered CTC/RNNT mode for long audio files.
|
| 193 |
+
|
| 194 |
+
Args:
|
| 195 |
+
model_name: Str name of the model (potentially with / to denote HF models)
|
| 196 |
+
audio_file: Path to an audio file (mp3 or wav)
|
| 197 |
+
|
| 198 |
+
Returns:
|
| 199 |
+
str which is the transcription if successful.
|
| 200 |
+
"""
|
| 201 |
+
# Parse the duration of the audio file
|
| 202 |
+
duration = parse_duration(audio_file)
|
| 203 |
+
|
| 204 |
+
if duration > 60.0: # Longer than one minute; use buffered mode
|
| 205 |
+
# Process audio to be of wav type (possible youtube audio)
|
| 206 |
+
audio_file = convert_audio(audio_file)
|
| 207 |
+
|
| 208 |
+
# If audio file transcoding failed, let user know
|
| 209 |
+
if audio_file is None:
|
| 210 |
+
return "Failed to convert audio file to wav."
|
| 211 |
+
|
| 212 |
+
# Extract audio dir from resolved audio filepath
|
| 213 |
+
audio_dir = os.path.split(audio_file)[0]
|
| 214 |
+
|
| 215 |
+
# Next calculate the stride of each model
|
| 216 |
+
model_stride = resolve_model_stride(model_name)
|
| 217 |
+
|
| 218 |
+
if model_stride < 0:
|
| 219 |
+
return f"Failed to compute the model stride for model with name : {model_name}"
|
| 220 |
+
|
| 221 |
+
# Process model type (CTC/RNNT/Hybrid)
|
| 222 |
+
model_type = resolve_model_type(model_name)
|
| 223 |
+
|
| 224 |
+
if model_type is None:
|
| 225 |
+
|
| 226 |
+
# Model type could not be infered.
|
| 227 |
+
# Try all feasible options
|
| 228 |
+
RESULT = None
|
| 229 |
+
|
| 230 |
+
try:
|
| 231 |
+
ctc_config = buffered_ctc.TranscriptionConfig(
|
| 232 |
+
pretrained_name=model_name,
|
| 233 |
+
audio_dir=audio_dir,
|
| 234 |
+
output_filename="output.json",
|
| 235 |
+
audio_type="wav",
|
| 236 |
+
overwrite_transcripts=True,
|
| 237 |
+
model_stride=model_stride,
|
| 238 |
+
chunk_len_in_secs=20.0,
|
| 239 |
+
total_buffer_in_secs=30.0,
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
buffered_ctc.main(ctc_config)
|
| 243 |
+
result = extract_result_from_manifest('output.json', model_name)
|
| 244 |
+
if result[0]:
|
| 245 |
+
RESULT = result[1]
|
| 246 |
+
|
| 247 |
+
except Exception as e:
|
| 248 |
+
pass
|
| 249 |
+
|
| 250 |
+
try:
|
| 251 |
+
rnnt_config = buffered_rnnt.TranscriptionConfig(
|
| 252 |
+
pretrained_name=model_name,
|
| 253 |
+
audio_dir=audio_dir,
|
| 254 |
+
output_filename="output.json",
|
| 255 |
+
audio_type="wav",
|
| 256 |
+
overwrite_transcripts=True,
|
| 257 |
+
model_stride=model_stride,
|
| 258 |
+
chunk_len_in_secs=20.0,
|
| 259 |
+
total_buffer_in_secs=30.0,
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
buffered_rnnt.main(rnnt_config)
|
| 263 |
+
result = extract_result_from_manifest('output.json', model_name)[-1]
|
| 264 |
+
|
| 265 |
+
if result[0]:
|
| 266 |
+
RESULT = result[1]
|
| 267 |
+
except Exception as e:
|
| 268 |
+
pass
|
| 269 |
+
|
| 270 |
+
if RESULT is None:
|
| 271 |
+
return f"Could not parse model type; failed to perform inference with model {model_name}!"
