simone-papicchio franceth commited on
Commit
c08d1fa
·
verified ·
1 Parent(s): 32b6873

Prediction, Tables samples (#12)

Browse files

- Prediction, Tables samples (32429f83624047758c1fd8c13691150eb9aaefc3)


Co-authored-by: Francesco Giannuzzo <[email protected]>

Files changed (4) hide show
  1. app.py +27 -25
  2. tables_dict.csv +300 -0
  3. tables_dict.pkl +3 -0
  4. utilities.py +7 -2
app.py CHANGED
@@ -1,6 +1,23 @@
 
 
 
 
 
1
  import gradio as gr
2
  import pandas as pd
3
- import os
 
 
 
 
 
 
 
 
 
 
 
 
4
  # # https://discuss.huggingface.co/t/issues-with-sadtalker-zerogpu-spaces-inquiry-about-community-grant/110625/10
5
  # if os.environ.get("SPACES_ZERO_GPU") is not None:
6
  # import spaces
@@ -11,23 +28,6 @@ import os
11
  # def wrapper(*args, **kwargs):
12
  # return func(*args, **kwargs)
13
  # return wrapper
14
- import sys
15
- from qatch.connectors.sqlite_connector import SqliteConnector
16
- from qatch.generate_dataset.orchestrator_generator import OrchestratorGenerator
17
- from qatch.evaluate_dataset.orchestrator_evaluator import OrchestratorEvaluator
18
- from prediction import ModelPrediction
19
- import utils_get_db_tables_info
20
- import utilities as us
21
- import time
22
- import plotly.express as px
23
- import plotly.graph_objects as go
24
- import plotly.colors as pc
25
- import re
26
- import csv
27
- import numpy as np
28
- # @spaces.GPU
29
- # def model_prediction():
30
- # pass
31
  pnp_path = os.path.join(".", "evaluation_p_np_metrics.csv")
32
 
33
  js_func = """
@@ -50,8 +50,8 @@ df_default = pd.DataFrame({
50
  'Age': [25, 30, 35],
51
  'City': ['New York', 'Los Angeles', 'Chicago']
52
  })
53
-
54
- models_path = "./models.csv"
55
 
56
  # Variabile globale per tenere traccia dei dati correnti
57
  df_current = df_default.copy()
@@ -176,7 +176,7 @@ with gr.Blocks(theme='shivi/calm_seafoam', css_paths='style.css', js=js_func) as
176
  with gr.Row():
177
  with gr.Column(scale=1):
178
  gr.Image(
179
- value="./qatch_logo.png",
180
  show_label=False,
181
  container=False,
182
  interactive=False,
@@ -652,10 +652,12 @@ with gr.Blocks(theme='shivi/calm_seafoam', css_paths='style.css', js=js_func) as
652
  samples = us.generate_some_samples(input_data['data']['db'], row["tbl_name"])
653
  prompt_to_send = us.prepare_prompt(input_data["prompt"], question, schema_text, samples)
654
  #PREDICTION SQL
655
- #response = predictor.make_prediction(question=question, db_schema=schema_text, model_name=model, prompt=f"{prompt_to_send}")
656
- prediction = row["query"]#"SQL"#response[response_parsed]
657
- price = 0.0#response[cost]
658
- answer = "Answer"#response[response]
 
 
659
 
660
  end_time = time.time()
661
  display_prediction = f"""<div class='loading' style='font-size: 1.7rem; font-family: 'Inter', sans-serif;'>>Predicted SQL:</div>
 
1
+ import os
2
+ import sys
3
+ import time
4
+ import re
5
+ import csv
6
  import gradio as gr
7
  import pandas as pd
8
+ import numpy as np
9
+ import plotly.express as px
10
+ import plotly.graph_objects as go
11
+ import plotly.colors as pc
12
+ from qatch.connectors.sqlite_connector import SqliteConnector
13
+ from qatch.generate_dataset.orchestrator_generator import OrchestratorGenerator
14
+ from qatch.evaluate_dataset.orchestrator_evaluator import OrchestratorEvaluator
15
+ from prediction import ModelPrediction
16
+ import utils_get_db_tables_info
17
+ import utilities as us
18
+ # @spaces.GPU
19
+ # def model_prediction():
20
+ # pass
21
  # # https://discuss.huggingface.co/t/issues-with-sadtalker-zerogpu-spaces-inquiry-about-community-grant/110625/10
22
  # if os.environ.get("SPACES_ZERO_GPU") is not None:
23
  # import spaces
 
