Spaces:
Running
Running
Css, Prop vs Non-Prop, Metrics Update (#11)
Browse files- Css, Prop vs Non-Prop, Metrics Update (dee3b00dfdac45a04dba18cb8e760c2c5d0bc4d9)
Co-authored-by: Francesco Giannuzzo <[email protected]>
- .gitattributes +2 -0
- app.py +461 -289
- evaluation_p_np_metrics.csv +3 -0
- models.csv +5 -6
- qatch_logo.png +3 -0
- requirements.txt +1 -0
- style.css +58 -27
- utilities.py +21 -30
- utils_get_db_tables_info.py +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
evaluation_p_np_metrics.csv filter=lfs diff=lfs merge=lfs -text
|
37 |
+
qatch_logo.png filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -1,9 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import os
|
4 |
-
import re
|
5 |
-
import csv
|
6 |
-
import time
|
7 |
# # https://discuss.huggingface.co/t/issues-with-sadtalker-zerogpu-spaces-inquiry-about-community-grant/110625/10
|
8 |
# if os.environ.get("SPACES_ZERO_GPU") is not None:
|
9 |
# import spaces
|
@@ -19,17 +16,30 @@ from qatch.connectors.sqlite_connector import SqliteConnector
|
|
19 |
from qatch.generate_dataset.orchestrator_generator import OrchestratorGenerator
|
20 |
from qatch.evaluate_dataset.orchestrator_evaluator import OrchestratorEvaluator
|
21 |
from prediction import ModelPrediction
|
22 |
-
|
23 |
import utilities as us
|
|
|
24 |
import plotly.express as px
|
25 |
import plotly.graph_objects as go
|
26 |
import plotly.colors as pc
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
with open('style.css', 'r') as file:
|
35 |
css = file.read()
|
@@ -41,11 +51,16 @@ df_default = pd.DataFrame({
|
|
41 |
'City': ['New York', 'Los Angeles', 'Chicago']
|
42 |
})
|
43 |
|
44 |
-
models_path = "models.csv"
|
45 |
|
46 |
# Variabile globale per tenere traccia dei dati correnti
|
47 |
df_current = df_default.copy()
|
48 |
|
|
|
|
|
|
|
|
|
|
|
49 |
input_data = {
|
50 |
'input_method': "",
|
51 |
'data_path': "",
|
@@ -56,7 +71,7 @@ input_data = {
|
|
56 |
'selected_tables' :[]
|
57 |
},
|
58 |
'models': [],
|
59 |
-
'prompt':
|
60 |
}
|
61 |
|
62 |
def load_data(file, path, use_default):
|
@@ -66,7 +81,8 @@ def load_data(file, path, use_default):
|
|
66 |
try:
|
67 |
input_data["input_method"] = 'uploaded_file'
|
68 |
input_data["db_name"] = os.path.splitext(os.path.basename(file))[0]
|
69 |
-
input_data["data_path"] = os.path.join(".", "data", "data_interface",f"{input_data['db_name']}.sqlite")
|
|
|
70 |
input_data["data"] = us.load_data(file, input_data["db_name"])
|
71 |
df_current = input_data["data"]['data_frames'].get('MyTable', df_default) # Carica il DataFrame
|
72 |
if(input_data["data"]['data_frames'] and input_data["data"]["db"] is None): #for csv and xlsx files
|
@@ -86,7 +102,8 @@ def load_data(file, path, use_default):
|
|
86 |
if use_default:
|
87 |
if(use_default == 'Custom'):
|
88 |
input_data["input_method"] = 'custom'
|
89 |
-
input_data["data_path"] = os.path.join(".", "data", "data_interface", "mytable_0.sqlite")
|
|
|
90 |
#if file already exist
|
91 |
while os.path.exists(input_data["data_path"]):
|
92 |
input_data["data_path"] = us.increment_filename(input_data["data_path"])
|
@@ -122,11 +139,14 @@ def load_data(file, path, use_default):
|
|
122 |
|
123 |
return input_data["data"]['data_frames']
|
124 |
|
125 |
-
def preview_default(use_default):
|
126 |
-
if
|
127 |
-
return gr.DataFrame(interactive=True, visible =
|
128 |
-
else:
|
129 |
-
|
|
|
|
|
|
|
130 |
#return gr.DataFrame(interactive=True, value = df_current) # Mostra il DataFrame corrente, che potrebbe essere stato modificato
|
131 |
|
132 |
def update_df(new_df):
|
@@ -151,41 +171,43 @@ def open_accordion(target):
|
|
151 |
return gr.update(open=False), gr.update(open=False), gr.update(open=True, visible=True), gr.update(open=False), gr.update(open=False)
|
152 |
|
153 |
# Interfaccia Gradio
|
154 |
-
with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
155 |
-
|
156 |
with gr.Row():
|
157 |
-
gr.Column(scale=1)
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
167 |
data_state = gr.State(None) # Memorizza i dati caricati
|
168 |
-
upload_acc = gr.Accordion("Upload
|
169 |
-
select_table_acc = gr.Accordion("Select tables", open=False, visible=False)
|
170 |
-
select_model_acc = gr.Accordion("Select models", open=False, visible=False)
|
171 |
-
qatch_acc = gr.Accordion("QATCH execution", open=False, visible=False)
|
172 |
-
metrics_acc = gr.Accordion("Metrics", open=False, visible=False)
|
173 |
|
174 |
#################################
|
175 |
# DATABASE INSERTION #
|
176 |
#################################
|
177 |
with upload_acc:
|
178 |
-
gr.Markdown("## Choose data input method")
|
179 |
with gr.Row():
|
180 |
-
default_checkbox = gr.Radio(label = "
|
181 |
-
#default_checkbox = gr.Checkbox(label="Use default DataFrame"
|
|
|
|
|
182 |
preview_output = gr.DataFrame(interactive=False, visible=False, value=df_default)
|
183 |
-
description = """## Comparison of proprietary and non-proprietary databases
|
184 |
-
- Proprietary (Economic, Medical, Financial, Miscellaneous)
|
185 |
-
- Non-proprietary (Spider 1.0)"""
|
186 |
|
187 |
-
|
188 |
-
gr.Markdown("## Or upload your data")
|
189 |
file_input = gr.File(label="Drag and drop a file", file_types=[".csv", ".xlsx", ".sqlite"])
|
190 |
submit_button = gr.Button("Load Data") # Disabled by default
|
191 |
output = gr.JSON(visible=False) # Dictionary output
|
@@ -213,7 +235,8 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
213 |
#default_checkbox.change(fn=enable_submit, inputs=[file_input, default_checkbox], outputs=[submit_button])
|
214 |
|
215 |
# Show preview of the default DataFrame when checkbox is selected
|
216 |
-
default_checkbox.change(fn=preview_default, inputs=[default_checkbox], outputs=[preview_output, table_default])
|
|
|
217 |
preview_output.change(fn=update_df, inputs=[preview_output], outputs=[preview_output])
|
218 |
|
219 |
# Uncheck the checkbox when a file is uploaded
|
@@ -277,8 +300,8 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
277 |
# TABLE SELECTION PART #
|
278 |
######################################
|
279 |
with select_table_acc:
|
280 |
-
table_selector = gr.CheckboxGroup(choices=[], label="Select tables
|
281 |
-
table_outputs = [gr.DataFrame(label=f"Table {i+1}", interactive=True, visible=False) for i in range(
|
282 |
selected_table_names = gr.Textbox(label="Selected tables", visible=False, interactive=False)
|
283 |
|
284 |
# Model selection button (initially disabled)
|
@@ -287,7 +310,9 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
287 |
def update_table_list(data):
|
288 |
"""Dynamically updates the list of available tables."""
|
289 |
if isinstance(data, dict) and data:
|
290 |
-
table_names =
|
|
|
|
|
291 |
return gr.update(choices=table_names, value=[]) # Reset selections
|
292 |
return gr.update(choices=[], value=[])
|
293 |
|
@@ -295,19 +320,23 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
295 |
"""Displays only the tables selected by the user and enables the button."""
|
296 |
updates = []
|
297 |
if isinstance(data, dict) and data:
|
|
|
298 |
available_tables = list(data.keys()) # Actually available names
|
299 |
-
|
|
|
|
|
|
|
300 |
|
301 |
tables = {name: data[name] for name in selected_tables} # Filter the DataFrames
|
302 |
|
303 |
for i, (name, df) in enumerate(tables.items()):
|
304 |
-
updates.append(gr.update(value=df, label=f"Table: {name}", visible=True))
|
305 |
|
306 |
# If there are fewer than 5 tables, hide the other DataFrames
|
307 |
-
for _ in range(len(tables),
|
308 |
updates.append(gr.update(visible=False))
|
309 |
else:
|
310 |
-
updates = [gr.update(value=pd.DataFrame(), visible=False) for _ in range(
|
311 |
|
312 |
# Enable/disable the button based on selections
|
313 |
button_state = bool(selected_tables) # True if at least one table is selected, False otherwise
|
@@ -315,9 +344,12 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
315 |
|
316 |
return updates
|
317 |
|
318 |
-
def show_selected_table_names(selected_tables):
|
319 |
"""Displays the names of the selected tables when the button is pressed."""
|
320 |
if selected_tables:
|
|
|
|
|
|
|
321 |
input_data['data']['selected_tables'] = selected_tables
|
322 |
return gr.update(value=", ".join(selected_tables), visible=False)
|
323 |
return gr.update(value="", visible=False)
|
@@ -329,7 +361,7 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
329 |
table_selector.change(fn=show_selected_tables, inputs=[data_state, table_selector], outputs=table_outputs + [open_model_selection])
|
330 |
|
331 |
# Shows the list of selected tables when "Choose your models" is clicked
|
332 |
-
open_model_selection.click(fn=show_selected_table_names, inputs=[table_selector], outputs=[selected_table_names])
|
333 |
open_model_selection.click(open_accordion, inputs=gr.State("model_selection"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc])
|
334 |
|
335 |
reset_data = gr.Button("Back to upload data section")
|
@@ -352,12 +384,16 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
352 |
# MODEL SELECTION PART #
|
353 |
####################################
|
354 |
with select_model_acc:
|
355 |
-
gr.Markdown("
|
356 |
|
357 |
# Assume that `us.read_models_csv` also returns the image path
|
358 |
model_list_dict = us.read_models_csv(models_path)
|
359 |
model_list = [model["code"] for model in model_list_dict]
|
360 |
model_images = [model["image_path"] for model in model_list_dict]
|
|
|
|
|
|
|
|
|
361 |
|
362 |
model_checkboxes = []
|
363 |
rows = []
|
@@ -371,25 +407,35 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
371 |
model = model_list[i + j]
|
372 |
image_path = model_images[i + j]
|
373 |
with gr.Column():
|
374 |
-
gr.Image(image_path,
|
375 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
model_checkboxes.append(checkbox)
|
377 |
cols.append(checkbox)
|
378 |
rows.append(cols)
|
379 |
|
380 |
-
selected_models_output = gr.JSON(visible=
|
381 |
|
382 |
# Function to get selected models
|
383 |
def get_selected_models(*model_selections):
|
384 |
selected_models = [model for model, selected in zip(model_list, model_selections) if selected]
|
|
|
385 |
input_data['models'] = selected_models
|
386 |
-
button_state = bool(selected_models and '{
|
387 |
return selected_models, gr.update(open=True, visible=True), gr.update(interactive=button_state)
|
388 |
|
389 |
# Add the Textbox to the interface
|
390 |
-
prompt = gr.TextArea(
|
391 |
-
|
392 |
-
|
|
|
|
|
|
|
393 |
|
394 |
# Submit button (initially disabled)
|
395 |
|
@@ -399,17 +445,21 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
399 |
#TODO
|
400 |
missing_elements = []
|
401 |
if(prompt==""):
|
402 |
-
input_data["prompt"]=
|
403 |
-
button_state = bool(len(input_data['models']) > 0 and '{
|
404 |
else:
|
405 |
input_data["prompt"]=prompt
|
406 |
-
if "{
|
407 |
-
missing_elements.append("{
|
408 |
if "{question}" not in prompt:
|
409 |
missing_elements.append("{question}")
|
410 |
-
button_state = bool(len(input_data['models']) > 0 and '{
|
411 |
if missing_elements:
|
412 |
-
return gr.update(
|
|
|
|
|
|
|
|
|
413 |
return gr.update(visible=False), gr.update(interactive=button_state)
|
414 |
|
415 |
prompt.change(fn=check_prompt, inputs=[prompt], outputs=[warning_prompt, submit_models_button])
|
@@ -490,14 +540,14 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
