gradio / ipadapter_FaceID /sample_ipadapter_faceid_plus.py
sirikan's picture
Upload folder using huggingface_hub
d74182a verified
import torch
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
from diffusers.utils import load_image
import os,sys
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
import cv2
import numpy as np
import insightface
from diffusers.utils import load_image
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image
class FaceInfoGenerator():
def __init__(self, root_dir = "./"):
self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.app.prepare(ctx_id = 0, det_size = (640, 640))
def get_faceinfo_one_img(self, image_path):
face_image = load_image(image_path)
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
if len(face_info) == 0:
face_info = None
else:
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
return face_info
def face_bbox_to_square(bbox):
## l, t, r, b to square l, t, r, b
l,t,r,b = bbox
cent_x = (l + r) / 2
cent_y = (t + b) / 2
w, h = r - l, b - t
r = max(w, h) / 2
l0 = cent_x - r
r0 = cent_x + r
t0 = cent_y - r
b0 = cent_y + r
return [l0, t0, r0, b0]
def infer(test_image_path, text_prompt):
ckpt_dir = f'{root_dir}/weights/Kolors'
ip_model_dir = f'{root_dir}/weights/Kolors-IP-Adapter-FaceID-Plus'
device = "cuda:0"
#### base Kolors model
text_encoder = ChatGLMModel.from_pretrained( f'{ckpt_dir}/text_encoder', torch_dtype = torch.float16).half()
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f'{ckpt_dir}/vae', subfolder = "vae", revision = None)
scheduler = EulerDiscreteScheduler.from_pretrained(f'{ckpt_dir}/scheduler')
unet = UNet2DConditionModel.from_pretrained(f'{ckpt_dir}/unet', revision = None).half()
#### clip image encoder for face structure
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ip_model_dir}/clip-vit-large-patch14-336', ignore_mismatched_sizes=True)
clip_image_encoder.to(device)
clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336)
pipe = StableDiffusionXLPipeline(
vae = vae,
text_encoder = text_encoder,
tokenizer = tokenizer,
unet = unet,
scheduler = scheduler,
face_clip_encoder = clip_image_encoder,
face_clip_processor = clip_image_processor,
force_zeros_for_empty_prompt = False,
)
pipe = pipe.to(device)
pipe.enable_model_cpu_offload()
pipe.load_ip_adapter_faceid_plus(f'{ip_model_dir}/ipa-faceid-plus.bin', device = device)
scale = 0.8
pipe.set_face_fidelity_scale(scale)
#### prepare face embedding & bbox with insightface toolbox
face_info_generator = FaceInfoGenerator(root_dir = "./")
img = Image.open(test_image_path)
face_info = face_info_generator.get_faceinfo_one_img(test_image_path)
face_bbox_square = face_bbox_to_square(face_info["bbox"])
crop_image = img.crop(face_bbox_square)
crop_image = crop_image.resize((336, 336))
crop_image = [crop_image]
face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
face_embeds = face_embeds.to(device, dtype = torch.float16)
#### generate image
generator = torch.Generator(device = device).manual_seed(66)
image = pipe(
prompt = text_prompt,
negative_prompt = "",
height = 1024,
width = 1024,
num_inference_steps= 25,
guidance_scale = 5.0,
num_images_per_prompt = 1,
generator = generator,
face_crop_image = crop_image,
face_insightface_embeds = face_embeds,
).images[0]
image.save(f'../scripts/outputs/test_res.png')
if __name__ == '__main__':
import fire
fire.Fire(infer)