28
  # def wrapper(*args, **kwargs):
29
  # return func(*args, **kwargs)
30
  # return wrapper
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  pnp_path = os.path.join(".", "evaluation_p_np_metrics.csv")
32
 
33
  js_func = """
 
50
  'Age': [25, 30, 35],
51
  'City': ['New York', 'Los Angeles', 'Chicago']
52
  })
53
+ models_path = os.path.join(".", "models.csv")
54
+ #models_path = "./models.csv"
55
 
56
  # Variabile globale per tenere traccia dei dati correnti
57
  df_current = df_default.copy()
 
176
  with gr.Row():
177
  with gr.Column(scale=1):
178
  gr.Image(
179
+ value=os.path.join(".", "qatch_logo.png"),
180
  show_label=False,
181
  container=False,
182
  interactive=False,
 
652
  samples = us.generate_some_samples(input_data['data']['db'], row["tbl_name"])
653
  prompt_to_send = us.prepare_prompt(input_data["prompt"], question, schema_text, samples)
654
  #PREDICTION SQL
655
+ if prompt_to_send == prompt_default:
656
+ prompt_to_send = None
657
+ response = predictor.make_prediction(question=question, db_schema=schema_text, model_name=model, prompt=f"{prompt_to_send}")
658
+ prediction = response['response_parsed']
659
+ price = response['cost']
660
+ answer = response['response']
661
 