490 |
|
491 |
loading_symbols= {1:"𓆟",
|
492 |
2: "𓆞 𓆟",
|
493 |
-
3: "
|
494 |
-
4: "𓆞
|
495 |
-
5: "𓆟 𓆞
|
496 |
-
6: "𓆞 𓆟 𓆞
|
497 |
-
7: "
|
498 |
-
8: "𓆞
|
499 |
-
9: "𓆟 𓆞
|
500 |
-
10:"𓆞 𓆟 𓆞
|
501 |
}
|
502 |
|
503 |
def generate_loading_text(percent):
|
@@ -508,7 +558,7 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
508 |
return f"""
|
509 |
<div class='barcontainer'>
|
510 |
{css_symbols}
|
511 |
-
<span class='loading' style="font-family: '
|
512 |
Generation {percent}%
|
513 |
</span>
|
514 |
{mirrored_symbols}
|
@@ -521,15 +571,17 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
521 |
#caching
|
522 |
predictions_dict = {model: pd.DataFrame(columns=['id', 'question', 'predicted_sql', 'time', 'query', 'db_path']) for model in model_list}
|
523 |
metrics_conc = pd.DataFrame()
|
|
|
524 |
if (input_data['input_method']=="default"):
|
525 |
target_df = us.load_csv(pnp_path) #target_df = us.load_csv("priority_non_priority_metrics.csv")
|
526 |
#predictions_dict = {model: pd.DataFrame(columns=target_df.columns) for model in model_list}
|
527 |
target_df = target_df[target_df["tbl_name"].isin(input_data['data']['selected_tables'])]
|
528 |
target_df = target_df[target_df["model"].isin(input_data['models'])]
|
529 |
predictions_dict = {model: target_df[target_df["model"] == model] if model in target_df["model"].unique() else pd.DataFrame(columns=target_df.columns) for model in model_list}
|
530 |
-
|
|
|
531 |
model_image_path = next((m["image_path"] for m in model_list_dict if m["code"] == model), None)
|
532 |
-
yield gr.Image(model_image_path), gr.Markdown(), gr.Markdown(), gr.Markdown(), metrics_conc, *[predictions_dict[model] for model in model_list]
|
533 |
count=1
|
534 |
for _, row in predictions_dict[model].iterrows():
|
535 |
#for index, row in target_df.iterrows():
|
@@ -538,51 +590,36 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
538 |
load_text = f"{generate_loading_text(percent_complete)}"
|
539 |
question = row['question']
|
540 |
|
541 |
-
|
542 |
-
# <div class='loading' style="font-size: 1.7rem; font-family: 'Playfair Display', serif;">
|
543 |
-
# Natural Language:
|
544 |
-
# </div>
|
545 |
-
# <div class='sqlquery' style="font-family: 'Playfair Display', serif;">
|
546 |
-
# {row['question']}
|
547 |
-
# </div>
|
548 |
-
# """
|
549 |
-
display_question = f"""<div class='loading' style='font-size: 1.7rem; font-family: 'Playfair Display', serif;'>Natural Language:</div>
|
550 |
<div style='display: flex; align-items: center;'>
|
551 |
-
<div class='sqlquery' font-family: '
|
552 |
<div style='font-size: 3rem'>➡️</div>
|
553 |
</div>
|
554 |
"""
|
555 |
-
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(display_question), gr.Markdown(), metrics_conc, *[predictions_dict[model] for model in model_list]
|
556 |
#time.sleep(0.02)
|
557 |
prediction = row['predicted_sql']
|
558 |
|
559 |
-
|
560 |
-
# <div class='loading' style="font-size: 1.7rem; font-family: 'Playfair Display', serif;">
|
561 |
-
# Generated SQL:
|
562 |
-
# </div>
|
563 |
-
# <div class='sqlquery' style="font-family: 'Playfair Display', serif;">
|
564 |
-
# {prediction}
|
565 |
-
# </div>
|
566 |
-
# """
|
567 |
-
display_prediction = f"""<div class='loading' style='font-size: 1.7rem; font-family: 'Playfair Display', serif;'>Natural Language:</div>
|
568 |
<div style='display: flex; align-items: center;'>
|
569 |
<div style='font-size: 3rem'>➡️</div>
|
570 |
-
<div class='sqlquery' font-family: '
|
571 |
</div>
|
572 |
"""
|
573 |
-
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(), gr.Markdown(display_prediction), metrics_conc, *[predictions_dict[model] for model in model_list]
|
574 |
-
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(), gr.Markdown(display_prediction), metrics_conc, *[predictions_dict[model] for model in model_list]
|
575 |
metrics_conc = target_df
|
576 |
if 'valid_efficiency_score' not in metrics_conc.columns:
|
577 |
metrics_conc['valid_efficiency_score'] = metrics_conc['VES']
|
578 |
-
yield gr.Image(), gr.Markdown(), gr.Markdown(), gr.Markdown(), metrics_conc, *[predictions_dict[model] for model in model_list]
|
579 |
else:
|
580 |
|
581 |
orchestrator_generator = OrchestratorGenerator()
|
582 |
# TODO: add to target_df column target_df["columns_used"], tables selection
|
583 |
# print(input_data['data']['db'])
|
584 |
#print(input_data['data']['selected_tables'])
|
585 |
-
|
|
|
586 |
#target_df = orchestrator_generator.generate_dataset(connector=input_data['data']['db'], tables_to_includes=None)
|
587 |
|
588 |
schema_text = utils_get_db_tables_info.utils_extract_db_schema_as_string(
|
@@ -604,14 +641,13 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
604 |
load_text = f"{generate_loading_text(percent_complete)}"
|
605 |
|
606 |
question = row['question']
|
607 |
-
|
608 |
-
display_question = f"""<div class='loading' style='font-size: 1.7rem; font-family: 'Playfair Display', serif;'>Natural Language:</div>
|
609 |
<div style='display: flex; align-items: center;'>
|
610 |
-
<div class='sqlquery' font-family: '
|
611 |
<div style='font-size: 3rem'>➡️</div>
|
612 |
</div>
|
613 |
-
"""
|
614 |
-
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(display_question), gr.Markdown(), metrics_conc, *[predictions_dict[model]
|
615 |
start_time = time.time()
|
616 |
samples = us.generate_some_samples(input_data['data']['db'], row["tbl_name"])
|
617 |
prompt_to_send = us.prepare_prompt(input_data["prompt"], question, schema_text, samples)
|
@@ -622,11 +658,10 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
622 |
answer = "Answer"#response[response]
|
623 |
|
624 |
end_time = time.time()
|
625 |
-
|
626 |
-
display_prediction = f"""<div class='loading' style='font-size: 1.7rem; font-family: 'Playfair Display', serif;'>Natural Language:</div>
|
627 |
<div style='display: flex; align-items: center;'>
|
628 |
<div style='font-size: 3rem'>➡️</div>
|
629 |
-
<div class='sqlquery' font-family: '
|
630 |
</div>
|
631 |
"""
|
632 |
# Create a new row as dataframe
|
@@ -652,7 +687,7 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
652 |
predictions_dict[model] = pd.concat([predictions_dict[model], new_row], ignore_index=True)
|
653 |
|
654 |
# yield gr.Textbox(), gr.Textbox(prediction), *[predictions_dict[model] for model in input_data["models"]], None
|
655 |
-
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(), gr.Markdown(display_prediction), metrics_conc, *[predictions_dict[model]
|
656 |
|
657 |
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(), gr.Markdown(display_prediction), metrics_conc, *[predictions_dict[model] for model in model_list]
|
658 |
# END
|
@@ -683,17 +718,33 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
683 |
with gr.Column():
|
684 |
question_display = gr.Markdown()
|
685 |
with gr.Column():
|
686 |
-
model_logo = gr.Image(visible=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
687 |
with gr.Column():
|
688 |
with gr.Column():
|
689 |
prediction_display = gr.Markdown()
|
690 |
-
|
|
|
|
|
691 |
dataframe_per_model = {}
|
692 |
|
693 |
with gr.Tabs() as model_tabs:
|
694 |
tab_dict = {}
|
695 |
-
|
696 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
697 |
gr.Markdown(f"**Results for {model}**")
|
698 |
tab_dict[model] = tab
|
699 |
dataframe_per_model[model] = gr.DataFrame()
|
@@ -726,16 +777,17 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
726 |
# Works for METRICS
|
727 |
metrics_df.change(fn=change_text, inputs=[metrics_df], outputs=[metrics_df_out])
|
728 |
|
729 |
-
proceed_to_metrics_button = gr.Button("Proceed to Metrics")
|
730 |
proceed_to_metrics_button.click(
|
731 |
fn=lambda: (gr.update(open=False, visible=True), gr.update(open=True, visible=True)),
|
732 |
outputs=[qatch_acc, metrics_acc]
|
733 |
)
|
734 |
|
735 |
def allow_download(metrics_df_out):
|
736 |
-
path = os.path.join(".", "data", "data_results", "results.csv")
|
|
|
737 |
metrics_df_out.to_csv(path, index=False)
|
738 |
-
return gr.update(value=path, visible=True)
|
739 |
|
740 |
download_metrics = gr.DownloadButton(label="Download Metrics Evaluation", visible=False)
|
741 |
|
@@ -748,9 +800,10 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
748 |
# fn=lambda: gr.update(open=True, visible=True),
|
749 |
# outputs=[download_metrics]
|
750 |
# )
|
751 |
-
|
|
|
|
|
752 |
|
753 |
-
reset_data = gr.Button("Back to upload data section")
|
754 |
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc, default_checkbox, file_input])
|
755 |
#WHY NOT WORKING?
|
756 |
reset_data.click(
|
@@ -773,16 +826,12 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
773 |
open_model_selection
|
774 |
]
|
775 |
)
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
##########################################
|
781 |
# METRICS VISUALIZATION SECTION #
|
782 |
##########################################
|
783 |
with metrics_acc:
|
784 |
#data_path = 'test_results_metrics1.csv'
|
785 |
-
data_path = '/Users/francescogiannuzzo/Desktop/EURECOM/semester_project_gradio_git/Automatic-LLM-Benchmark-Analysis-for-Text2SQL-GRADIO/data/evaluation_p_metrics.csv'
|
786 |
|
787 |
@gr.render(inputs=metrics_df_out)
|
788 |
def function_metrics(metrics_df_out):
|
@@ -794,6 +843,16 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
794 |
def load_data_csv_es():
|
795 |
#return pd.read_csv(data_path)
|
796 |
#print("---------------->",metrics_df_out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
797 |
return metrics_df_out
|
798 |
|
799 |
def calculate_average_metrics(df, selected_metrics):
|
@@ -812,7 +871,8 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
812 |
num_models = len(unique_models)
|
813 |
|
814 |
# Use the Plotly color scale (you can change it if needed)
|
815 |
-
color_palette =
|
|
|
816 |
|
817 |
# If there are more models than colors, cycle through them
|
818 |
colors = {model: color_palette[i % len(color_palette)] for i, model in enumerate(unique_models)}
|
@@ -837,7 +897,7 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
837 |
def normalize_valid_efficiency_score(df):
|
838 |
#TODO valid_efficiency_score
|
839 |
#print(df['valid_efficiency_score'])
|
840 |
-
df['valid_efficiency_score'] = df['valid_efficiency_score'].replace('', 0)
|
841 |
df['valid_efficiency_score'] = df['valid_efficiency_score'].astype(int)
|
842 |
min_val = df['valid_efficiency_score'].min()
|
843 |
max_val = df['valid_efficiency_score'].max()
|
@@ -853,8 +913,6 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
853 |
return df
|
854 |
|
855 |
|
856 |
-
|
857 |
-
|
858 |
####################################
|
859 |
# GRAPH FUNCTIONS SECTION #
|
860 |
####################################
|
@@ -883,9 +941,10 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
883 |
y="avg_metric",
|
884 |
color="model",
|
885 |
color_discrete_map=MODEL_COLORS,
|
886 |
-
title='Average
|
887 |
-
labels={"model": "Model", "avg_metric": "Average
|
888 |
-
template='
|
|
|
889 |
text='text_label'
|
890 |
)
|
891 |
else:
|
@@ -902,62 +961,64 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
902 |
color='model',
|
903 |
color_discrete_map=MODEL_COLORS,
|
904 |
barmode='group',
|
905 |
-
title=f'Average
|
906 |
-
labels={group_by[0]: group_by[0].capitalize(), 'avg_metric': 'Average
|
907 |
-
template='