|
| 272 |
+
|
| 273 |
+
elif model_type == 'ctc':
|
| 274 |
+
|
| 275 |
+
# CTC Buffered Inference
|
| 276 |
+
ctc_config = buffered_ctc.TranscriptionConfig(
|
| 277 |
+
pretrained_name=model_name,
|
| 278 |
+
audio_dir=audio_dir,
|
| 279 |
+
output_filename="output.json",
|
| 280 |
+
audio_type="wav",
|
| 281 |
+
overwrite_transcripts=True,
|
| 282 |
+
model_stride=model_stride,
|
| 283 |
+
chunk_len_in_secs=20.0,
|
| 284 |
+
total_buffer_in_secs=30.0,
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
buffered_ctc.main(ctc_config)
|
| 288 |
+
return extract_result_from_manifest('output.json', model_name)[-1]
|
| 289 |
+
|
| 290 |
+
elif model_type == 'transducer':
|
| 291 |
+
|
| 292 |
+
# RNNT Buffered Inference
|
| 293 |
+
rnnt_config = buffered_rnnt.TranscriptionConfig(
|
| 294 |
+
pretrained_name=model_name,
|
| 295 |
+
audio_dir=audio_dir,
|
| 296 |
+
output_filename="output.json",
|
| 297 |
+
audio_type="wav",
|
| 298 |
+
overwrite_transcripts=True,
|
| 299 |
+
model_stride=model_stride,
|
| 300 |
+
chunk_len_in_secs=20.0,
|
| 301 |
+
total_buffer_in_secs=30.0,
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
buffered_rnnt.main(rnnt_config)
|
| 305 |
+
return extract_result_from_manifest('output.json', model_name)[-1]
|
| 306 |
+
|
| 307 |
+
else:
|
| 308 |
+
return f"Could not parse model type; failed to perform inference with model {model_name}!"
|
| 309 |
+
|
| 310 |
+
else:
|
| 311 |
+
if model_name in model_dict:
|
| 312 |
+
model = model_dict[model_name]
|
| 313 |
+
else:
|
| 314 |
+
model = None
|
| 315 |
+
|
| 316 |
+
if model is not None:
|
| 317 |
+
# Use HF API for transcription
|
| 318 |
+
transcriptions = model(audio_file)
|
| 319 |
+
return transcriptions
|
| 320 |
+
else:
|
| 321 |
+
error = (
|
| 322 |
+
f"Could not find model {model_name} in list of available models : "
|
| 323 |
+
f"{list([k for k in model_dict.keys()])}"
|
| 324 |
+
)
|
| 325 |
+
return error
|
| 326 |
+
|
| 327 |
+
|
| 328 |
def transcribe(microphone, audio_file, model_name):
|
|
|
|
| 329 |
|
| 330 |
warn_output = ""
|
| 331 |
if (microphone is not None) and (audio_file is not None):
|
|
|
|
| 345 |
|
| 346 |
try:
|
| 347 |
# Use HF API for transcription
|
| 348 |
+
transcriptions = infer_audio(model_name, audio_data)
|
| 349 |
|
| 350 |
except Exception as e:
|
| 351 |
transcriptions = ""
|
|
|
|
| 359 |
return warn_output + transcriptions
|
| 360 |
|
| 361 |
|
| 362 |
+
def _return_yt_html_embed(yt_url):
|
| 363 |
+
video_id = yt_url.split("?v=")[-1]
|
| 364 |
+
HTML_str = (
|
| 365 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
| 366 |
+
" </center>"
|
| 367 |
+
)
|
| 368 |
+
return HTML_str
|
| 369 |
|
|
|
|
|
|
|
| 370 |
|
| 371 |
+
def yt_transcribe(yt_url, model_name):
|
| 372 |
+
yt = pt.YouTube(yt_url)
|
| 373 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
| 374 |
+
|
| 375 |
+
with tempfile.TemporaryDirectory() as tempdir:
|
| 376 |
+
file_uuid = str(uuid.uuid4().hex)
|
| 377 |
+
file_uuid = f"{tempdir}/{file_uuid}.mp3"
|
| 378 |
+
|
| 379 |
+
stream = yt.streams.filter(only_audio=True)[0]
|
| 380 |
+
stream.download(filename=file_uuid)
|
| 381 |
|
| 382 |
+
text = infer_audio(model_name, file_uuid)
|
| 383 |
+
|
| 384 |
+
return html_embed_str, text
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
def create_lang_selector_component(default_en_model=DEFAULT_EN_MODEL):
|
| 388 |
lang_selector = gr.components.Dropdown(
|
| 389 |
choices=sorted(list(SUPPORTED_LANGUAGES)), value="en", type="value", label="Languages", interactive=True,