662
  end_time = time.time()
663
  display_prediction = f"""<div class='loading' style='font-size: 1.7rem; font-family: 'Inter', sans-serif;'>>Predicted SQL:</div>
tables_dict.csv ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Table: accountFraud
2
+ hasothercards,housingstatus,dateofbirthdistinctemails4w,income,paymenttype,employmentstatus,creditriskscore,sessionlengthminutes,deviceos,emailisfree
3
+ False,BD,3,0.5,AB,CC,230,5.07759998143027,linux,Paid
4
+ False,BC,15,0.1,AD,CB,-40,4.0223824396911,other,Paid
5
+ True,BC,7,0.9,AC,CA,215,3.749706225590873,windows,Paid
6
+ False,BC,2,0.4,AC,CD,51,4.886676763177824,other,Paid
7
+ False,BC,6,0.4,AB,CA,108,1.7508864007811145,other,Free
8
+
9
+ Table: shop
10
+ Shop_ID,Name,Location,District,Number_products,Manager_name
11
+ 1,FC Haka,Valkeakoski,Tehtaan kenttä,3516,Olli Huttunen
12
+ 2,HJK,Helsinki,Finnair Stadium,10770,Antti Muurinen
13
+ 3,FC Honka,Espoo,Tapiolan Urheilupuisto,6000,Mika Lehkosuo
14
+ 4,FC Inter,Turku,Veritas Stadion,10000,Job Dragtsma
15
+ 5,FF Jaro,Jakobstad,Jakobstads Centralplan,5000,Mika Laurikainen
16
+
17
+ Table: airlines
18
+ uid,Airline,Abbreviation,Country
19
+ 1,United Airlines,UAL,USA
20
+ 2,US Airways,USAir,USA
21
+ 3,Delta Airlines,Delta,USA
22
+ 4,Southwest Airlines,Southwest,USA
23
+ 5,American Airlines,American,USA
24
+
25
+ Table: fitnessTrackers
26
+ brandname,devicetype,modelname,color,sellingprice,originalprice,display,rating,strapmaterial,averagebatterylife
27
+ huami,Smartwatch,Amazfit Bip S,White ,4999.0,5999.0,AMOLED Display,4.0,Thermoplastic polyurethane,15
28
+ GARMIN ,Smartwatch,Approach S62,"White, Black",46990.0,51990.0,OLED Display,4.1,Silicone,12
29
+ SAMSUNG ,Smartwatch,Galaxy Classic 4,Black,32959.0,37999.0,AMOLED Display,4.6,Elastomer,14
30
+ SAMSUNG ,Smartwatch,Galaxy Watch 4 LTE,Black,31999.0,34999.0,AMOLED Display,4.6,Elastomer,14
31
+ APPLE,Smartwatch,Series 6 GPS + Cellular 40 mm Red Aluminium Case,Red,45690.0,49900.0,OLED Retina Display,4.5,Aluminium,1
32
+
33
+ Table: Ref_Template_Types
34
+ Template_Type_Code,Template_Type_Description
35
+ PPT,Presentation
36
+ CV,CV
37
+ AD,Advertisement
38
+ PP,Paper
39
+ BK,Book
40
+
41
+ Table: stadium
42
+ Stadium_ID,Location,Name,Capacity,Highest,Lowest,Average
43
+ 1,Raith Rovers,Stark's Park,10104,4812,1294,2106
44
+ 2,Ayr United,Somerset Park,11998,2363,1057,1477
45
+ 3,East Fife,Bayview Stadium,2000,1980,533,864
46
+ 4,Queen's Park,Hampden Park,52500,1763,466,730
47
+ 5,Stirling Albion,Forthbank Stadium,3808,1125,404,642
48
+
49
+ Table: Student
50
+ StuID,LName,Fname,Age,Sex,Major,Advisor,city_code
51
+ 1001,Smith,Linda,18,F,600,1121,BAL
52
+ 1002,Kim,Tracy,19,F,600,7712,HKG
53
+ 1003,Jones,Shiela,21,F,600,7792,WAS
54
+ 1004,Kumar,Dinesh,20,M,600,8423,CHI
55
+ 1005,Gompers,Paul,26,M,600,1121,YYZ
56
+
57
+ Table: Templates
58
+ Template_ID,Version_Number,Template_Type_Code,Date_Effective_From,Date_Effective_To,Template_Details
59
+ 0,5,PP,2005-11-12 07:09:48,2008-01-05 14:19:28,
60
+ 1,9,PP,2010-09-24 01:15:11,1999-07-08 03:31:04,
61
+ 4,4,BK,2002-03-02 14:39:49,2001-04-18 09:29:52,
62
+ 6,2,PPT,1975-05-20 22:51:19,1992-05-02 20:06:11,
63
+ 7,8,PPT,1993-10-07 02:33:04,1975-07-16 04:52:10,
64
+
65
+ Table: employee
66
+ Employee_ID,Name,Age,City
67
+ 1,George Chuter,23,Bristol
68
+ 2,Lee Mears,29,Bath
69
+ 3,Mark Regan,43,Bristol
70
+ 4,Jason Hobson,30,Bristol
71
+ 5,Tim Payne,29,Wasps
72
+
73
+ Table: flights
74
+ Airline,FlightNo,SourceAirport,DestAirport
75
+ 1,28, APG, ASY
76
+ 1,29, ASY, APG
77
+ 1,44, CVO, ACV
78
+ 1,45, ACV, CVO
79
+ 1,54, AHD, AHT
80
+
81
+ Table: model_list
82
+ ModelId,Maker,Model
83
+ 1,1,amc
84
+ 2,2,audi
85
+ 3,3,bmw
86
+ 4,4,buick
87
+ 5,4,cadillac
88
+
89
+ Table: heartAttack
90
+ age,sex,chestpaintype,restingbloodpressure,cholestoralinmg,fastingbloodsugar,restingelectrocardiographicrresults,numberofmajorvvessels,thall,output