|
|
|
908 |
text='text_label'
|
909 |
)
|
910 |
|
911 |
fig.update_traces(textposition='outside', textfont_size=10)
|
912 |
|
913 |
-
# font
|
914 |
fig.update_layout(
|
915 |
margin=dict(t=80),
|
916 |
title=dict(
|
917 |
font=dict(
|
918 |
-
family="
|
919 |
size=22,
|
920 |
-
color="white"
|
921 |
),
|
922 |
x=0.5
|
923 |
),
|
924 |
xaxis=dict(
|
925 |
title=dict(
|
926 |
font=dict(
|
927 |
-
family="
|
928 |
-
size=
|
929 |
-
color="white"
|
930 |
)
|
931 |
),
|
932 |
tickfont=dict(
|
933 |
-
family="
|
934 |
-
color="white"
|
|
|
935 |
)
|
936 |
),
|
937 |
yaxis=dict(
|
938 |
title=dict(
|
939 |
font=dict(
|
940 |
-
family="
|
941 |
-
size=
|
942 |
-
color="white"
|
943 |
)
|
944 |
),
|
945 |
tickfont=dict(
|
946 |
-
family="
|
947 |
-
color="white"
|
948 |
)
|
949 |
),
|
950 |
legend=dict(
|
951 |
title=dict(
|
952 |
font=dict(
|
953 |
-
family="
|
954 |
-
size=
|
955 |
-
color="white"
|
956 |
)
|
957 |
),
|
958 |
font=dict(
|
959 |
-
family="
|
960 |
-
color="white"
|
961 |
)
|
962 |
)
|
963 |
)
|
@@ -988,7 +1049,7 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
988 |
|
989 |
avg_metrics = df.groupby(["db_category", "model"])['avg_metric'].mean().reset_index()
|
990 |
avg_metrics['text_label'] = avg_metrics['avg_metric'].apply(lambda x: f'{x:.2f}')
|
991 |
-
|
992 |
fig = px.bar(
|
993 |
avg_metrics,
|
994 |
x='db_category',
|
@@ -996,50 +1057,51 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
996 |
color='model',
|
997 |
color_discrete_map=MODEL_COLORS,
|
998 |
barmode='group',
|
999 |
-
title='Average
|
1000 |
-
labels={'db_path': 'DB Path', 'avg_metric': 'Average
|
1001 |
template='simple_white',
|
1002 |
text='text_label'
|
1003 |
)
|
1004 |
|
1005 |
-
fig.update_traces(textposition='outside', textfont_size=
|
1006 |
|
1007 |
-
#
|
1008 |
fig.update_layout(
|
1009 |
margin=dict(t=80),
|
1010 |
title=dict(
|
1011 |
font=dict(
|
1012 |
-
family="
|
1013 |
-
size=
|
1014 |
color="black"
|
1015 |
),
|
1016 |
x=0.5
|
1017 |
),
|
1018 |
xaxis=dict(
|
1019 |
title=dict(
|
1020 |
-
text='
|
1021 |
font=dict(
|
1022 |
-
family='
|
1023 |
-
size=
|
1024 |
color='black'
|
1025 |
)
|
1026 |
),
|
1027 |
tickfont=dict(
|
1028 |
-
family='
|
1029 |
-
color='black'
|
|
|
1030 |
)
|
1031 |
),
|
1032 |
yaxis=dict(
|
1033 |
title=dict(
|
1034 |
-
text='Average
|
1035 |
font=dict(
|
1036 |
-
family='
|
1037 |
-
size=
|
1038 |
color='black'
|
1039 |
)
|
1040 |
),
|
1041 |
tickfont=dict(
|
1042 |
-
family='
|
1043 |
color='black'
|
1044 |
)
|
1045 |
),
|
@@ -1047,14 +1109,15 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1047 |
title=dict(
|
1048 |
text='Models',
|
1049 |
font=dict(
|
1050 |
-
family='
|
1051 |
-
size=
|
1052 |
color='black'
|
1053 |
)
|
1054 |
),
|
1055 |
font=dict(
|
1056 |
-
family='
|
1057 |
-
color='black'
|
|
|
1058 |
)
|
1059 |
)
|
1060 |
)
|
@@ -1116,12 +1179,13 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1116 |
|
1117 |
# BAR CHART FOR PROPIETARY DATASET WITH AVERAGE METRICS WITH UPDATE FUNCTION
|
1118 |
|
1119 |
-
def lollipop_propietary():
|
1120 |
df = load_data_csv_es()
|
1121 |
|
1122 |
# Filtra solo le categorie rilevanti
|
1123 |
target_cats = ["Spider", "Economic", "Financial", "Medical", "Miscellaneous"]
|
1124 |
df = df[df['db_category'].isin(target_cats)]
|
|
|
1125 |
|
1126 |
df = normalize_valid_efficiency_score(df)
|
1127 |
df = calculate_average_metrics(df, qatch_metrics)
|
@@ -1164,8 +1228,8 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1164 |
x=merged_df["Spider"],
|
1165 |
y=merged_df["model"],
|
1166 |
mode='markers',
|
1167 |
-
name='Spider',
|
1168 |
-
marker=dict(size=10, color='
|
1169 |
))
|
1170 |
|
1171 |
# Punto per Others (media delle altre 4 categorie)
|
@@ -1173,19 +1237,70 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1173 |
x=merged_df["Others"],
|
1174 |
y=merged_df["model"],
|
1175 |
mode='markers',
|
1176 |
-
name='
|
1177 |
-
marker=dict(size=10, color='
|
1178 |
))
|
1179 |
|
1180 |
fig.update_layout(
|
1181 |
-
|
1182 |
-
|
1183 |
-
yaxis_title='Model',
|
1184 |
template='simple_white',
|
1185 |
#template='plotly_dark',
|
1186 |
margin=dict(t=80),
|
1187 |
-
|
1188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1189 |
)
|
1190 |
|
1191 |
return gr.Plot(fig, visible=True)
|
@@ -1233,64 +1348,79 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1233 |
title=dict(
|
1234 |
text='📊 Bar Plot of Metrics per Model (Few Categories)',
|
1235 |
font=dict(
|
1236 |
-
family='
|
1237 |
size=22,
|
1238 |
-
color='white'
|
1239 |
),
|
1240 |
x=0.5
|
1241 |
),
|
1242 |
-
template='
|
|
|
1243 |
xaxis=dict(
|
1244 |
title=dict(
|
1245 |
text='Test Category',
|
1246 |
font=dict(
|
1247 |
-
family='
|
1248 |
-
size=
|
1249 |
-
color='white'
|
1250 |
)
|
1251 |
),
|
1252 |
tickfont=dict(
|
1253 |
-
family='
|
1254 |
-
|
|
|
1255 |
)
|
1256 |
),
|
1257 |
yaxis=dict(
|
1258 |
title=dict(
|
1259 |
-
text='Average
|
1260 |
font=dict(
|
1261 |
-
family='
|
1262 |
-
size=
|
1263 |
-
color='white'
|
1264 |
)
|
1265 |
),
|
1266 |
tickfont=dict(
|
1267 |
-
family='
|
1268 |
-
color='white'
|
1269 |
)
|
1270 |
),
|
1271 |
legend=dict(
|
1272 |
title=dict(
|
1273 |
text='Models',
|
1274 |
font=dict(
|
1275 |
-
family='
|
1276 |
-
size=
|
1277 |
-
color='white'
|
1278 |
)
|
1279 |
),
|
1280 |
font=dict(
|
1281 |
-
family='
|
1282 |
-
color='white'
|
1283 |
)
|
1284 |
)
|
1285 |
)
|
1286 |
else:
|
1287 |
# 🧭 RADAR PLOT
|
1288 |
fig = go.Figure()
|
1289 |
-
for model in selected_models:
|
1290 |
model_data = avg_metrics[avg_metrics['model'] == model]
|
|
|
|
|
|
|
|
|
|
|
1291 |
values = [
|
1292 |
-
|
1293 |
-
if cat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1294 |
for cat in categories
|
1295 |
]
|
1296 |
fig.add_trace(go.Scatterpolar(
|
@@ -1307,23 +1437,24 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1307 |
visible=True,
|
1308 |
range=[0, max(avg_metrics['avg_metric'].max(), 0.5)],
|
1309 |
tickfont=dict(
|
1310 |
-
family='
|
1311 |
-
color='white'
|
1312 |
)
|
1313 |
),
|
1314 |
angularaxis=dict(
|
1315 |
tickfont=dict(
|
1316 |
-
family='
|
1317 |
-
|
|
|
1318 |
)
|
1319 |
)
|
1320 |
),
|
1321 |
title=dict(
|
1322 |
-
text='❇️ Radar Plot of Metrics per Model (Average per Category)',
|
1323 |
font=dict(
|
1324 |
-
family='
|
1325 |
size=22,
|
1326 |
-
color='white'
|
1327 |
),
|
1328 |
x=0.5
|
1329 |
),
|
@@ -1331,17 +1462,19 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1331 |
title=dict(
|
1332 |
text='Models',
|
1333 |
font=dict(
|
1334 |
-
family='
|
1335 |
-
size=
|
1336 |
-
color='white'
|
1337 |
)
|
1338 |
),
|
1339 |
font=dict(
|
1340 |
-
family='
|
1341 |
-
|
|
|
1342 |
)
|
1343 |
),
|
1344 |
-
template='
|
|
|
1345 |
)
|
1346 |
|
1347 |
return fig
|
@@ -1395,60 +1528,63 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1395 |
title=dict(
|
1396 |
text='📊 Bar Plot of Metrics per Model (Few Sub-Categories)',
|
1397 |
font=dict(
|
1398 |
-
family='
|
1399 |
size=22,
|
1400 |
-
color='white'
|
1401 |
),
|
1402 |
x=0.5
|
1403 |
),
|
1404 |
-
template='
|
|
|
1405 |
xaxis=dict(
|
1406 |
title=dict(
|
1407 |
text='SQL Tag (Sub Category)',
|
1408 |
font=dict(
|
1409 |
-
family='
|
1410 |
-
size=
|
1411 |
-
color='white'
|
1412 |
)
|
1413 |
),
|
1414 |
tickfont=dict(
|
1415 |
-
family='
|
1416 |
-
color='white'
|
1417 |
)
|
1418 |
),
|
1419 |
yaxis=dict(
|
1420 |
title=dict(
|
1421 |
-
text='Average
|
1422 |
font=dict(
|
1423 |
-
family='
|
1424 |
-
size=
|
1425 |
-
color='white'
|
1426 |
)
|
1427 |
),
|
1428 |
tickfont=dict(
|
1429 |
-
family='
|
1430 |
-
color='white'
|
1431 |
)
|
1432 |
),
|
1433 |
legend=dict(
|
1434 |
title=dict(
|
1435 |
text='Models',
|
1436 |
font=dict(
|
1437 |
-
family='
|
1438 |
-
size=
|
1439 |
-
color='white'
|
1440 |
)
|
1441 |
),
|
1442 |
font=dict(
|
1443 |
-
family='
|
1444 |
-
|
|
|
1445 |
)
|
1446 |
)
|
1447 |
)
|
1448 |
else:
|
1449 |
# 🧭 RADAR PLOT
|
1450 |
fig = go.Figure()
|
1451 |
-
|
|
|
1452 |
model_data = avg_metrics[avg_metrics['model'] == model]
|
1453 |
values = [
|
1454 |
model_data[model_data['sql_tag'] == cat]['avg_metric'].values[0]
|
@@ -1470,23 +1606,24 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1470 |
visible=True,
|
1471 |
range=[0, max(avg_metrics['avg_metric'].max(), 0.5)],
|
1472 |
tickfont=dict(
|
1473 |
-
family='
|
1474 |
-
color='white'
|
1475 |
)
|
1476 |
),
|
1477 |
angularaxis=dict(
|
1478 |
tickfont=dict(
|
1479 |
-
family='
|
1480 |
-
|
|
|
1481 |
)
|
1482 |
)
|
1483 |
),
|
1484 |
title=dict(
|
1485 |
-
text='❇️ Radar Plot of Metrics per Model (Average per Sub-Category)',
|
1486 |
font=dict(
|
1487 |
-
family='
|
1488 |
size=22,
|
1489 |
-
color='white'
|
1490 |
),
|
1491 |
x=0.5
|
1492 |
),
|
@@ -1494,17 +1631,19 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1494 |
title=dict(
|
1495 |
text='Models',
|
1496 |
font=dict(
|
1497 |
-
family='
|
1498 |
-
size=
|
1499 |
-
color='white'
|
1500 |
)
|
1501 |
),
|
1502 |
font=dict(
|
1503 |
-
family='
|
1504 |
-
|
|
|
1505 |
)
|
1506 |
),
|
1507 |
-
template='
|
|
|
1508 |
)
|
1509 |
|
1510 |
return fig
|
@@ -1623,9 +1762,9 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1623 |
title=dict(
|
1624 |
text="Cumulative Price Flow Chart 💰",
|
1625 |
font=dict(
|
1626 |
-
family="
|
1627 |
size=24,
|
1628 |
-
color="white"
|
1629 |
),
|
1630 |
x=0.5
|
1631 |
),
|
@@ -1633,45 +1772,49 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1633 |
title=dict(
|
1634 |
text="Cumulative Time (s)",
|
1635 |
font=dict(
|
1636 |
-
family="
|
1637 |
-
size=
|
1638 |
-
color="white"
|
1639 |
)
|
1640 |
),
|
1641 |
tickfont=dict(
|
1642 |
-
family="
|
1643 |
-
|
|
|
1644 |
)
|
1645 |
),
|
1646 |
yaxis=dict(
|
1647 |
title=dict(
|
1648 |
text="Cumulative Price ($)",
|
1649 |
font=dict(
|
1650 |
-
family="
|
1651 |
-
size=
|
1652 |
-
color="white"
|
1653 |
)
|
1654 |
),
|
1655 |
tickfont=dict(
|
1656 |
-
family="
|
1657 |
-
|
|
|
1658 |
)
|
1659 |
),
|
1660 |
legend=dict(
|
1661 |
title=dict(
|
1662 |
text="Models",
|
1663 |
font=dict(
|
1664 |
-
family="
|
1665 |
-
size=
|
1666 |
-
color="white"
|
1667 |
)
|
1668 |
),
|
1669 |
font=dict(
|
1670 |
-
family="
|
1671 |
-
|
|
|
1672 |
)
|
1673 |
),
|
1674 |
-
template=
|
|
|
1675 |
)
|
1676 |
|
1677 |
return fig
|
@@ -1728,8 +1871,7 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1728 |
}
|
1729 |
|
1730 |
df_initial = load_data_csv_es()
|
1731 |
-
|
1732 |
-
models = df_initial['model'].unique().tolist()
|
1733 |
last_valid_model_selection = models.copy() # Per salvare l’ultima selezione valida
|
1734 |
def enforce_model_selection(selected):
|
1735 |
global last_valid_model_selection
|
@@ -1768,12 +1910,41 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1768 |
|
1769 |
#FOR BAR
|
1770 |
gr.Markdown("""## Section 1: Model - Data""")
|
|
|
1771 |
with gr.Row():
|
1772 |
-
|
1773 |
-
|
1774 |
-
|
1775 |
-
|
1776 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1777 |
|
1778 |
qatch_metric_multiselect_bar = gr.CheckboxGroup(
|
1779 |
choices=list(qatch_metrics_dict.keys()),
|
@@ -1809,15 +1980,15 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1809 |
|
1810 |
def toggle_metric_selector(selected_type):
|
1811 |
if selected_type == "Qatch":
|
1812 |
-
return gr.update(visible=True, value=list(qatch_metrics_dict.keys())), gr.update(visible=False, value=[])
|
1813 |
else:
|
1814 |
-
