|
import torch |
|
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor |
|
from diffusers.utils import load_image |
|
import os,sys |
|
|
|
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline |
|
from kolors.models.modeling_chatglm import ChatGLMModel |
|
from kolors.models.tokenization_chatglm import ChatGLMTokenizer |
|
|
|
from diffusers import AutoencoderKL |
|
from kolors.models.unet_2d_condition import UNet2DConditionModel |
|
|
|
from diffusers import EulerDiscreteScheduler |
|
from PIL import Image |
|
|
|
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
|
|
import cv2 |
|
import numpy as np |
|
import insightface |
|
from diffusers.utils import load_image |
|
from insightface.app import FaceAnalysis |
|
from insightface.data import get_image as ins_get_image |
|
|
|
class FaceInfoGenerator(): |
|
def __init__(self, root_dir = "./"): |
|
self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) |
|
self.app.prepare(ctx_id = 0, det_size = (640, 640)) |
|
|
|
def get_faceinfo_one_img(self, image_path): |
|
face_image = load_image(image_path) |
|
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) |
|
|
|
if len(face_info) == 0: |
|
face_info = None |
|
else: |
|
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] |
|
return face_info |
|
|
|
def face_bbox_to_square(bbox): |
|
|
|
l,t,r,b = bbox |
|
cent_x = (l + r) / 2 |
|
cent_y = (t + b) / 2 |
|
w, h = r - l, b - t |
|
r = max(w, h) / 2 |
|
|
|
l0 = cent_x - r |
|
r0 = cent_x + r |
|
t0 = cent_y - r |
|
b0 = cent_y + r |
|
|
|
return [l0, t0, r0, b0] |
|
|
|
def infer(test_image_path, text_prompt): |
|
ckpt_dir = f'{root_dir}/weights/Kolors' |
|
ip_model_dir = f'{root_dir}/weights/Kolors-IP-Adapter-FaceID-Plus' |
|
device = "cuda:0" |
|
|
|
|
|
text_encoder = ChatGLMModel.from_pretrained( f'{ckpt_dir}/text_encoder', torch_dtype = torch.float16).half() |
|
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') |
|
vae = AutoencoderKL.from_pretrained(f'{ckpt_dir}/vae', subfolder = "vae", revision = None) |
|
scheduler = EulerDiscreteScheduler.from_pretrained(f'{ckpt_dir}/scheduler') |
|
unet = UNet2DConditionModel.from_pretrained(f'{ckpt_dir}/unet', revision = None).half() |
|
|
|
|
|
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ip_model_dir}/clip-vit-large-patch14-336', ignore_mismatched_sizes=True) |
|
clip_image_encoder.to(device) |
|
clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336) |
|
|
|
pipe = StableDiffusionXLPipeline( |
|
vae = vae, |
|
text_encoder = text_encoder, |
|
tokenizer = tokenizer, |
|
unet = unet, |
|
scheduler = scheduler, |
|
face_clip_encoder = clip_image_encoder, |
|
face_clip_processor = clip_image_processor, |
|
force_zeros_for_empty_prompt = False, |
|
) |
|
pipe = pipe.to(device) |
|
pipe.enable_model_cpu_offload() |
|
|
|
pipe.load_ip_adapter_faceid_plus(f'{ip_model_dir}/ipa-faceid-plus.bin', device = device) |
|
|
|
scale = 0.8 |
|
pipe.set_face_fidelity_scale(scale) |
|
|
|
|
|
face_info_generator = FaceInfoGenerator(root_dir = "./") |
|
img = Image.open(test_image_path) |
|
face_info = face_info_generator.get_faceinfo_one_img(test_image_path) |
|
|
|
face_bbox_square = face_bbox_to_square(face_info["bbox"]) |
|
crop_image = img.crop(face_bbox_square) |
|
crop_image = crop_image.resize((336, 336)) |
|
crop_image = [crop_image] |
|
|
|
face_embeds = torch.from_numpy(np.array([face_info["embedding"]])) |
|
face_embeds = face_embeds.to(device, dtype = torch.float16) |
|
|
|
|
|
generator = torch.Generator(device = device).manual_seed(66) |
|
image = pipe( |
|
prompt = text_prompt, |
|
negative_prompt = "", |
|
height = 1024, |
|
width = 1024, |
|
num_inference_steps= 25, |
|
guidance_scale = 5.0, |
|
num_images_per_prompt = 1, |
|
generator = generator, |
|
face_crop_image = crop_image, |
|
face_insightface_embeds = face_embeds, |
|
).images[0] |
|
image.save(f'../scripts/outputs/test_res.png') |
|
|
|
if __name__ == '__main__': |
|
import fire |
|
fire.Fire(infer) |