91
+ 62,male,typicalAngina,140,268,false,normal,2,2,noHeartAttack
92
+ 64,female,asymptomatic,110,211,false,normal,0,2,heartAttack
93
+ 68,female,nonAnginalPain,180,274,true,normal,0,3,noHeartAttack
94
+ 50,female,typicalAngina,144,200,false,normal,0,3,noHeartAttack
95
+ 76,male,nonAnginalPain,140,197,false,leftVentricularHypertrophy,0,2,heartAttack
96
+
97
+ Table: Paragraphs
98
+ Paragraph_ID,Document_ID,Paragraph_Text,Other_Details
99
+ 7,2394,Korea,
100
+ 9,3,Somalia,
101
+ 65,50123,Palestinian Territory,
102
+ 241,651512,Jersey,
103
+ 3708,33930,UK,
104
+
105
+ Table: concert
106
+ concert_ID,concert_Name,Theme,Stadium_ID,Year
107
+ 1,Auditions,Free choice,1,2014
108
+ 2,Super bootcamp,Free choice 2,2,2014
109
+ 3,Home Visits,Bleeding Love,2,2015
110
+ 4,Week 1,Wide Awake,10,2014
111
+ 5,Week 1,Happy Tonight,9,2015
112
+
113
+ Table: car_makers
114
+ Id,Maker,FullName,Country
115
+ 1,amc,American Motor Company,1
116
+ 2,volkswagen,Volkswagen,2
117
+ 3,bmw,BMW,2
118
+ 4,gm,General Motors,1
119
+ 5,ford,Ford Motor Company,1
120
+
121
+ Table: evaluation
122
+ Employee_ID,Year_awarded,Bonus
123
+ 1,2011,3000.0
124
+ 2,2015,3200.0
125
+ 1,2016,2900.0
126
+ 4,2017,3200.0
127
+ 7,2018,3200.0
128
+
129
+ Table: singer_in_concert
130
+ concert_ID,Singer_ID
131
+ 1,2
132
+ 1,3
133
+ 1,5
134
+ 2,3
135
+ 2,6
136
+
137
+ Table: Documents
138
+ Document_ID,Template_ID,Document_Name,Document_Description,Other_Details
139
+ 0,7,Introduction of OS,n,
140
+ 1,25,Understanding DB,y,
141
+ 3,6,Summer Show,u,
142
+ 76,20,Robbin CV,y,
143
+ 80,14,Welcome to NY,h,
144
+
145
+ Table: visit
146
+ Museum_ID,visitor_ID,Num_of_Ticket,Total_spent
147
+ 1,5,20,320.14
148
+ 2,5,4,89.98
149
+ 4,3,10,320.44
150
+ 2,3,24,209.98
151
+ 4,6,3,20.44
152
+
153
+ Table: museum
154
+ Museum_ID,Name,Num_of_Staff,Open_Year
155
+ 1,Plaza Museum,62,2000
156
+ 2,Capital Plaza Museum,25,2012
157
+ 3,Jefferson Development Museum,18,2010
158
+ 4,Willow Grande Museum,17,2011
159
+ 5,RiverPark Museum,16,2008
160
+
161
+ Table: singer
162
+ Singer_ID,Name,Country,Song_Name,Song_release_year,Age,Is_male
163
+ 1,Joe Sharp,Netherlands,You,1992,52,F
164
+ 2,Timbaland,United States,Dangerous,2008,32,T
165
+ 3,Justin Brown,France,Hey Oh,2013,29,T
166
+ 4,Rose White,France,Sun,2003,41,F
167
+ 5,John Nizinik,France,Gentleman,2014,43,T
168
+
169
+ Table: countries
170
+ CountryId,CountryName,Continent
171
+ 1,usa,1
172
+ 2,germany,2
173
+ 3,france,2
174
+ 4,japan,3
175
+ 5,italy,2
176
+
177
+ Table: continents
178
+ ContId,Continent
179
+ 1,america
180
+ 2,europe
181
+ 3,asia
182
+ 4,africa
183
+ 5,australia
184
+
185
+ Table: adultCensus
186
+ workclass,education,maritalstatus,occupation,relationship,race,sex,hoursperweek,nativecountry,income
187
+ Private,Doctorate,Married-civ-spouse,Prof-specialty,Husband,White,Male,60,United-States,>50K
188
+ Local-gov,Some-college,Divorced,Adm-clerical,Not-in-family,Black,Female,40,United-States,<=50K
189
+ Private,10th,Married-civ-spouse,Machine-op-inspct,Husband,White,Male,40,United-States,<=50K
190
+ Private,Some-college,Married-civ-spouse,Exec-managerial,Husband,White,Male,44,United-States,>50K
191
+ ?,HS-grad,Never-married,?,Not-in-family,White,Female,40,United-States,<=50K
192
+
193
+ Table: latePayment
194
+ customerid,paperlessdate,invoicenumber,invoicedate,duedate,invoiceamount,disputed,paperlessbill,daystosettle,dayslate
195
+ 7758-WKLVM,2/6/2012,5510823569,4/11/2012,5/11/2012,30.06,No,Electronic,36,6
196
+ 2820-XGXSB,1/26/2012,6528247418,1/4/2013,2/3/2013,84.86,No,Electronic,4,0
197
+ 2621-XCLEH,9/24/2012,9465847338,6/18/2013,7/18/2013,37.49,No,Electronic,29,0
198
+ 5196-TWQXF,6/20/2012,7092718520,12/2/2012,1/1/2013,50.17,No,Electronic,22,0
199
+ 9725-EZTEJ,3/17/2012,685917930,10/13/2012,11/12/2012,124.38,Yes,Electronic,28,0