|
| 390 |
)
|
| 391 |
models_in_lang = gr.components.Dropdown(
|
| 392 |
choices=sorted(list(SUPPORTED_LANG_MODEL_DICT["en"])),
|
| 393 |
+
value=default_en_model,
|
| 394 |
label="Models",
|
| 395 |
interactive=True,
|
| 396 |
)
|
|
|
|
| 400 |
default = models_names[0]
|
| 401 |
|
| 402 |
if lang == 'en':
|
| 403 |
+
default = default_en_model
|
| 404 |
return models_in_lang.update(choices=models_names, value=default)
|
| 405 |
|
| 406 |
lang_selector.change(update_models_with_lang, inputs=[lang_selector], outputs=[models_in_lang])
|
| 407 |
|
| 408 |
+
return lang_selector, models_in_lang
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
demo = gr.Blocks(title=TITLE, css=CSS)
|
| 412 |
+
|
| 413 |
+
with demo:
|
| 414 |
+
header = gr.Markdown(MARKDOWN)
|
| 415 |
+
|
| 416 |
+
with gr.Tab("Transcribe Audio"):
|
| 417 |
+
with gr.Row() as row:
|
| 418 |
+
file_upload = gr.components.Audio(source="upload", type='filepath', label='Upload File')
|
| 419 |
+
microphone = gr.components.Audio(source="microphone", type='filepath', label='Microphone')
|
| 420 |
+
|
| 421 |
+
lang_selector, models_in_lang = create_lang_selector_component()
|
| 422 |
+
|
| 423 |
+
transcript = gr.components.Label(label='Transcript')
|
| 424 |
+
|
| 425 |
+
run = gr.components.Button('Transcribe')
|
| 426 |
+
run.click(transcribe, inputs=[microphone, file_upload, models_in_lang], outputs=[transcript])
|
| 427 |
+
|
| 428 |
+
with gr.Tab("Transcribe Youtube"):
|
| 429 |
+
yt_url = gr.components.Textbox(
|
| 430 |
+
lines=1, label="Youtube URL", placeholder="Paste the URL to a YouTube video here"
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
lang_selector_yt, models_in_lang_yt = create_lang_selector_component(
|
| 434 |
+
default_en_model='nvidia/stt_en_conformer_transducer_large'
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
embedded_video = gr.components.HTML()
|
| 438 |
+
transcript = gr.components.Label(label='Transcript')
|
| 439 |
|
| 440 |
+
run = gr.components.Button('Transcribe YouTube')
|
| 441 |
+
run.click(yt_transcribe, inputs=[yt_url, models_in_lang_yt], outputs=[embedded_video, transcript])
|
| 442 |
|
| 443 |
gr.components.HTML(ARTICLE)
|
| 444 |
|
| 445 |
demo.queue(concurrency_count=1)
|
| 446 |
+
demo.launch(enable_queue=True)
|
requirements.txt
CHANGED
|
@@ -1 +1,2 @@
|
|
| 1 |
-
nemo_toolkit[
|
|
|
|
|
|
| 1 |
+
git+https://github.com/NVIDIA/NeMo.git@{BRANCH}#egg=nemo_toolkit[all]
|
| 2 |
+
pytube
|
speech_to_text_buffered_infer_ctc.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
This script serves three goals:
|
| 17 |
+
(1) Demonstrate how to use NeMo Models outside of PytorchLightning
|
| 18 |
+
(2) Shows example of batch ASR inference
|
| 19 |
+
(3) Serves as CI test for pre-trained checkpoint
|
| 20 |
+
|
| 21 |
+
python speech_to_text_buffered_infer_ctc.py \
|
| 22 |
+
model_path=null \
|
| 23 |
+
pretrained_name=null \
|
| 24 |
+
audio_dir="<remove or path to folder of audio files>" \
|
| 25 |
+
dataset_manifest="<remove or path to manifest>" \
|
| 26 |
+
output_filename="<remove or specify output filename>" \
|
| 27 |
+
total_buffer_in_secs=4.0 \
|
| 28 |
+
chunk_len_in_secs=1.6 \
|
| 29 |
+
model_stride=4 \
|
| 30 |
+
batch_size=32
|
| 31 |
+
|
| 32 |
+
# NOTE:
|
| 33 |
+
You can use `DEBUG=1 python speech_to_text_buffered_infer_ctc.py ...` to print out the
|
| 34 |
+
predictions of the model, and ground-truth text if presents in manifest.
