import torch from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor from diffusers.utils import load_image import os,sys from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline from kolors.models.modeling_chatglm import ChatGLMModel from kolors.models.tokenization_chatglm import ChatGLMTokenizer from diffusers import AutoencoderKL from kolors.models.unet_2d_condition import UNet2DConditionModel from diffusers import EulerDiscreteScheduler from PIL import Image root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) import cv2 import numpy as np import insightface from diffusers.utils import load_image from insightface.app import FaceAnalysis from insightface.data import get_image as ins_get_image class FaceInfoGenerator(): def __init__(self, root_dir = "./"): self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) self.app.prepare(ctx_id = 0, det_size = (640, 640)) def get_faceinfo_one_img(self, image_path): face_image = load_image(image_path) face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) if len(face_info) == 0: face_info = None else: face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face return face_info def face_bbox_to_square(bbox): ## l, t, r, b to square l, t, r, b l,t,r,b = bbox cent_x = (l + r) / 2 cent_y = (t + b) / 2 w, h = r - l, b - t r = max(w, h) / 2 l0 = cent_x - r r0 = cent_x + r t0 = cent_y - r b0 = cent_y + r return [l0, t0, r0, b0] def infer(test_image_path, text_prompt): ckpt_dir = f'{root_dir}/weights/Kolors' ip_model_dir = f'{root_dir}/weights/Kolors-IP-Adapter-FaceID-Plus' device = "cuda:0" #### base Kolors model text_encoder = ChatGLMModel.from_pretrained( f'{ckpt_dir}/text_encoder', torch_dtype = torch.float16).half() tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') vae = AutoencoderKL.from_pretrained(f'{ckpt_dir}/vae', subfolder = "vae", revision = None) scheduler = EulerDiscreteScheduler.from_pretrained(f'{ckpt_dir}/scheduler') unet = UNet2DConditionModel.from_pretrained(f'{ckpt_dir}/unet', revision = None).half() #### clip image encoder for face structure clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ip_model_dir}/clip-vit-large-patch14-336', ignore_mismatched_sizes=True) clip_image_encoder.to(device) clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336) pipe = StableDiffusionXLPipeline( vae = vae, text_encoder = text_encoder, tokenizer = tokenizer, unet = unet, scheduler = scheduler, face_clip_encoder = clip_image_encoder, face_clip_processor = clip_image_processor, force_zeros_for_empty_prompt = False, ) pipe = pipe.to(device) pipe.enable_model_cpu_offload() pipe.load_ip_adapter_faceid_plus(f'{ip_model_dir}/ipa-faceid-plus.bin', device = device) scale = 0.8 pipe.set_face_fidelity_scale(scale) #### prepare face embedding & bbox with insightface toolbox face_info_generator = FaceInfoGenerator(root_dir = "./") img = Image.open(test_image_path) face_info = face_info_generator.get_faceinfo_one_img(test_image_path) face_bbox_square = face_bbox_to_square(face_info["bbox"]) crop_image = img.crop(face_bbox_square) crop_image = crop_image.resize((336, 336)) crop_image = [crop_image] face_embeds = torch.from_numpy(np.array([face_info["embedding"]])) face_embeds = face_embeds.to(device, dtype = torch.float16) #### generate image generator = torch.Generator(device = device).manual_seed(66) image = pipe( prompt = text_prompt, negative_prompt = "", height = 1024, width = 1024, num_inference_steps= 25, guidance_scale = 5.0, num_images_per_prompt = 1, generator = generator, face_crop_image = crop_image, face_insightface_embeds = face_embeds, ).images[0] image.save(f'../scripts/outputs/test_res.png') if __name__ == '__main__': import fire fire.Fire(infer)