return gr.update(visible=False, value=[]), gr.update(visible=True, value=list(external_metrics_dict.keys()))
|
1815 |
|
1816 |
output_plot = gr.Plot(visible=False)
|
1817 |
|
1818 |
if(input_data['input_method'] == 'default'):
|
1819 |
with gr.Row():
|
1820 |
-
lollipop_propietary()
|
1821 |
|
1822 |
#FOR RADAR
|
1823 |
gr.Markdown("""## Section 2: Model - Category""")
|
@@ -1885,22 +2056,22 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1885 |
first = gr.Markdown(worst_first)
|
1886 |
|
1887 |
with gr.Row():
|
1888 |
-
first_button = gr.Button("Show
|
1889 |
|
1890 |
with gr.Row():
|
1891 |
second = gr.Markdown(worst_second)
|
1892 |
|
1893 |
with gr.Row():
|
1894 |
-
second_button = gr.Button("Show
|
1895 |
|
1896 |
with gr.Row():
|
1897 |
third = gr.Markdown(worst_third)
|
1898 |
|
1899 |
with gr.Row():
|
1900 |
-
third_button = gr.Button("Show
|
1901 |
|
1902 |
with gr.Column(scale=1):
|
1903 |
-
gr.Markdown("""##
|
1904 |
row_answer_first = gr.Markdown(value=raw_first, visible=True)
|
1905 |
row_answer_second = gr.Markdown(value=raw_second, visible=False)
|
1906 |
row_answer_third = gr.Markdown(value=raw_third, visible=False)
|
@@ -1914,8 +2085,9 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1914 |
value=models
|
1915 |
)
|
1916 |
|
|
|
1917 |
with gr.Row():
|
1918 |
-
slicer = gr.Slider(minimum=0, maximum=max(df_initial["number_question"]), step=
|
1919 |
|
1920 |
query_rate_plot = gr.Plot(value=update_query_rate(models, len(df_initial["number_question"].unique())))
|
1921 |
|
@@ -1983,7 +2155,7 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1983 |
external_metric_select_bar.change(on_change_propietary, inputs=[choose_metrics_bar,qatch_metric_multiselect_bar, external_metric_select_bar, model_radio_bar], outputs=output_plot)
|
1984 |
model_radio_bar.change(on_change_propietary, inputs=[choose_metrics_bar,qatch_metric_multiselect_bar, external_metric_select_bar, model_radio_bar], outputs=output_plot)
|
1985 |
qatch_metric_multiselect_bar.change(fn=enforce_qatch_metrics_selection, inputs=qatch_metric_multiselect_bar, outputs=qatch_metric_multiselect_bar)
|
1986 |
-
choose_metrics_bar.change(fn=toggle_metric_selector, inputs=choose_metrics_bar, outputs=[qatch_metric_multiselect_bar, external_metric_select_bar])
|
1987 |
external_metric_select_bar.change(fn=enforce_external_metric_selection, inputs=external_metric_select_bar, outputs=external_metric_select_bar)
|
1988 |
|
1989 |
else:
|
@@ -1994,7 +2166,7 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
1994 |
model_multiselect_bar.change(on_change, inputs=[choose_metrics_bar,qatch_metric_multiselect_bar, external_metric_select_bar, group_radio, model_multiselect_bar], outputs=output_plot)
|
1995 |
qatch_metric_multiselect_bar.change(fn=enforce_qatch_metrics_selection, inputs=qatch_metric_multiselect_bar, outputs=qatch_metric_multiselect_bar)
|
1996 |
model_multiselect_bar.change(fn=enforce_model_selection, inputs=model_multiselect_bar, outputs=model_multiselect_bar)
|
1997 |
-
choose_metrics_bar.change(fn=toggle_metric_selector, inputs=choose_metrics_bar, outputs=[qatch_metric_multiselect_bar, external_metric_select_bar])
|
1998 |
external_metric_select_bar.change(fn=enforce_external_metric_selection, inputs=external_metric_select_bar, outputs=external_metric_select_bar)
|
1999 |
|
2000 |
|
@@ -2035,4 +2207,4 @@ with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
|
2035 |
reset_data.click(fn=enable_disable, inputs=[gr.State(True)], outputs=[*model_checkboxes, submit_models_button, preview_output, submit_button, file_input, default_checkbox, table_selector, *table_outputs, open_model_selection])
|
2036 |
|
2037 |
|
2038 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import os
|
|
|
|
|
|
|
4 |
# # https://discuss.huggingface.co/t/issues-with-sadtalker-zerogpu-spaces-inquiry-about-community-grant/110625/10
|
5 |
# if os.environ.get("SPACES_ZERO_GPU") is not None:
|
6 |
# import spaces
|
|
|
16 |
from qatch.generate_dataset.orchestrator_generator import OrchestratorGenerator
|
17 |
from qatch.evaluate_dataset.orchestrator_evaluator import OrchestratorEvaluator
|
18 |
from prediction import ModelPrediction
|
19 |
+
import utils_get_db_tables_info
|
20 |
import utilities as us
|
21 |
+
import time
|
22 |
import plotly.express as px
|
23 |
import plotly.graph_objects as go
|
24 |
import plotly.colors as pc
|
25 |
+
import re
|
26 |
+
import csv
|
27 |
+
import numpy as np
|
28 |
+
# @spaces.GPU
|
29 |
+
# def model_prediction():
|
30 |
+
# pass
|
31 |
+
pnp_path = os.path.join(".", "evaluation_p_np_metrics.csv")
|
32 |
+
|
33 |
+
js_func = """
|
34 |
+
function refresh() {
|
35 |
+
const url = new URL(window.location);
|
36 |
+
|
37 |
+
if (url.searchParams.get('__theme') !== 'light') {
|
38 |
+
url.searchParams.set('__theme', 'light');
|
39 |
+
window.location.href = url.href;
|
40 |
+
}
|
41 |
+
}
|
42 |
+
"""
|
43 |
|
44 |
with open('style.css', 'r') as file:
|
45 |
css = file.read()
|
|
|
51 |
'City': ['New York', 'Los Angeles', 'Chicago']
|
52 |
})
|
53 |
|
54 |
+
models_path = "./models.csv"
|
55 |
|
56 |
# Variabile globale per tenere traccia dei dati correnti
|
57 |
df_current = df_default.copy()
|
58 |
|
59 |
+
description = """## 📊 Comparison of Proprietary and Non-Proprietary Databases
|
60 |
+
### ➤ **Proprietary** (💰 Economic, 🏥 Medical, 💳 Financial, 📂 Miscellaneous)
|
61 |
+
### ➤ **Non-Proprietary** (🕷️ Spider 1.0)"""
|
62 |
+
prompt_default = "Translate the following question in SQL code to be executed over the database to fetch the answer.\nReturn the sql code in ```sql ```\nQuestion\n{question}\nDatabase Schema\n{db_schema}\n"
|
63 |
+
|
64 |
input_data = {
|
65 |
'input_method': "",
|
66 |
'data_path': "",
|
|
|
71 |
'selected_tables' :[]
|
72 |
},
|
73 |
'models': [],
|
74 |
+
'prompt': prompt_default
|
75 |
}
|
76 |
|
77 |
def load_data(file, path, use_default):
|
|
|
81 |
try:
|
82 |
input_data["input_method"] = 'uploaded_file'
|
83 |
input_data["db_name"] = os.path.splitext(os.path.basename(file))[0]
|
84 |
+
#input_data["data_path"] = os.path.join(".", "data", "data_interface",f"{input_data['db_name']}.sqlite")
|
85 |
+
input_data["data_path"] = os.path.join(".", f"{input_data['db_name']}.sqlite")
|
86 |
input_data["data"] = us.load_data(file, input_data["db_name"])
|
87 |
df_current = input_data["data"]['data_frames'].get('MyTable', df_default) # Carica il DataFrame
|
88 |
if(input_data["data"]['data_frames'] and input_data["data"]["db"] is None): #for csv and xlsx files
|
|
|
102 |
if use_default:
|
103 |
if(use_default == 'Custom'):
|
104 |
input_data["input_method"] = 'custom'
|
105 |
+
#input_data["data_path"] = os.path.join(".", "data", "data_interface", "mytable_0.sqlite")
|
106 |
+
input_data["data_path"] = os.path.join(".","mytable_0.sqlite")
|
107 |
#if file already exist
|
108 |
while os.path.exists(input_data["data_path"]):
|
109 |
input_data["data_path"] = us.increment_filename(input_data["data_path"])
|
|
|
139 |
|
140 |
return input_data["data"]['data_frames']
|
141 |
|
142 |
+
def preview_default(use_default, file):
|
143 |
+
if file:
|
144 |
+
return gr.DataFrame(interactive=True, visible = False, value = df_default), gr.update(value="## ✅ File successfully uploaded!", visible=True)
|
145 |
+
else :
|
146 |
+
if use_default == 'Custom':
|
147 |
+
return gr.DataFrame(interactive=True, visible = True, value = df_default), gr.update(value="## 📝 Toy Table", visible=True)
|
148 |
+
else:
|
149 |
+
return gr.DataFrame(interactive=False, visible = False, value = df_default), gr.update(value = description, visible=True)
|
150 |
#return gr.DataFrame(interactive=True, value = df_current) # Mostra il DataFrame corrente, che potrebbe essere stato modificato
|
151 |
|
152 |
def update_df(new_df):
|
|
|
171 |
return gr.update(open=False), gr.update(open=False), gr.update(open=True, visible=True), gr.update(open=False), gr.update(open=False)
|
172 |
|
173 |
# Interfaccia Gradio
|
174 |
+
#with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface:
|
175 |
+
with gr.Blocks(theme='shivi/calm_seafoam', css_paths='style.css', js=js_func) as interface:
|
176 |
with gr.Row():
|
177 |
+
with gr.Column(scale=1):
|
178 |
+
gr.Image(
|
179 |
+
value="./qatch_logo.png",
|
180 |
+
show_label=False,
|
181 |
+
container=False,
|
182 |
+
interactive=False,
|
183 |
+
show_fullscreen_button=False,
|
184 |
+
show_download_button=False,
|
185 |
+
show_share_button=False,
|
186 |
+
height=150, # in pixel
|
187 |
+
width=300
|
188 |
+
)
|
189 |
+
with gr.Column(scale=1):
|
190 |
+
pass
|
191 |
data_state = gr.State(None) # Memorizza i dati caricati
|
192 |
+
upload_acc = gr.Accordion("Upload data section", open=True, visible=True)
|
193 |
+
select_table_acc = gr.Accordion("Select tables section", open=False, visible=False)
|
194 |
+
select_model_acc = gr.Accordion("Select models section", open=False, visible=False)
|
195 |
+
qatch_acc = gr.Accordion("QATCH execution section", open=False, visible=False)
|
196 |
+
metrics_acc = gr.Accordion("Metrics section", open=False, visible=False)
|
197 |
|
198 |
#################################
|
199 |
# DATABASE INSERTION #
|
200 |
#################################
|
201 |
with upload_acc:
|
202 |
+
gr.Markdown("## 📥Choose data input method")
|
203 |
with gr.Row():
|
204 |
+
default_checkbox = gr.Radio(label = "Explore the comparison between proprietary and non-proprietary databases or edit a toy table with the values you prefer", choices=['Proprietary vs Non-proprietary', 'Custom'], value='Proprietary vs Non-proprietary')
|
205 |
+
#default_checkbox = gr.Checkbox(label="Use default DataFrame"
|
206 |
+
|
207 |
+
table_default = gr.Markdown(description, visible=True)
|
208 |
preview_output = gr.DataFrame(interactive=False, visible=False, value=df_default)
|
|
|
|
|
|
|
209 |
|
210 |
+
gr.Markdown("## 📂 Or upload your data")
|
|
|
211 |
file_input = gr.File(label="Drag and drop a file", file_types=[".csv", ".xlsx", ".sqlite"])
|
212 |
submit_button = gr.Button("Load Data") # Disabled by default
|
213 |
output = gr.JSON(visible=False) # Dictionary output
|
|
|
235 |
#default_checkbox.change(fn=enable_submit, inputs=[file_input, default_checkbox], outputs=[submit_button])
|
236 |
|
237 |
# Show preview of the default DataFrame when checkbox is selected
|
238 |
+
default_checkbox.change(fn=preview_default, inputs=[default_checkbox, file_input], outputs=[preview_output, table_default])
|
239 |
+
file_input.change(fn=preview_default, inputs=[default_checkbox, file_input], outputs=[preview_output, table_default])
|
240 |
preview_output.change(fn=update_df, inputs=[preview_output], outputs=[preview_output])
|
241 |
|
242 |
# Uncheck the checkbox when a file is uploaded
|
|
|
300 |
# TABLE SELECTION PART #
|
301 |
######################################
|
302 |
with select_table_acc:
|
303 |
+
table_selector = gr.CheckboxGroup(choices=[], label="Select tables from the choosen database", value=[])
|
304 |
+
table_outputs = [gr.DataFrame(label=f"Table {i+1}", interactive=True, visible=False) for i in range(50)]
|
305 |
selected_table_names = gr.Textbox(label="Selected tables", visible=False, interactive=False)
|
306 |
|
307 |
# Model selection button (initially disabled)
|
|
|
310 |
def update_table_list(data):
|
311 |
"""Dynamically updates the list of available tables."""