|
| 35 |
+
"""
|
| 36 |
+
import contextlib
|
| 37 |
+
import copy
|
| 38 |
+
import glob
|
| 39 |
+
import math
|
| 40 |
+
import os
|
| 41 |
+
from dataclasses import dataclass, is_dataclass
|
| 42 |
+
from typing import Optional
|
| 43 |
+
|
| 44 |
+
import torch
|
| 45 |
+
from omegaconf import OmegaConf
|
| 46 |
+
|
| 47 |
+
from nemo.collections.asr.parts.utils.streaming_utils import FrameBatchASR
|
| 48 |
+
from nemo.collections.asr.parts.utils.transcribe_utils import (
|
| 49 |
+
compute_output_filename,
|
| 50 |
+
get_buffered_pred_feat,
|
| 51 |
+
setup_model,
|
| 52 |
+
write_transcription,
|
| 53 |
+
)
|
| 54 |
+
from nemo.core.config import hydra_runner
|
| 55 |
+
from nemo.utils import logging
|
| 56 |
+
|
| 57 |
+
can_gpu = torch.cuda.is_available()
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
@dataclass
|
| 61 |
+
class TranscriptionConfig:
|
| 62 |
+
# Required configs
|
| 63 |
+
model_path: Optional[str] = None # Path to a .nemo file
|
| 64 |
+
pretrained_name: Optional[str] = None # Name of a pretrained model
|
| 65 |
+
audio_dir: Optional[str] = None # Path to a directory which contains audio files
|
| 66 |
+
dataset_manifest: Optional[str] = None # Path to dataset's JSON manifest
|
| 67 |
+
|
| 68 |
+
# General configs
|
| 69 |
+
output_filename: Optional[str] = None
|
| 70 |
+
batch_size: int = 32
|
| 71 |
+
num_workers: int = 0
|
| 72 |
+
append_pred: bool = False # Sets mode of work, if True it will add new field transcriptions.
|
| 73 |
+
pred_name_postfix: Optional[str] = None # If you need to use another model name, rather than standard one.
|
| 74 |
+
|
| 75 |
+
# Chunked configs
|
| 76 |
+
chunk_len_in_secs: float = 1.6 # Chunk length in seconds
|
| 77 |
+
total_buffer_in_secs: float = 4.0 # Length of buffer (chunk + left and right padding) in seconds
|
| 78 |
+
model_stride: int = 8 # Model downsampling factor, 8 for Citrinet models and 4 for Conformer models",
|
| 79 |
+
|
| 80 |
+
# Set `cuda` to int to define CUDA device. If 'None', will look for CUDA
|
| 81 |
+
# device anyway, and do inference on CPU only if CUDA device is not found.
|
| 82 |
+
# If `cuda` is a negative number, inference will be on CPU only.
|
| 83 |
+
cuda: Optional[int] = None
|
| 84 |
+
amp: bool = False
|
| 85 |
+
audio_type: str = "wav"
|
| 86 |
+
|
| 87 |
+
# Recompute model transcription, even if the output folder exists with scores.
|
| 88 |
+
overwrite_transcripts: bool = True
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
@hydra_runner(config_name="TranscriptionConfig", schema=TranscriptionConfig)
|
| 92 |
+
def main(cfg: TranscriptionConfig) -> TranscriptionConfig:
|
| 93 |
+
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
|
| 94 |
+
torch.set_grad_enabled(False)
|
| 95 |
+
|
| 96 |
+
if is_dataclass(cfg):
|
| 97 |
+
cfg = OmegaConf.structured(cfg)
|
| 98 |
+
|
| 99 |
+
if cfg.model_path is None and cfg.pretrained_name is None:
|
| 100 |
+
raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None!")
|
| 101 |
+
if cfg.audio_dir is None and cfg.dataset_manifest is None:
|
| 102 |
+
raise ValueError("Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")
|
| 103 |
+
|
| 104 |
+
filepaths = None
|
| 105 |
+
manifest = cfg.dataset_manifest
|
| 106 |
+
if cfg.audio_dir is not None:
|
| 107 |
+
filepaths = list(glob.glob(os.path.join(cfg.audio_dir, f"**/*.{cfg.audio_type}"), recursive=True))
|
| 108 |
+
manifest = None # ignore dataset_manifest if audio_dir and dataset_manifest both presents
|
| 109 |
+
|
| 110 |
+
# setup GPU
|
| 111 |
+
if cfg.cuda is None:
|
| 112 |
+
if torch.cuda.is_available():
|
| 113 |
+
device = [0] # use 0th CUDA device
|
| 114 |
+
accelerator = 'gpu'
|
| 115 |
+
else:
|
| 116 |
+
device = 1
|
| 117 |
+
accelerator = 'cpu'
|
| 118 |
+
else:
|
| 119 |
+
device = [cfg.cuda]
|
| 120 |
+
accelerator = 'gpu'
|
| 121 |
+
map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu')