200
+
201
+ Table: course_arrange
202
+ Course_ID,Teacher_ID,Grade
203
+ 2,5,1
204
+ 2,3,3
205
+ 3,2,5
206
+ 4,6,7
207
+ 5,6,1
208
+
209
+ Table: Has_Pet
210
+ StuID,PetID
211
+ 1001,2001
212
+ 1002,2002
213
+ 1002,2003
214
+
215
+ Table: breastCancer
216
+ patientidentifier,age,menopausalstatus,tumorsize,tumorgrade,numberpositivelymphnodes,progesteronereceptor,estrogenreceptor,hormonaltherapy,status
217
+ 1522,32,premenopausal,25,2,2,36,10,no,"aliveWithoutRecurrence,"
218
+ 1329,61,postmenopausal,30,2,1,24,38,yes,"aliveWithoutRecurrence,"
219
+ 1141,62,postmenopausal,33,1,5,239,76,no,recurrenceOrDeath
220
+ 1488,66,postmenopausal,42,3,11,412,339,yes,recurrenceOrDeath
221
+ 1294,38,premenopausal,23,3,3,14,6,no,"aliveWithoutRecurrence,"
222
+
223
+ Table: hiring
224
+ Shop_ID,Employee_ID,Start_from,Is_full_time
225
+ 1,1,2009,T
226
+ 1,2,2003,T
227
+ 8,3,2011,F
228
+ 4,4,2012,T
229
+ 5,5,2013,T
230
+
231
+ Table: cars_data
232
+ Id,MPG,Cylinders,Edispl,Horsepower,Weight,Accelerate,Year
233
+ 1,18,8,307.0,130,3504,12.0,1970
234
+ 2,15,8,350.0,165,3693,11.5,1970
235
+ 3,18,8,318.0,150,3436,11.0,1970
236
+ 4,16,8,304.0,150,3433,12.0,1970
237
+ 5,17,8,302.0,140,3449,10.5,1970
238
+
239
+ Table: car_names
240
+ MakeId,Model,Make
241
+ 1,chevrolet,chevrolet chevelle malibu
242
+ 2,buick,buick skylark 320
243
+ 3,plymouth,plymouth satellite
244
+ 4,amc,amc rebel sst
245
+ 5,ford,ford torino
246
+
247
+ Table: visitor
248
+ ID,Name,Level_of_membership,Age
249
+ 1,Gonzalo Higuaín ,8,35
250
+ 2,Guti Midfielder,5,28
251
+ 3,Arjen Robben,1,27
252
+ 4,Raúl Brown,2,56
253
+ 5,Fernando Gago,6,36
254
+
255
+ Table: salesTransactions
256
+ transactionno,date,productno,productname,price,quantity,customerno,country
257
+ 549047,4/6/2019,21544,Skulls-Water-Transfer-Tattoos,11.12,2,17783.0,United-Kingdom
258
+ 566959,9/15/2019,22113,Grey-Heart-Hot-Water-Bottle,14.61,2,17530.0,United-Kingdom
259
+ 536526,12/1/2018,22173,Metal-4-Hook-Hanger-French-Chateau,13.27,16,14001.0,United-Kingdom
260
+ 580355,12/2/2019,47599A,Pink-Party-Bags,6.19,12,13953.0,United-Kingdom
261
+ 579557,11/30/2019,21671,Red-Spot-Ceramic-Drawer-Knob,6.19,1,12557.0,United-Kingdom
262
+
263
+ Table: airports
264
+ City,AirportCode,AirportName,Country,CountryAbbrev
265
+ Aberdeen ,APG,Phillips AAF ,United States ,US
266
+ Aberdeen ,ABR,Municipal ,United States ,US
267
+ Abilene ,DYS,Dyess AFB ,United States ,US
268
+ Abilene ,ABI,Municipal ,United States ,US
269
+ Abingdon ,VJI,Virginia Highlands ,United States ,US
270
+
271
+ Table: mushrooms
272
+ class,capshape,capsurface,capcolor,bruises,odor,gillattachment,gillspacing,gillsize,gillcolor
273
+ poisonous,flat,smooth,white,bruises,pungent,free,close,narrow,brown
274
+ edible,convex,fibrous,gray,no,none,free,crowded,broad,black
275
+ edible,bell,smooth,white,bruises,almond,free,close,broad,gray
276
+ edible,flat,scaly,brown,bruises,none,free,close,broad,pink
277
+ poisonous,convex,fibrous,yellow,no,foul,free,close,broad,gray
278
+
279
+ Table: Pets
280
+ PetID,PetType,pet_age,weight
281
+ 2001,cat,3,12.0
282
+ 2002,dog,2,13.4
283
+ 2003,dog,1,9.3
284
+
285
+ Table: teacher
286
+ Teacher_ID,Name,Age,Hometown
287
+ 1,Joseph Huts,32,Blackrod Urban District
288
+ 2,Gustaaf Deloor,29,Bolton County Borough
289
+ 3,Vicente Carretero,26,Farnworth Municipal Borough
290
+ 4,John Deloor,33,Horwich Urban District
291
+ 5,Kearsley Brown,45,Kearsley Urban District
292
+
293
+ Table: course
294
+ Course_ID,Staring_Date,Course
295
+ 1,5 May,Language Arts
296
+ 2,6 May,Math
297
+ 3,7 May,Science
298
+ 4,9 May,History
299
+ 5,10 May,Bible
300
+
tables_dict.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a05f1d65a8f0d5ea2bb1aa1efd76cddb2685ca2da4a3aac54838d5be1205cbe6
3
+ size 22799
utilities.py CHANGED
@@ -1,6 +1,7 @@
1
  import csv
2
  import re
3
  import pandas as pd
 