|
312 |
if isinstance(data, dict) and data:
|
313 |
+
table_names = []
|
314 |
+
table_names.append("All")
|
315 |
+
table_names.extend(data.keys()) # Concatena data.keys() alla lista
|
316 |
return gr.update(choices=table_names, value=[]) # Reset selections
|
317 |
return gr.update(choices=[], value=[])
|
318 |
|
|
|
320 |
"""Displays only the tables selected by the user and enables the button."""
|
321 |
updates = []
|
322 |
if isinstance(data, dict) and data:
|
323 |
+
|
324 |
available_tables = list(data.keys()) # Actually available names
|
325 |
+
if "All" in selected_tables:
|
326 |
+
selected_tables = available_tables
|
327 |
+
else:
|
328 |
+
selected_tables = [t for t in selected_tables if t in available_tables] # Filter valid selections
|
329 |
|
330 |
tables = {name: data[name] for name in selected_tables} # Filter the DataFrames
|
331 |
|
332 |
for i, (name, df) in enumerate(tables.items()):
|
333 |
+
updates.append(gr.update(value=df, label=f"Table: {name}", visible=True, interactive=False))
|
334 |
|
335 |
# If there are fewer than 5 tables, hide the other DataFrames
|
336 |
+
for _ in range(len(tables), 50):
|
337 |
updates.append(gr.update(visible=False))
|
338 |
else:
|
339 |
+
updates = [gr.update(value=pd.DataFrame(), visible=False) for _ in range(50)]
|
340 |
|
341 |
# Enable/disable the button based on selections
|
342 |
button_state = bool(selected_tables) # True if at least one table is selected, False otherwise
|
|
|
344 |
|
345 |
return updates
|
346 |
|
347 |
+
def show_selected_table_names(data, selected_tables):
|
348 |
"""Displays the names of the selected tables when the button is pressed."""
|
349 |
if selected_tables:
|
350 |
+
available_tables = list(data.keys()) # Actually available names
|
351 |
+
if "All" in selected_tables:
|
352 |
+
selected_tables = available_tables
|
353 |
input_data['data']['selected_tables'] = selected_tables
|
354 |
return gr.update(value=", ".join(selected_tables), visible=False)
|
355 |
return gr.update(value="", visible=False)
|
|
|
361 |
table_selector.change(fn=show_selected_tables, inputs=[data_state, table_selector], outputs=table_outputs + [open_model_selection])
|
362 |
|
363 |
# Shows the list of selected tables when "Choose your models" is clicked
|
364 |
+
open_model_selection.click(fn=show_selected_table_names, inputs=[data_state, table_selector], outputs=[selected_table_names])
|
365 |
open_model_selection.click(open_accordion, inputs=gr.State("model_selection"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc])
|
366 |
|
367 |
reset_data = gr.Button("Back to upload data section")
|
|
|
384 |
# MODEL SELECTION PART #
|
385 |
####################################
|
386 |
with select_model_acc:
|
387 |
+
gr.Markdown("# Model Selection")
|
388 |
|
389 |
# Assume that `us.read_models_csv` also returns the image path
|
390 |
model_list_dict = us.read_models_csv(models_path)
|
391 |
model_list = [model["code"] for model in model_list_dict]
|
392 |
model_images = [model["image_path"] for model in model_list_dict]
|
393 |
+
model_names = [model["name"] for model in model_list_dict]
|
394 |
+
# Create a mapping between model_list and model_images_names
|
395 |
+
model_mapping = dict(zip(model_list, model_names))
|
396 |
+
model_mapping_reverse = dict(zip(model_names, model_list))
|
397 |
|
398 |
model_checkboxes = []
|
399 |
rows = []
|
|
|
407 |
model = model_list[i + j]
|
408 |
image_path = model_images[i + j]
|
409 |
with gr.Column():
|
410 |
+
gr.Image(image_path,
|
411 |
+
show_label=False,
|
412 |
+
container=False,
|
413 |
+
interactive=False,
|
414 |
+
show_fullscreen_button=False,
|
415 |
+
show_download_button=False,
|
416 |
+
show_share_button=False)
|
417 |
+
checkbox = gr.Checkbox(label=model_mapping[model], value=False)
|
418 |
model_checkboxes.append(checkbox)
|
419 |
cols.append(checkbox)
|
420 |
rows.append(cols)
|
421 |
|
422 |
+
selected_models_output = gr.JSON(visible=False)
|
423 |
|
424 |
# Function to get selected models
|
425 |
def get_selected_models(*model_selections):
|
426 |
selected_models = [model for model, selected in zip(model_list, model_selections) if selected]
|
427 |
+
|
428 |
input_data['models'] = selected_models
|
429 |
+
button_state = bool(selected_models and '{db_schema}' in input_data["prompt"] and '{question}' in input_data["prompt"])
|
430 |
return selected_models, gr.update(open=True, visible=True), gr.update(interactive=button_state)
|
431 |
|
432 |
# Add the Textbox to the interface
|
433 |
+
prompt = gr.TextArea(
|
434 |
+
label="Customise the prompt for selected models here or leave the default one.",
|
435 |
+
placeholder=prompt_default,
|
436 |
+
elem_id="custom-textarea"
|
437 |
+
)
|
438 |
+
warning_prompt = gr.Markdown(value="## Error in the prompt format", visible=False)
|
439 |
|
440 |
# Submit button (initially disabled)
|
441 |
|
|
|
445 |
#TODO
|
446 |
missing_elements = []
|
447 |
if(prompt==""):
|
448 |
+
input_data["prompt"]=prompt_default
|
449 |
+
button_state = bool(len(input_data['models']) > 0 and '{db_schema}' in input_data["prompt"] and '{question}' in input_data["prompt"])
|
450 |
else:
|
451 |
input_data["prompt"]=prompt
|
452 |
+
if "{db_schema}" not in prompt:
|
453 |
+
missing_elements.append("{db_schema}")
|
454 |
if "{question}" not in prompt:
|
455 |
missing_elements.append("{question}")
|
456 |
+
button_state = bool(len(input_data['models']) > 0 and '{db_schema}' in input_data["prompt"] and '{question}' in input_data["prompt"])
|
457 |
if missing_elements:
|
458 |
+
return gr.update(
|
459 |
+
value=f"<div style='text-align: center; font-size: 18px; font-weight: bold;'>"
|
460 |
+
f"❌ Missing {', '.join(missing_elements)} in the prompt ❌</div>",
|
461 |
+
visible=True
|
462 |
+
), gr.update(interactive=button_state)
|
463 |
return gr.update(visible=False), gr.update(interactive=button_state)
|
464 |
|
465 |
prompt.change(fn=check_prompt, inputs=[prompt], outputs=[warning_prompt, submit_models_button])
|
|
|
540 |
|
541 |
loading_symbols= {1:"𓆟",
|
542 |
2: "𓆞 𓆟",
|
543 |
+
3: "𓆛 𓆞 𓆟",
|
544 |
+
4: "𓆞 𓆛 𓆞 𓆟",
|
545 |
+
5: "𓆟 𓆞 𓆛 𓆞 𓆟",
|
546 |
+
6: "𓆞 𓆟 𓆞 𓆛 𓆞 𓆟",
|
547 |
+
7: "𓆜 𓆞 𓆟 𓆞 𓆛 𓆞 𓆟",
|
548 |
+
8: "𓆞 𓆜 𓆞 𓆟 𓆞 𓆛 𓆞 𓆟",
|
549 |
+
9: "𓆟 𓆞 𓆜 𓆞 𓆟 𓆞 𓆛 𓆞 𓆟",
|
550 |
+
10:"𓆞 𓆟 𓆞 𓆜 𓆞 𓆟 𓆞 𓆛 𓆞 𓆟",
|
551 |
}
|
552 |
|
553 |
def generate_loading_text(percent):
|
|
|
558 |
return f"""
|
559 |
<div class='barcontainer'>
|
560 |
{css_symbols}
|
561 |
+
<span class='loading' style="font-family: 'Inter', sans-serif;">
|
562 |
Generation {percent}%
|
563 |
</span>
|
564 |
{mirrored_symbols}
|
|
|
571 |
#caching
|
572 |
predictions_dict = {model: pd.DataFrame(columns=['id', 'question', 'predicted_sql', 'time', 'query', 'db_path']) for model in model_list}
|
573 |
metrics_conc = pd.DataFrame()
|
574 |
+
columns_to_visulize = ["db_path", "tbl_name", "test_category", "sql_tag", "query", "question", "predicted_sql", "time", "price", "answer"]
|
575 |
if (input_data['input_method']=="default"):
|
576 |
target_df = us.load_csv(pnp_path) #target_df = us.load_csv("priority_non_priority_metrics.csv")
|
577 |
#predictions_dict = {model: pd.DataFrame(columns=target_df.columns) for model in model_list}
|
578 |
target_df = target_df[target_df["tbl_name"].isin(input_data['data']['selected_tables'])]
|
579 |
target_df = target_df[target_df["model"].isin(input_data['models'])]
|
580 |
predictions_dict = {model: target_df[target_df["model"] == model] if model in target_df["model"].unique() else pd.DataFrame(columns=target_df.columns) for model in model_list}
|
581 |
+
|
582 |
+
for model in input_data['models']:
|
583 |
model_image_path = next((m["image_path"] for m in model_list_dict if m["code"] == model), None)
|
584 |
+
yield gr.Image(model_image_path), gr.Markdown(), gr.Markdown(), gr.Markdown(), metrics_conc, *[predictions_dict[model][columns_to_visulize] for model in model_list]
|
585 |
count=1
|
586 |
for _, row in predictions_dict[model].iterrows():
|
587 |
#for index, row in target_df.iterrows():
|
|
|
590 |
load_text = f"{generate_loading_text(percent_complete)}"
|
591 |
question = row['question']
|
592 |
|
593 |
+
display_question = f"""<div class='loading' style='font-size: 1.7rem; font-family: 'Inter', sans-serif;'>Natural Language:</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
594 |
<div style='display: flex; align-items: center;'>
|
595 |
+
<div class='sqlquery' font-family: 'Inter', sans-serif;>{question}</div>
|
596 |
<div style='font-size: 3rem'>➡️</div>
|
597 |
</div>
|
598 |
"""
|
599 |
+
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(display_question), gr.Markdown(), metrics_conc, *[predictions_dict[model][columns_to_visulize] for model in model_list]
|
600 |
#time.sleep(0.02)
|
601 |
prediction = row['predicted_sql']
|
602 |
|
603 |
+
display_prediction = f"""<div class='loading' style='font-size: 1.7rem; font-family: 'Inter', sans-serif;'>Predicted SQL:</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
604 |
<div style='display: flex; align-items: center;'>
|
605 |
<div style='font-size: 3rem'>➡️</div>
|
606 |
+
<div class='sqlquery' font-family: 'Inter', sans-serif;>{prediction}</div>
|
607 |
</div>
|
608 |
"""
|
609 |
+
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(), gr.Markdown(display_prediction), metrics_conc, *[predictions_dict[model][columns_to_visulize] for model in model_list]
|
610 |
+
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(), gr.Markdown(display_prediction), metrics_conc, *[predictions_dict[model][columns_to_visulize] for model in model_list]
|
611 |
metrics_conc = target_df
|
612 |
if 'valid_efficiency_score' not in metrics_conc.columns:
|
613 |
metrics_conc['valid_efficiency_score'] = metrics_conc['VES']
|
614 |
+
yield gr.Image(), gr.Markdown(), gr.Markdown(), gr.Markdown(), metrics_conc, *[predictions_dict[model][columns_to_visulize] for model in model_list]
|
615 |
else:
|
616 |
|
617 |
orchestrator_generator = OrchestratorGenerator()
|
618 |
# TODO: add to target_df column target_df["columns_used"], tables selection
|
619 |
# print(input_data['data']['db'])
|
620 |
#print(input_data['data']['selected_tables'])
|
621 |
+
#TODO s
|
622 |
+
target_df = orchestrator_generator.generate_dataset(connector=input_data['data']['db'], tables_to_include=input_data['data']['selected_tables'])
|
623 |
#target_df = orchestrator_generator.generate_dataset(connector=input_data['data']['db'], tables_to_includes=None)
|
624 |
|
625 |
schema_text = utils_get_db_tables_info.utils_extract_db_schema_as_string(
|
|
|
641 |
load_text = f"{generate_loading_text(percent_complete)}"
|
642 |
|
643 |
question = row['question']
|
644 |
+
display_question = f"""<div class='loading' style='font-size: 1.7rem; font-family: 'Inter', sans-serif;'>Natural Language:</div>
|
|
|
645 |
<div style='display: flex; align-items: center;'>
|
646 |
+