|
| 122 |
+
logging.info(f"Inference will be done on device : {device}")
|
| 123 |
+
|
| 124 |
+
asr_model, model_name = setup_model(cfg, map_location)
|
| 125 |
+
|
| 126 |
+
model_cfg = copy.deepcopy(asr_model._cfg)
|
| 127 |
+
OmegaConf.set_struct(model_cfg.preprocessor, False)
|
| 128 |
+
# some changes for streaming scenario
|
| 129 |
+
model_cfg.preprocessor.dither = 0.0
|
| 130 |
+
model_cfg.preprocessor.pad_to = 0
|
| 131 |
+
|
| 132 |
+
if model_cfg.preprocessor.normalize != "per_feature":
|
| 133 |
+
logging.error("Only EncDecCTCModelBPE models trained with per_feature normalization are supported currently")
|
| 134 |
+
|
| 135 |
+
# Disable config overwriting
|
| 136 |
+
OmegaConf.set_struct(model_cfg.preprocessor, True)
|
| 137 |
+
|
| 138 |
+
# setup AMP (optional)
|
| 139 |
+
if cfg.amp and torch.cuda.is_available() and hasattr(torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'):
|
| 140 |
+
logging.info("AMP enabled!\n")
|
| 141 |
+
autocast = torch.cuda.amp.autocast
|
| 142 |
+
else:
|
| 143 |
+
|
| 144 |
+
@contextlib.contextmanager
|
| 145 |
+
def autocast():
|
| 146 |
+
yield
|
| 147 |
+
|
| 148 |
+
# Compute output filename
|
| 149 |
+
cfg = compute_output_filename(cfg, model_name)
|
| 150 |
+
|
| 151 |
+
# if transcripts should not be overwritten, and already exists, skip re-transcription step and return
|
| 152 |
+
if not cfg.overwrite_transcripts and os.path.exists(cfg.output_filename):
|
| 153 |
+
logging.info(
|
| 154 |
+
f"Previous transcripts found at {cfg.output_filename}, and flag `overwrite_transcripts`"
|
| 155 |
+
f"is {cfg.overwrite_transcripts}. Returning without re-transcribing text."
|
| 156 |
+
)
|
| 157 |
+
return cfg
|
| 158 |
+
|
| 159 |
+
asr_model.eval()
|
| 160 |
+
asr_model = asr_model.to(asr_model.device)
|
| 161 |
+
|
| 162 |
+
feature_stride = model_cfg.preprocessor['window_stride']
|
| 163 |
+
model_stride_in_secs = feature_stride * cfg.model_stride
|
| 164 |
+
total_buffer = cfg.total_buffer_in_secs
|
| 165 |
+
chunk_len = float(cfg.chunk_len_in_secs)
|
| 166 |
+
|
| 167 |
+
tokens_per_chunk = math.ceil(chunk_len / model_stride_in_secs)
|
| 168 |
+
mid_delay = math.ceil((chunk_len + (total_buffer - chunk_len) / 2) / model_stride_in_secs)
|
| 169 |
+
logging.info(f"tokens_per_chunk is {tokens_per_chunk}, mid_delay is {mid_delay}")
|
| 170 |
+
|
| 171 |
+
frame_asr = FrameBatchASR(
|
| 172 |
+
asr_model=asr_model, frame_len=chunk_len, total_buffer=cfg.total_buffer_in_secs, batch_size=cfg.batch_size,
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
hyps = get_buffered_pred_feat(
|
| 176 |
+
frame_asr,
|
| 177 |
+
chunk_len,
|
| 178 |
+
tokens_per_chunk,
|
| 179 |
+
mid_delay,
|
| 180 |
+
model_cfg.preprocessor,
|
| 181 |
+
model_stride_in_secs,
|
| 182 |
+
asr_model.device,
|
| 183 |
+
manifest,
|
| 184 |
+
filepaths,
|
| 185 |
+
)
|
| 186 |
+
output_filename = write_transcription(hyps, cfg, model_name, filepaths=filepaths, compute_langs=False)
|
| 187 |
+
logging.info(f"Finished writing predictions to {output_filename}!")
|
| 188 |
+
|
| 189 |
+
return cfg
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
if __name__ == '__main__':
|
| 193 |
+
main() # noqa pylint: disable=no-value-for-parameter
|
speech_to_text_buffered_infer_rnnt.py
ADDED
|
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Script to perform buffered inference using RNNT models.
|
| 17 |
+
|
| 18 |
+
Buffered inference is the primary form of audio transcription when the audio segment is longer than 20-30 seconds.
|
| 19 |
+
This is especially useful for models such as Conformers, which have quadratic time and memory scaling with
|
| 20 |
+
audio duration.
|
| 21 |
+
|
| 22 |
+
The difference between streaming and buffered inference is the chunk size (or the latency of inference).
|
| 23 |
+
Buffered inference will use large chunk sizes (5-10 seconds) + some additional buffer for context.