4
  import sqlite3
5
  import gradio as gr
6
  import os
@@ -107,6 +108,10 @@ def generate_some_samples(connector, tbl_name):
107
  samples.append(f"Error: {e}")
108
  return samples
109
 
 
 
 
 
110
  def extract_tables_dict(pnp_path):
111
  tables_dict = {}
112
  with open(pnp_path, mode='r', encoding='utf-8') as file:
@@ -126,5 +131,5 @@ def extract_tables_dict(pnp_path):
126
  tables_dict[tbl_name] = df
127
  except Exception as e:
128
  tables_dict[tbl_name] = pd.DataFrame({"Error": [str(e)]}) # DataFrame con messaggio di errore
129
-
130
- return tables_dict
 
1
  import csv
2
  import re
3
  import pandas as pd
4
+ import pickle
5
  import sqlite3
6
  import gradio as gr
7
  import os
 
108
  samples.append(f"Error: {e}")
109
  return samples
110
 
111
+ def load_tables_dict(file_path):
112
+ with open(file_path, 'rb') as f:
113
+ return pickle.load(f)
114
+
115
  def extract_tables_dict(pnp_path):
116
  tables_dict = {}
117
  with open(pnp_path, mode='r', encoding='utf-8') as file:
 
131
  tables_dict[tbl_name] = df
132
  except Exception as e:
133
  tables_dict[tbl_name] = pd.DataFrame({"Error": [str(e)]}) # DataFrame con messaggio di errore
134
+ return load_tables_dict('tables_dict.csv')
135
+ return tables_dict