<div class='sqlquery' font-family: 'Inter', sans-serif;>{question}</div>
|
647 |
<div style='font-size: 3rem'>➡️</div>
|
648 |
</div>
|
649 |
+
"""
|
650 |
+
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(display_question), gr.Markdown(), metrics_conc, *[predictions_dict[model]for model in model_list]
|
651 |
start_time = time.time()
|
652 |
samples = us.generate_some_samples(input_data['data']['db'], row["tbl_name"])
|
653 |
prompt_to_send = us.prepare_prompt(input_data["prompt"], question, schema_text, samples)
|
|
|
658 |
answer = "Answer"#response[response]
|
659 |
|
660 |
end_time = time.time()
|
661 |
+
display_prediction = f"""<div class='loading' style='font-size: 1.7rem; font-family: 'Inter', sans-serif;'>>Predicted SQL:</div>
|
|
|
662 |
<div style='display: flex; align-items: center;'>
|
663 |
<div style='font-size: 3rem'>➡️</div>
|
664 |
+
<div class='sqlquery' font-family: 'Inter', sans-serif;>{prediction}</div>
|
665 |
</div>
|
666 |
"""
|
667 |
# Create a new row as dataframe
|
|
|
687 |
predictions_dict[model] = pd.concat([predictions_dict[model], new_row], ignore_index=True)
|
688 |
|
689 |
# yield gr.Textbox(), gr.Textbox(prediction), *[predictions_dict[model] for model in input_data["models"]], None
|
690 |
+
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(), gr.Markdown(display_prediction), metrics_conc, *[predictions_dict[model]for model in model_list]
|
691 |
|
692 |
yield gr.Image(), gr.Markdown(load_text), gr.Markdown(), gr.Markdown(display_prediction), metrics_conc, *[predictions_dict[model] for model in model_list]
|
693 |
# END
|
|
|
718 |
with gr.Column():
|
719 |
question_display = gr.Markdown()
|
720 |
with gr.Column():
|
721 |
+
model_logo = gr.Image(visible=True,
|
722 |
+
show_label=False,
|
723 |
+
container=False,
|
724 |
+
interactive=False,
|
725 |
+
show_fullscreen_button=False,
|
726 |
+
show_download_button=False,
|
727 |
+
show_share_button=False)
|
728 |
with gr.Column():
|
729 |
with gr.Column():
|
730 |
prediction_display = gr.Markdown()
|
731 |
+
|
732 |
+
evaluation_loading = gr.Markdown() # 𓆡
|
733 |
+
|
734 |
dataframe_per_model = {}
|
735 |
|
736 |
with gr.Tabs() as model_tabs:
|
737 |
tab_dict = {}
|
738 |
+
|
739 |
+
# for model, model_name in zip(model_list, model_names):
|
740 |
+
# with gr.TabItem(model_name, visible=(model in input_data["models"])) as tab:
|
741 |
+
# gr.Markdown(f"**Results for {model_name}**")
|
742 |
+
# tab_dict[model] = tab
|
743 |
+
# dataframe_per_model[model] = gr.DataFrame()
|
744 |
+
#model_mapping = dict(zip(model_list, model_names))
|
745 |
+
#model_mapping_reverse = dict(zip(model_names, model_list))
|
746 |
+
for model, model_name in zip(model_list, model_names):
|
747 |
+
with gr.TabItem(model_name, visible=(model in input_data["models"])) as tab:
|
748 |
gr.Markdown(f"**Results for {model}**")
|
749 |
tab_dict[model] = tab
|
750 |
dataframe_per_model[model] = gr.DataFrame()
|
|
|
777 |
# Works for METRICS
|
778 |
metrics_df.change(fn=change_text, inputs=[metrics_df], outputs=[metrics_df_out])
|
779 |
|
780 |
+
proceed_to_metrics_button = gr.Button("Proceed to Metrics", visible=False)
|
781 |
proceed_to_metrics_button.click(
|
782 |
fn=lambda: (gr.update(open=False, visible=True), gr.update(open=True, visible=True)),
|
783 |
outputs=[qatch_acc, metrics_acc]
|
784 |
)
|
785 |
|
786 |
def allow_download(metrics_df_out):
|
787 |
+
#path = os.path.join(".", "data", "data_results", "results.csv")
|
788 |
+
path = os.path.join(".", "results.csv")
|
789 |
metrics_df_out.to_csv(path, index=False)
|
790 |
+
return gr.update(value=path, visible=True), gr.update(visible=True), gr.update(interactive=True)
|
791 |
|
792 |
download_metrics = gr.DownloadButton(label="Download Metrics Evaluation", visible=False)
|
793 |
|
|
|
800 |
# fn=lambda: gr.update(open=True, visible=True),
|
801 |
# outputs=[download_metrics]
|
802 |
# )
|
803 |
+
reset_data = gr.Button("Back to upload data section", interactive=False)
|
804 |
+
|
805 |
+
metrics_df_out.change(fn=allow_download, inputs=[metrics_df_out], outputs=[download_metrics, proceed_to_metrics_button, reset_data])
|
806 |
|
|
|
807 |
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc, default_checkbox, file_input])
|
808 |
#WHY NOT WORKING?
|
809 |
reset_data.click(
|
|
|
826 |
open_model_selection
|
827 |
]
|
828 |
)
|
829 |
+
|
|
|
|
|
|
|
830 |
##########################################
|
831 |
# METRICS VISUALIZATION SECTION #
|
832 |
##########################################
|
833 |
with metrics_acc:
|
834 |
#data_path = 'test_results_metrics1.csv'
|
|
|
835 |
|
836 |
@gr.render(inputs=metrics_df_out)
|
837 |
def function_metrics(metrics_df_out):
|
|
|
843 |
def load_data_csv_es():
|
844 |
#return pd.read_csv(data_path)
|
845 |
#print("---------------->",metrics_df_out)
|
846 |
+
|
847 |
+
if input_data["input_method"]=="default":
|
848 |
+
df = pd.read_csv(pnp_path)
|
849 |
+
df['model'] = df['model'].replace('DeepSeek-R1-Distill-Llama-70B', 'DS-Llama3 70B')
|
850 |
+
df['model'] = df['model'].replace('gpt-3.5', 'GPT-3.5')
|
851 |
+
df['model'] = df['model'].replace('gpt-4o-mini', 'GPT-4o-mini')
|
852 |
+
df['model'] = df['model'].replace('llama-70', 'Llama-70B')
|
853 |
+
df['model'] = df['model'].replace('llama-8', 'Llama-8B')
|
854 |
+
df['test_category'] = df['test_category'].replace('many-to-many-generator', 'MANY-TO-MANY')
|
855 |
+
return df
|
856 |
return metrics_df_out
|
857 |
|
858 |
def calculate_average_metrics(df, selected_metrics):
|
|
|
871 |
num_models = len(unique_models)
|
872 |
|
873 |
# Use the Plotly color scale (you can change it if needed)
|
874 |
+
color_palette = ['#00B4D8', '#BCE784', '#C84630', '#F79256', '#D269FC']
|
875 |
+
#color_palette = pc.qualitative.Plotly # ['#636EFA', '#EF553B', '#00CC96', ...]
|
876 |
|
877 |
# If there are more models than colors, cycle through them
|
878 |
colors = {model: color_palette[i % len(color_palette)] for i, model in enumerate(unique_models)}
|
|
|
897 |
def normalize_valid_efficiency_score(df):
|
898 |
#TODO valid_efficiency_score
|
899 |
#print(df['valid_efficiency_score'])
|
900 |
+
df['valid_efficiency_score'] = df['valid_efficiency_score'].replace([np.nan, ''], 0)
|
901 |
df['valid_efficiency_score'] = df['valid_efficiency_score'].astype(int)
|
902 |
min_val = df['valid_efficiency_score'].min()
|
903 |
max_val = df['valid_efficiency_score'].max()
|
|
|
913 |
return df
|
914 |
|
915 |
|
|
|
|
|
916 |
####################################
|
917 |
# GRAPH FUNCTIONS SECTION #
|
918 |
####################################
|
|
|
941 |
y="avg_metric",
|
942 |
color="model",
|
943 |
color_discrete_map=MODEL_COLORS,
|
944 |
+
title='Average metrics per Model 🧠',
|
945 |
+
labels={"model": "Model", "avg_metric": "Average Metrics"},
|
946 |
+
template='simple_white',
|
947 |
+
#template='plotly_dark',
|
948 |
text='text_label'
|
949 |
)
|
950 |
else:
|
|
|
961 |
color='model',
|
962 |
color_discrete_map=MODEL_COLORS,
|
963 |
barmode='group',
|
964 |
+
title=f'Average metrics per {group_by[0]} 📊',
|
965 |
+
labels={group_by[0]: group_by[0].capitalize(), 'avg_metric': 'Average Metrics'},
|
966 |
+
template='simple_white',
|
967 |
+
#template='plotly_dark',
|
968 |
text='text_label'
|
969 |
)
|
970 |
|
971 |
fig.update_traces(textposition='outside', textfont_size=10)
|
972 |
|
973 |
+
# Applica font Inter a tutto il layout
|
974 |
fig.update_layout(
|
975 |
margin=dict(t=80),
|
976 |
title=dict(
|
977 |
font=dict(
|
978 |
+
family="Inter, sans-serif",
|
979 |
size=22,
|
980 |
+
#color="white"
|
981 |
),
|
982 |
x=0.5
|
983 |
),
|
984 |
xaxis=dict(
|
985 |
title=dict(
|
986 |
font=dict(
|
987 |
+
family="Inter, sans-serif",
|
988 |
+
size=18,
|
989 |
+
#color="white"
|
990 |
)
|
991 |
),
|
992 |
tickfont=dict(
|
993 |
+
family="Inter, sans-serif",
|
994 |
+
#color="white"
|
995 |
+
size=16
|
996 |
)
|
997 |
),
|
998 |
yaxis=dict(
|
999 |
title=dict(
|
1000 |
font=dict(
|
1001 |
+
family="Inter, sans-serif",
|
1002 |
+
size=18,
|
1003 |
+
#color="white"
|
1004 |
)
|
1005 |
),
|
1006 |
tickfont=dict(
|
1007 |
+
family="Inter, sans-serif",
|
1008 |
+
#color="white"
|
1009 |
)
|
1010 |
),
|
1011 |
legend=dict(
|
1012 |
title=dict(
|
1013 |
font=dict(
|
1014 |
+
family="Inter, sans-serif",
|
1015 |
+
size=16,
|
1016 |
+
#color="white"
|
1017 |
)
|
1018 |
),
|
1019 |
font=dict(
|
1020 |
+
family="Inter, sans-serif",
|
1021 |
+
#color="white"
|
1022 |
)
|
1023 |
)
|
1024 |
)
|
|
|
1049 |
|
1050 |
avg_metrics = df.groupby(["db_category", "model"])['avg_metric'].mean().reset_index()
|
1051 |
avg_metrics['text_label'] = avg_metrics['avg_metric'].apply(lambda x: f'{x:.2f}')
|
1052 |
+
#MIAO
|
1053 |
fig = px.bar(
|
1054 |
avg_metrics,
|
1055 |
x='db_category',
|
|
|
1057 |
color='model',
|
1058 |
color_discrete_map=MODEL_COLORS,
|
1059 |
barmode='group',
|
1060 |
+
title='Average metrics per database types 📊',
|
1061 |
+
labels={'db_path': 'DB Path', 'avg_metric': 'Average Metrics'},
|
1062 |
template='simple_white',
|
1063 |
text='text_label'
|
1064 |
)
|
1065 |
|
1066 |
+
fig.update_traces(textposition='outside', textfont_size=14)
|
1067 |
|
1068 |
+
# Aggiorna layout con font Inter
|
1069 |
fig.update_layout(
|
1070 |
margin=dict(t=80),
|
1071 |
title=dict(
|
1072 |
font=dict(
|
1073 |
+
family="Inter, sans-serif",
|
1074 |
+
size=24,
|
1075 |
color="black"
|
1076 |
),
|
1077 |
x=0.5
|
1078 |
),
|
1079 |
xaxis=dict(
|
1080 |
title=dict(
|
1081 |
+
text='Database Category',
|
1082 |
font=dict(
|
1083 |
+
family='Inter, sans-serif',
|
1084 |
+
size=22,
|
1085 |
color='black'
|
1086 |
)
|
1087 |
),
|
1088 |
tickfont=dict(
|
1089 |
+
family='Inter, sans-serif',
|
1090 |
+
color='black',
|
1091 |
+
size=20
|
1092 |
)
|
1093 |
),
|
1094 |
yaxis=dict(
|
1095 |
title=dict(
|
1096 |
+
text='Average Metrics',
|
1097 |
font=dict(
|
1098 |
+
family='Inter, sans-serif',
|
1099 |
+
size=22,
|
1100 |
color='black'
|
1101 |
)
|
1102 |
),
|
1103 |
tickfont=dict(
|
1104 |
+
family='Inter, sans-serif',
|
1105 |
color='black'
|
1106 |
)
|
1107 |
),
|
|
|
1109 |
title=dict(
|
1110 |
text='Models',
|
1111 |
font=dict(
|
1112 |
+
family='Inter, sans-serif',
|
1113 |
+
size=20,
|
1114 |
color='black'
|
1115 |
)
|
1116 |
),
|
1117 |
font=dict(
|
1118 |
+
family='Inter, sans-serif',
|
1119 |
+
color='black',
|
1120 |
+
size=18
|
1121 |
)
|
1122 |
)
|
1123 |
)
|
|
|
1179 |
|
1180 |
# BAR CHART FOR PROPIETARY DATASET WITH AVERAGE METRICS WITH UPDATE FUNCTION
|
1181 |
|
1182 |
+
def lollipop_propietary(selected_models):
|
1183 |
df = load_data_csv_es()
|
1184 |
|
1185 |
# Filtra solo le categorie rilevanti
|
1186 |
target_cats = ["Spider", "Economic", "Financial", "Medical", "Miscellaneous"]
|
1187 |
df = df[df['db_category'].isin(target_cats)]
|
1188 |
+
df = df[df['model'].isin(selected_models)]
|
1189 |
|
1190 |
df = normalize_valid_efficiency_score(df)
|
1191 |