|
| 24 |
+
Streaming inference will use small chunk sizes (0.1 to 0.25 seconds) + some additional buffer for context.
|
| 25 |
+
|
| 26 |
+
# Middle Token merge algorithm
|
| 27 |
+
|
| 28 |
+
python speech_to_text_buffered_infer_rnnt.py \
|
| 29 |
+
model_path=null \
|
| 30 |
+
pretrained_name=null \
|
| 31 |
+
audio_dir="<remove or path to folder of audio files>" \
|
| 32 |
+
dataset_manifest="<remove or path to manifest>" \
|
| 33 |
+
output_filename="<remove or specify output filename>" \
|
| 34 |
+
total_buffer_in_secs=4.0 \
|
| 35 |
+
chunk_len_in_secs=1.6 \
|
| 36 |
+
model_stride=4 \
|
| 37 |
+
batch_size=32
|
| 38 |
+
|
| 39 |
+
# Longer Common Subsequence (LCS) Merge algorithm
|
| 40 |
+
|
| 41 |
+
python speech_to_text_buffered_infer_rnnt.py \
|
| 42 |
+
model_path=null \
|
| 43 |
+
pretrained_name=null \
|
| 44 |
+
audio_dir="<remove or path to folder of audio files>" \
|
| 45 |
+
dataset_manifest="<remove or path to manifest>" \
|
| 46 |
+
output_filename="<remove or specify output filename>" \
|
| 47 |
+
total_buffer_in_secs=4.0 \
|
| 48 |
+
chunk_len_in_secs=1.6 \
|
| 49 |
+
model_stride=4 \
|
| 50 |
+
batch_size=32 \
|
| 51 |
+
merge_algo="lcs" \
|
| 52 |
+
lcs_alignment_dir=<OPTIONAL: Some path to store the LCS alignments>
|
| 53 |
+
|
| 54 |
+
# NOTE:
|
| 55 |
+
You can use `DEBUG=1 python speech_to_text_buffered_infer_ctc.py ...` to print out the
|
| 56 |
+
predictions of the model, and ground-truth text if presents in manifest.
|
| 57 |
+
"""
|
| 58 |
+
import copy
|
| 59 |
+
import glob
|
| 60 |
+
import math
|
| 61 |
+
import os
|
| 62 |
+
from dataclasses import dataclass, is_dataclass
|
| 63 |
+
from typing import Optional
|
| 64 |
+
|
| 65 |
+
import torch
|
| 66 |
+
from omegaconf import OmegaConf, open_dict
|
| 67 |
+
|
| 68 |
+
from nemo.collections.asr.parts.utils.streaming_utils import (
|
| 69 |
+
BatchedFrameASRRNNT,
|
| 70 |
+
LongestCommonSubsequenceBatchedFrameASRRNNT,
|
| 71 |
+
)
|
| 72 |
+
from nemo.collections.asr.parts.utils.transcribe_utils import (
|
| 73 |
+
compute_output_filename,
|
| 74 |
+
get_buffered_pred_feat_rnnt,
|
| 75 |
+
setup_model,
|
| 76 |
+
write_transcription,
|
| 77 |
+
)
|
| 78 |
+
from nemo.core.config import hydra_runner
|
| 79 |
+
from nemo.utils import logging
|
| 80 |
+
|
| 81 |
+
can_gpu = torch.cuda.is_available()
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
@dataclass
|
| 85 |
+
class TranscriptionConfig:
|
| 86 |
+
# Required configs
|
| 87 |
+
model_path: Optional[str] = None # Path to a .nemo file
|
| 88 |
+
pretrained_name: Optional[str] = None # Name of a pretrained model
|
| 89 |
+
audio_dir: Optional[str] = None # Path to a directory which contains audio files
|
| 90 |
+
dataset_manifest: Optional[str] = None # Path to dataset's JSON manifest
|
| 91 |
+
|
| 92 |
+
# General configs
|
| 93 |
+
output_filename: Optional[str] = None
|
| 94 |
+
batch_size: int = 32
|
| 95 |
+
num_workers: int = 0
|
| 96 |
+
append_pred: bool = False # Sets mode of work, if True it will add new field transcriptions.
|
| 97 |
+
pred_name_postfix: Optional[str] = None # If you need to use another model name, rather than standard one.