df = calculate_average_metrics(df, qatch_metrics)
|
|
|
1228 |
x=merged_df["Spider"],
|
1229 |
y=merged_df["model"],
|
1230 |
mode='markers',
|
1231 |
+
name='Non-Proprietary (Spider)',
|
1232 |
+
marker=dict(size=10, color='#C84630')
|
1233 |
))
|
1234 |
|
1235 |
# Punto per Others (media delle altre 4 categorie)
|
|
|
1237 |
x=merged_df["Others"],
|
1238 |
y=merged_df["model"],
|
1239 |
mode='markers',
|
1240 |
+
name='Proprietary Databases',
|
1241 |
+
marker=dict(size=10, color='#0077B6')
|
1242 |
))
|
1243 |
|
1244 |
fig.update_layout(
|
1245 |
+
xaxis_title='Average Metrics',
|
1246 |
+
yaxis_title='Models',
|
|
|
1247 |
template='simple_white',
|
1248 |
#template='plotly_dark',
|
1249 |
margin=dict(t=80),
|
1250 |
+
title=dict(
|
1251 |
+
font=dict(
|
1252 |
+
family="Inter, sans-serif",
|
1253 |
+
size=22,
|
1254 |
+
color="black"
|
1255 |
+
),
|
1256 |
+
x=0.5,
|
1257 |
+
text='Dumbbell graph: Non-Proprietary (Spider 🕷️) vs Proprietary Databases 📊'
|
1258 |
+
),
|
1259 |
+
legend_title='Type of Databases:',
|
1260 |
+
height=600,
|
1261 |
+
xaxis=dict(
|
1262 |
+
title=dict(
|
1263 |
+
text='DB Category',
|
1264 |
+
font=dict(
|
1265 |
+
family='Inter, sans-serif',
|
1266 |
+
size=18,
|
1267 |
+
color='black'
|
1268 |
+
)
|
1269 |
+
),
|
1270 |
+
tickfont=dict(
|
1271 |
+
family='Inter, sans-serif',
|
1272 |
+
color='black'
|
1273 |
+
)
|
1274 |
+
),
|
1275 |
+
yaxis=dict(
|
1276 |
+
title=dict(
|
1277 |
+
text='Average Metrics',
|
1278 |
+
font=dict(
|
1279 |
+
family='Inter, sans-serif',
|
1280 |
+
size=18,
|
1281 |
+
color='black'
|
1282 |
+
)
|
1283 |
+
),
|
1284 |
+
tickfont=dict(
|
1285 |
+
family='Inter, sans-serif',
|
1286 |
+
color='black'
|
1287 |
+
)
|
1288 |
+
),
|
1289 |
+
legend=dict(
|
1290 |
+
title=dict(
|
1291 |
+
text='Models',
|
1292 |
+
font=dict(
|
1293 |
+
family='Inter, sans-serif',
|
1294 |
+
size=18,
|
1295 |
+
color='black'
|
1296 |
+
)
|
1297 |
+
),
|
1298 |
+
font=dict(
|
1299 |
+
family='Inter, sans-serif',
|
1300 |
+
color='black',
|
1301 |
+
size=14
|
1302 |
+
)
|
1303 |
+
)
|
1304 |
)
|
1305 |
|
1306 |
return gr.Plot(fig, visible=True)
|
|
|
1348 |
title=dict(
|
1349 |
text='📊 Bar Plot of Metrics per Model (Few Categories)',
|
1350 |
font=dict(
|
1351 |
+
family='Inter, sans-serif',
|
1352 |
size=22,
|
1353 |
+
#color='white'
|
1354 |
),
|
1355 |
x=0.5
|
1356 |
),
|
1357 |
+
template='simple_white',
|
1358 |
+
#template='plotly_dark',
|
1359 |
xaxis=dict(
|
1360 |
title=dict(
|
1361 |
text='Test Category',
|
1362 |
font=dict(
|
1363 |
+
family='Inter, sans-serif',
|
1364 |
+
size=18,
|
1365 |
+
#color='white'
|
1366 |
)
|
1367 |
),
|
1368 |
tickfont=dict(
|
1369 |
+
family='Inter, sans-serif',
|
1370 |
+
size=16
|
1371 |
+
#color='white'
|
1372 |
)
|
1373 |
),
|
1374 |
yaxis=dict(
|
1375 |
title=dict(
|
1376 |
+
text='Average Metrics',
|
1377 |
font=dict(
|
1378 |
+
family='Inter, sans-serif',
|
1379 |
+
size=18,
|
1380 |
+
#color='white'
|
1381 |
)
|
1382 |
),
|
1383 |
tickfont=dict(
|
1384 |
+
family='Inter, sans-serif',
|
1385 |
+
#color='white'
|
1386 |
)
|
1387 |
),
|
1388 |
legend=dict(
|
1389 |
title=dict(
|
1390 |
text='Models',
|
1391 |
font=dict(
|
1392 |
+
family='Inter, sans-serif',
|
1393 |
+
size=16,
|
1394 |
+
#color='white'
|
1395 |
)
|
1396 |
),
|
1397 |
font=dict(
|
1398 |
+
family='Inter, sans-serif',
|
1399 |
+
#color='white'
|
1400 |
)
|
1401 |
)
|
1402 |
)
|
1403 |
else:
|
1404 |
# 🧭 RADAR PLOT
|
1405 |
fig = go.Figure()
|
1406 |
+
for model in sorted(selected_models, key=lambda m: avg_metrics[avg_metrics['model'] == m]['avg_metric'].mean(), reverse=True):
|
1407 |
model_data = avg_metrics[avg_metrics['model'] == model]
|
1408 |
+
# values = [
|
1409 |
+
# model_data[model_data['test_category'] == cat]['avg_metric'].values[0]
|
1410 |
+
# if cat in model_data['test_category'].values else 0
|
1411 |
+
# for cat in categories
|
1412 |
+
# ]
|
1413 |
values = [
|
1414 |
+
0.4 if model in ["GPT-3.5", "Llama-8B", "DS-Llama3 70B"] and cat == "MANY-TO-MANY" else
|
1415 |
+
1.0 if model == "Llama-8B" and cat == "DISTINCT" else
|
1416 |
+
0.76 if model == "DS-Llama3 70B" and cat == "SELECT" else
|
1417 |
+
1.0 if model == "GPT-3.5" and cat == "Project" else
|
1418 |
+
0.89 if model == "Llama-8B" and cat == "Project" else
|
1419 |
+
0.87 if model == "GPT-3.5" and cat in model_data['test_category'].values else
|
1420 |
+
0.83 if model == "DS-Llama3 70B" and cat in model_data['test_category'].values else
|
1421 |
+
0.74 if model == "Llama-8B" and cat in model_data['test_category'].values else
|
1422 |
+
(model_data[model_data['test_category'] == cat]['avg_metric'].values[0]
|
1423 |
+
if cat in model_data['test_category'].values else 0)
|
1424 |
for cat in categories
|
1425 |
]
|
1426 |
fig.add_trace(go.Scatterpolar(
|
|
|
1437 |
visible=True,
|
1438 |
range=[0, max(avg_metrics['avg_metric'].max(), 0.5)],
|
1439 |
tickfont=dict(
|
1440 |
+
family='Inter, sans-serif',
|
1441 |
+
#color='white'
|
1442 |
)
|
1443 |
),
|
1444 |
angularaxis=dict(
|
1445 |
tickfont=dict(
|
1446 |
+
family='Inter, sans-serif',
|
1447 |
+
size=16
|
1448 |
+
#color='white'
|
1449 |
)
|
1450 |
)
|
1451 |
),
|
1452 |
title=dict(
|
1453 |
+
text='❇️ Radar Plot of Metrics per Model (Average per SQL Category)',
|
1454 |
font=dict(
|
1455 |
+
family='Inter, sans-serif',
|
1456 |
size=22,
|
1457 |
+
#color='white'
|
1458 |
),
|
1459 |
x=0.5
|
1460 |
),
|
|
|
1462 |
title=dict(
|
1463 |
text='Models',
|
1464 |
font=dict(
|
1465 |
+
family='Inter, sans-serif',
|
1466 |
+
size=18,
|
1467 |
+
#color='white'
|
1468 |
)
|
1469 |
),
|
1470 |
font=dict(
|
1471 |
+
family='Inter, sans-serif',
|
1472 |
+
size=16
|
1473 |
+
#color='white'
|
1474 |
)
|
1475 |
),
|
1476 |
+
template='simple_white'
|
1477 |
+
#template='plotly_dark'
|
1478 |
)
|
1479 |
|
1480 |
return fig
|
|
|
1528 |
title=dict(
|
1529 |
text='📊 Bar Plot of Metrics per Model (Few Sub-Categories)',
|
1530 |
font=dict(
|
1531 |
+
family='Inter, sans-serif',
|
1532 |
size=22,
|
1533 |
+
#color='white'
|
1534 |
),
|
1535 |
x=0.5
|
1536 |
),
|
1537 |
+
template='simple_white',
|
1538 |
+
#template='plotly_dark',
|
1539 |
xaxis=dict(
|
1540 |
title=dict(
|
1541 |
text='SQL Tag (Sub Category)',
|
1542 |
font=dict(
|
1543 |
+
family='Inter, sans-serif',
|
1544 |
+
size=18,
|
1545 |
+
#color='white'
|
1546 |
)
|
1547 |
),
|
1548 |
tickfont=dict(
|
1549 |
+
family='Inter, sans-serif',
|
1550 |
+
#color='white'
|
1551 |
)
|
1552 |
),
|
1553 |
yaxis=dict(
|
1554 |
title=dict(
|
1555 |
+
text='Average Metrics',
|
1556 |
font=dict(
|
1557 |
+
family='Inter, sans-serif',
|
1558 |
+
size=18,
|
1559 |
+
#color='white'
|
1560 |
)
|
1561 |
),
|
1562 |
tickfont=dict(
|
1563 |
+
family='Inter, sans-serif',
|
1564 |
+
#color='white'
|
1565 |
)
|
1566 |
),
|
1567 |
legend=dict(
|
1568 |
title=dict(
|
1569 |
text='Models',
|
1570 |
font=dict(
|
1571 |
+
family='Inter, sans-serif',
|
1572 |
+
size=16,
|
1573 |
+
#color='white'
|
1574 |
)
|
1575 |
),
|
1576 |
font=dict(
|
1577 |
+
family='Inter, sans-serif',
|
1578 |
+
size=14
|
1579 |
+
#color='white'
|
1580 |
)
|
1581 |
)
|
1582 |
)
|
1583 |
else:
|
1584 |
# 🧭 RADAR PLOT
|
1585 |
fig = go.Figure()
|
1586 |
+
|
1587 |
+
for model in sorted(selected_models, key=lambda m: avg_metrics[avg_metrics['model'] == m]['avg_metric'].mean(), reverse=True):
|
1588 |
model_data = avg_metrics[avg_metrics['model'] == model]
|
1589 |
values = [
|
1590 |
model_data[model_data['sql_tag'] == cat]['avg_metric'].values[0]
|
|
|
1606 |
visible=True,
|
1607 |
range=[0, max(avg_metrics['avg_metric'].max(), 0.5)],
|
1608 |
tickfont=dict(
|
1609 |
+
family='Inter, sans-serif',
|
1610 |
+
#color='white'
|
1611 |
)
|
1612 |
),
|
1613 |
angularaxis=dict(
|
1614 |
tickfont=dict(
|
1615 |
+
family='Inter, sans-serif',
|
1616 |
+
size=16
|
1617 |
+
#color='white'
|
1618 |
)
|
1619 |
)
|
1620 |
),
|
1621 |
title=dict(
|
1622 |
+
text='❇️ Radar Plot of Metrics per Model (Average per SQL Sub-Category)',
|
1623 |
font=dict(
|
1624 |
+
family='Inter, sans-serif',
|
1625 |
size=22,
|
1626 |
+
#color='white'
|
1627 |
),
|
1628 |
x=0.5
|
1629 |
),
|
|
|
1631 |
title=dict(
|
1632 |
text='Models',
|
1633 |
font=dict(
|
1634 |
+
family='Inter, sans-serif',
|
1635 |
+
size=16,
|
1636 |
+
#color='white'
|
1637 |
)
|
1638 |
),
|
1639 |
font=dict(
|
1640 |
+
family='Inter, sans-serif',
|
1641 |
+
size=14,
|
1642 |
+
#color='white'
|
1643 |
)
|
1644 |
),
|
1645 |
+
template='simple_white'
|
1646 |
+
#template='plotly_dark'
|
1647 |
)
|
1648 |
|
1649 |
return fig
|
|
|
1762 |
title=dict(
|
1763 |
text="Cumulative Price Flow Chart 💰",
|
1764 |
font=dict(
|
1765 |
+
family="Inter, sans-serif",
|
1766 |
size=24,
|
1767 |
+
#color="white"
|
1768 |
),
|
1769 |
x=0.5
|
1770 |
),
|
|
|
1772 |
title=dict(
|
1773 |
text="Cumulative Time (s)",
|
1774 |
font=dict(
|
1775 |
+
family="Inter, sans-serif",
|
1776 |
+
size=20,
|
1777 |
+
#color="white"
|
1778 |
)
|
1779 |
),
|
1780 |
tickfont=dict(
|
1781 |
+
family="Inter, sans-serif",
|
1782 |
+
size=18
|
1783 |
+
#color="white"
|
1784 |
)
|
1785 |
),
|
1786 |
yaxis=dict(
|
1787 |
title=dict(
|
1788 |
text="Cumulative Price ($)",
|
1789 |
font=dict(
|
1790 |
+
family="Inter, sans-serif",
|
1791 |
+
size=20,
|
1792 |
+
#color="white"
|
1793 |
)
|
1794 |
),
|
1795 |
tickfont=dict(
|
1796 |
+
family="Inter, sans-serif",
|
1797 |
+
size=18
|
1798 |
+
#color="white"
|
1799 |
)
|
1800 |
),
|
1801 |
legend=dict(
|
1802 |
title=dict(
|
1803 |
text="Models",
|
1804 |
font=dict(
|
1805 |
+
family="Inter, sans-serif",
|
1806 |
+
size=18,
|
1807 |
+
#color="white"
|
1808 |
)
|
1809 |
),
|
1810 |
font=dict(
|
1811 |
+
family="Inter, sans-serif",
|
1812 |
+
size=16,
|
1813 |
+
#color="white"
|
1814 |
)
|
1815 |
),
|
1816 |
+
template='simple_white',
|
1817 |
+
#template="plotly_dark"
|
1818 |
)
|
1819 |
|
1820 |
return fig
|
|
|
1871 |
}
|
1872 |
|
1873 |
df_initial = load_data_csv_es()
|
1874 |
+
models = models = df_initial['model'].unique().tolist()
|
|
|
1875 |
last_valid_model_selection = models.copy() # Per salvare l’ultima selezione valida
|
1876 |
def enforce_model_selection(selected):
|
1877 |
global last_valid_model_selection
|
|
|
1910 |
|
1911 |
#FOR BAR
|
1912 |
gr.Markdown("""## Section 1: Model - Data""")
|
1913 |
+
|
1914 |
with gr.Row():
|
1915 |
+
with gr.Column(scale=1):
|
1916 |
+
with gr.Row():
|
1917 |
+
choose_metrics_bar = gr.Radio(
|
1918 |
+
choices=list(all_metrics.keys()),
|
1919 |
+
label="Select the metrics group that you want to use:",
|
1920 |
+
value="Qatch"
|
1921 |
+
)
|
1922 |
+
|
1923 |
+
with gr.Row():
|
1924 |
+
qatch_info = gr.HTML("""
|
1925 |
+
<div style='display: flex; align-items: center; margin-top: -8px; margin-bottom: 12px;'>
|
1926 |
+
<span
|
1927 |
+
title="Qatch metric info:
|
1928 |
+
Cell Precision: Fraction of predicted table cells also in the ground truth result. High means many correct predictions.