|
| 98 |
+
|
| 99 |
+
# Chunked configs
|
| 100 |
+
chunk_len_in_secs: float = 1.6 # Chunk length in seconds
|
| 101 |
+
total_buffer_in_secs: float = 4.0 # Length of buffer (chunk + left and right padding) in seconds
|
| 102 |
+
model_stride: int = 8 # Model downsampling factor, 8 for Citrinet models and 4 for Conformer models",
|
| 103 |
+
|
| 104 |
+
# Set `cuda` to int to define CUDA device. If 'None', will look for CUDA
|
| 105 |
+
# device anyway, and do inference on CPU only if CUDA device is not found.
|
| 106 |
+
# If `cuda` is a negative number, inference will be on CPU only.
|
| 107 |
+
cuda: Optional[int] = None
|
| 108 |
+
audio_type: str = "wav"
|
| 109 |
+
|
| 110 |
+
# Recompute model transcription, even if the output folder exists with scores.
|
| 111 |
+
overwrite_transcripts: bool = True
|
| 112 |
+
|
| 113 |
+
# Decoding configs
|
| 114 |
+
max_steps_per_timestep: int = 5 #'Maximum number of tokens decoded per acoustic timestep'
|
| 115 |
+
stateful_decoding: bool = False # Whether to perform stateful decoding
|
| 116 |
+
|
| 117 |
+
# Merge algorithm for transducers
|
| 118 |
+
merge_algo: Optional[str] = 'middle' # choices=['middle', 'lcs'], choice of algorithm to apply during inference.
|
| 119 |
+
lcs_alignment_dir: Optional[str] = None # Path to a directory to store LCS algo alignments
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
@hydra_runner(config_name="TranscriptionConfig", schema=TranscriptionConfig)
|
| 123 |
+
def main(cfg: TranscriptionConfig) -> TranscriptionConfig:
|
| 124 |
+
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
|
| 125 |
+
torch.set_grad_enabled(False)
|
| 126 |
+
|
| 127 |
+
if is_dataclass(cfg):
|
| 128 |
+
cfg = OmegaConf.structured(cfg)
|
| 129 |
+
|
| 130 |
+
if cfg.model_path is None and cfg.pretrained_name is None:
|
| 131 |
+
raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None!")
|
| 132 |
+
if cfg.audio_dir is None and cfg.dataset_manifest is None:
|
| 133 |
+
raise ValueError("Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")
|
| 134 |
+
|
| 135 |
+
filepaths = None
|
| 136 |
+
manifest = cfg.dataset_manifest
|
| 137 |
+
if cfg.audio_dir is not None:
|
| 138 |
+
filepaths = list(glob.glob(os.path.join(cfg.audio_dir, f"**/*.{cfg.audio_type}"), recursive=True))
|
| 139 |
+
manifest = None # ignore dataset_manifest if audio_dir and dataset_manifest both presents
|
| 140 |
+
|
| 141 |
+
# setup GPU
|
| 142 |
+
if cfg.cuda is None:
|
| 143 |
+
if torch.cuda.is_available():
|
| 144 |
+
device = [0] # use 0th CUDA device
|
| 145 |
+
accelerator = 'gpu'
|
| 146 |
+
else:
|
| 147 |
+
device = 1
|
| 148 |
+
accelerator = 'cpu'
|
| 149 |
+
else:
|
| 150 |
+
device = [cfg.cuda]
|
| 151 |
+
accelerator = 'gpu'
|
| 152 |
+
map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu')
|
| 153 |
+
logging.info(f"Inference will be done on device : {device}")
|
| 154 |
+
|
| 155 |
+
asr_model, model_name = setup_model(cfg, map_location)
|
| 156 |
+
|
| 157 |
+
model_cfg = copy.deepcopy(asr_model._cfg)
|
| 158 |
+
OmegaConf.set_struct(model_cfg.preprocessor, False)
|
| 159 |
+
# some changes for streaming scenario
|
| 160 |
+
model_cfg.preprocessor.dither = 0.0
|
| 161 |
+
model_cfg.preprocessor.pad_to = 0
|
| 162 |
+
|
| 163 |
+
if model_cfg.preprocessor.normalize != "per_feature":
|
| 164 |
+
logging.error("Only EncDecRNNTBPEModel models trained with per_feature normalization are supported currently")
|
| 165 |
+
|
| 166 |
+
# Disable config overwriting
|
| 167 |
+
OmegaConf.set_struct(model_cfg.preprocessor, True)
|
| 168 |
+
|
| 169 |
+
# Compute output filename
|
| 170 |
+
cfg = compute_output_filename(cfg, model_name)
|
| 171 |
+
|
| 172 |
+
# if transcripts should not be overwritten, and already exists, skip re-transcription step and return
|
| 173 |
+
if not cfg.overwrite_transcripts and os.path.exists(cfg.output_filename):
|
| 174 |
+
logging.info(
|
| 175 |
+
f"Previous transcripts found at {cfg.output_filename}, and flag `overwrite_transcripts`"
|
| 176 |
+
f"is {cfg.overwrite_transcripts}. Returning without re-transcribing text."
|
| 177 |
+
)
|
| 178 |
+
return cfg
|
| 179 |
+
|
| 180 |
+
asr_model.freeze()
|
| 181 |
+
asr_model = asr_model.to(asr_model.device)
|
| 182 |
+
|
| 183 |
+
# Change Decoding Config
|
| 184 |
+
decoding_cfg = asr_model.cfg.decoding
|
| 185 |
+
with open_dict(decoding_cfg):
|
| 186 |
+
if cfg.stateful_decoding:
|
| 187 |
+
decoding_cfg.strategy = "greedy"
|
| 188 |
+
else:
|
| 189 |
+
decoding_cfg.strategy = "greedy_batch"
|
| 190 |
+
decoding_cfg.preserve_alignments = True # required to compute the middle token for transducers.
|
| 191 |
+
decoding_cfg.fused_batch_size = -1 # temporarily stop fused batch during inference.
|
| 192 |
+
|
| 193 |
+
asr_model.change_decoding_strategy(decoding_cfg)
|
| 194 |
+
|
| 195 |
+
feature_stride = model_cfg.preprocessor['window_stride']
|
| 196 |
+
model_stride_in_secs = feature_stride * cfg.model_stride
|
| 197 |
+
total_buffer = cfg.total_buffer_in_secs
|
| 198 |
+
chunk_len = float(cfg.chunk_len_in_secs)
|
| 199 |
+
|
| 200 |
+
tokens_per_chunk = math.ceil(chunk_len / model_stride_in_secs)
|
| 201 |
+
mid_delay = math.ceil((chunk_len + (total_buffer - chunk_len) / 2) / model_stride_in_secs)
|
| 202 |
+
logging.info(f"tokens_per_chunk is {tokens_per_chunk}, mid_delay is {mid_delay}")
|
| 203 |
+
|
| 204 |
+
if cfg.merge_algo == 'middle':
|
| 205 |
+
frame_asr = BatchedFrameASRRNNT(
|
| 206 |
+
asr_model=asr_model,
|
| 207 |
+
frame_len=chunk_len,
|
| 208 |
+
total_buffer=cfg.total_buffer_in_secs,
|
| 209 |
+
batch_size=cfg.batch_size,
|
| 210 |
+
max_steps_per_timestep=cfg.max_steps_per_timestep,
|
| 211 |
+
stateful_decoding=cfg.stateful_decoding,
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
elif cfg.merge_algo == 'lcs':
|
| 215 |
+
frame_asr = LongestCommonSubsequenceBatchedFrameASRRNNT(
|
| 216 |
+
asr_model=asr_model,
|
| 217 |
+
frame_len=chunk_len,
|
| 218 |
+
total_buffer=cfg.total_buffer_in_secs,
|
| 219 |
+
batch_size=cfg.batch_size,
|
| 220 |
+
max_steps_per_timestep=cfg.max_steps_per_timestep,
|
| 221 |
+
stateful_decoding=cfg.stateful_decoding,
|
| 222 |
+
alignment_basepath=cfg.lcs_alignment_dir,
|
| 223 |
+
)
|
| 224 |
+
# Set the LCS algorithm delay.
|
| 225 |
+
frame_asr.lcs_delay = math.floor(((total_buffer - chunk_len)) / model_stride_in_secs)
|
| 226 |
+
|
| 227 |
+
else:
|
| 228 |
+
raise ValueError("Invalid choice of merge algorithm for transducer buffered inference.")
|
| 229 |
+
|
| 230 |
+
hyps = get_buffered_pred_feat_rnnt(
|
| 231 |
+
asr=frame_asr,
|
| 232 |
+
tokens_per_chunk=tokens_per_chunk,
|
| 233 |
+
delay=mid_delay,
|
| 234 |
+
model_stride_in_secs=model_stride_in_secs,
|
| 235 |
+
batch_size=cfg.batch_size,
|
| 236 |
+
manifest=manifest,
|
| 237 |
+
filepaths=filepaths,
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
output_filename = write_transcription(hyps, cfg, model_name, filepaths=filepaths, compute_langs=False)
|
| 241 |
+
logging.info(f"Finished writing predictions to {output_filename}!")
|
| 242 |
+
|
| 243 |
+
return cfg
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
if __name__ == '__main__':
|
| 247 |
+
main() # noqa pylint: disable=no-value-for-parameter
|