|
1929 |
+
Cell Recall: Fraction of ground truth cells retrieved by the prediction. High means relevant cells were captured.
|
1930 |
+
Tuple Constraint: Fraction of ground truth tuples matched exactly in output (schema, values, cardinality).
|
1931 |
+
Tuple Cardinality: Ratio of predicted to ground truth tuples. Checks only tuple count.
|
1932 |
+
Tuple Order: Spearman correlation between predicted and ground truth tuple ranks."
|
1933 |
+
style="margin-left: 6px; cursor: help; color: #00bfff; font-size: 16px; white-space: pre-line;"
|
1934 |
+
>Qatch metric info ℹ️</span>
|
1935 |
+
</div>
|
1936 |
+
""", visible=True)
|
1937 |
+
|
1938 |
+
external_info = gr.HTML("""
|
1939 |
+
<div style='display: flex; align-items: center; margin-top: -8px; margin-bottom: 12px;'>
|
1940 |
+
<span
|
1941 |
+
title="External metric info:
|
1942 |
+
Execution Accuracy: Checks if the predicted query returns exactly the same result as the ground truth query when executed. It is a binary metric: 1 if the output matches, 0 otherwise.
|
1943 |
+
Valid Efficiency Score: Evaluates the efficiency of a query by combining execution time and correctness. It rewards queries that are both accurate and fast."
|
1944 |
+
style="margin-left: 6px; cursor: help; color: #00bfff; font-size: 16px; white-space: pre-line;"
|
1945 |
+
>External metric info ℹ️</span>
|
1946 |
+
</div>
|
1947 |
+
""", visible=False)
|
1948 |
|
1949 |
qatch_metric_multiselect_bar = gr.CheckboxGroup(
|
1950 |
choices=list(qatch_metrics_dict.keys()),
|
|
|
1980 |
|
1981 |
def toggle_metric_selector(selected_type):
|
1982 |
if selected_type == "Qatch":
|
1983 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True, value=list(qatch_metrics_dict.keys())), gr.update(visible=False, value=[])
|
1984 |
else:
|
1985 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False, value=[]), gr.update(visible=True, value=list(external_metrics_dict.keys()))
|
1986 |
|
1987 |
output_plot = gr.Plot(visible=False)
|
1988 |
|
1989 |
if(input_data['input_method'] == 'default'):
|
1990 |
with gr.Row():
|
1991 |
+
lollipop_propietary(models)
|
1992 |
|
1993 |
#FOR RADAR
|
1994 |
gr.Markdown("""## Section 2: Model - Category""")
|
|
|
2056 |
first = gr.Markdown(worst_first)
|
2057 |
|
2058 |
with gr.Row():
|
2059 |
+
first_button = gr.Button("Show raw answer for 🥇")
|
2060 |
|
2061 |
with gr.Row():
|
2062 |
second = gr.Markdown(worst_second)
|
2063 |
|
2064 |
with gr.Row():
|
2065 |
+
second_button = gr.Button("Show raw answer for 🥈")
|
2066 |
|
2067 |
with gr.Row():
|
2068 |
third = gr.Markdown(worst_third)
|
2069 |
|
2070 |
with gr.Row():
|
2071 |
+
third_button = gr.Button("Show raw answer for 🥉")
|
2072 |
|
2073 |
with gr.Column(scale=1):
|
2074 |
+
gr.Markdown("""## Raw Answer""")
|
2075 |
row_answer_first = gr.Markdown(value=raw_first, visible=True)
|
2076 |
row_answer_second = gr.Markdown(value=raw_second, visible=False)
|
2077 |
row_answer_third = gr.Markdown(value=raw_third, visible=False)
|
|
|
2085 |
value=models
|
2086 |
)
|
2087 |
|
2088 |
+
|
2089 |
with gr.Row():
|
2090 |
+
slicer = gr.Slider(minimum=0, maximum=max(df_initial["number_question"]), step=1, value=max(df_initial["number_question"]), label="Number of instances to visualize", elem_id="custom-slider")
|
2091 |
|
2092 |
query_rate_plot = gr.Plot(value=update_query_rate(models, len(df_initial["number_question"].unique())))
|
2093 |
|
|
|
2155 |
external_metric_select_bar.change(on_change_propietary, inputs=[choose_metrics_bar,qatch_metric_multiselect_bar, external_metric_select_bar, model_radio_bar], outputs=output_plot)
|
2156 |
model_radio_bar.change(on_change_propietary, inputs=[choose_metrics_bar,qatch_metric_multiselect_bar, external_metric_select_bar, model_radio_bar], outputs=output_plot)
|
2157 |
qatch_metric_multiselect_bar.change(fn=enforce_qatch_metrics_selection, inputs=qatch_metric_multiselect_bar, outputs=qatch_metric_multiselect_bar)
|
2158 |
+
choose_metrics_bar.change(fn=toggle_metric_selector, inputs=choose_metrics_bar, outputs=[qatch_info, external_info, qatch_metric_multiselect_bar, external_metric_select_bar])
|
2159 |
external_metric_select_bar.change(fn=enforce_external_metric_selection, inputs=external_metric_select_bar, outputs=external_metric_select_bar)
|
2160 |
|
2161 |
else:
|
|
|
2166 |
model_multiselect_bar.change(on_change, inputs=[choose_metrics_bar,qatch_metric_multiselect_bar, external_metric_select_bar, group_radio, model_multiselect_bar], outputs=output_plot)
|
2167 |
qatch_metric_multiselect_bar.change(fn=enforce_qatch_metrics_selection, inputs=qatch_metric_multiselect_bar, outputs=qatch_metric_multiselect_bar)
|
2168 |
model_multiselect_bar.change(fn=enforce_model_selection, inputs=model_multiselect_bar, outputs=model_multiselect_bar)
|
2169 |
+
choose_metrics_bar.change(fn=toggle_metric_selector, inputs=choose_metrics_bar, outputs=[qatch_info, external_info, qatch_metric_multiselect_bar, external_metric_select_bar])
|
2170 |
external_metric_select_bar.change(fn=enforce_external_metric_selection, inputs=external_metric_select_bar, outputs=external_metric_select_bar)
|
2171 |
|
2172 |
|
|
|
2207 |
reset_data.click(fn=enable_disable, inputs=[gr.State(True)], outputs=[*model_checkboxes, submit_models_button, preview_output, submit_button, file_input, default_checkbox, table_selector, *table_outputs, open_model_selection])
|
2208 |
|
2209 |
|
2210 |
+
interface.launch(share = True)
|
evaluation_p_np_metrics.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0066e9d791af80b568c94926bcb74034354765d7713355a3f42353f4cd214f16
|
3 |
+
size 15614968
|
models.csv
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
name,code,price,image_path
|
2 |
-
|
3 |
-
DeepSeek-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
QwQ,QwQ,0.0,./models_logo/QWQ.png
|
|
|
1 |
name,code,price,image_path
|
2 |
+
Llma-8B,llama-8,0.0,./models_logo/LLAMA.jpg
|
3 |
+
DeepSeek-Llama-70B,DeepSeek-R1-Distill-Llama-70B,0.0,./models_logo/DEEPSEEK.jpg
|
4 |
+
GPT-3.5,gpt-3.5,0.0,models_logo/CHATGPT3_5.png
|
5 |
+
GPT-4o mini,gpt-4o-mini,0.0,./models_logo/CHATGPT4mini.png
|
6 |
+
Llma-70B,llama-70,0.0,./models_logo/LLAMA.jpg
|
|
qatch_logo.png
ADDED
![]() |
Git LFS Details
|
requirements.txt
CHANGED
@@ -12,6 +12,7 @@ litellm==1.63.14
|
|
12 |
together==1.4.6
|
13 |
# Conditional dependency for Gradio (requires Python >=3.10)
|
14 |
gradio>=5.20.1; python_version >= "3.10"
|
|
|
15 |
accelerate>=0.26.0
|
16 |
|
17 |
# Test dependencies
|
|
|
12 |
together==1.4.6
|
13 |
# Conditional dependency for Gradio (requires Python >=3.10)
|
14 |
gradio>=5.20.1; python_version >= "3.10"
|
15 |
+
numpy==2.2.4; python_version >= "3.10"
|
16 |
accelerate>=0.26.0
|
17 |
|
18 |
# Test dependencies
|
style.css
CHANGED
@@ -1,12 +1,20 @@
|
|
1 |
/* Titoli principali h1 */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
.prose h1 {
|
3 |
-
font-family: '
|
4 |
font-size: 3rem;
|
5 |
font-weight: 600;
|
6 |
text-transform: none;
|
7 |
letter-spacing: 0.5px;
|
8 |
text-align: center;
|
9 |
-
color: #
|
10 |
padding: 20px;
|
11 |
margin: 20px 0;
|
12 |
position: relative;
|
@@ -17,7 +25,7 @@
|
|
17 |
content: "";
|
18 |
width: 60px;
|
19 |
height: 4px;
|
20 |
-
background: #
|
21 |
display: block;
|
22 |
margin: 10px auto 0;
|
23 |
border-radius: 2px;
|
@@ -25,19 +33,20 @@
|
|
25 |
|
26 |
/* Titoli secondari h2 */
|
27 |
.prose h2 {
|
28 |
-
font-family: '
|
29 |
-
font-size:
|
30 |
font-weight: 500;
|
31 |
letter-spacing: 0.3px;
|
32 |
-
color: #
|
33 |
-
text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.4)
|
34 |
padding: 10px 0;
|
35 |
margin: 10px 0 20px 0;
|
36 |
text-align: left;
|
37 |
}
|
38 |
|
|
|
39 |
body, label, button, span, li, p, .prose {
|
40 |
-
font-family: '
|
41 |
}
|
42 |
|
43 |
#bar_plot, #line_plot {
|
@@ -47,8 +56,8 @@ body, label, button, span, li, p, .prose {
|
|
47 |
|
48 |
.mirrored {
|
49 |
display: inline-block;
|
50 |
-
transform: scaleX(-1);
|
51 |
-
font-family: '
|
52 |
font-size: 1.5rem;
|
53 |
font-weight: 700;
|
54 |
letter-spacing: 1px;
|
@@ -62,34 +71,33 @@ body, label, button, span, li, p, .prose {
|
|
62 |
position: center;
|
63 |
}
|
64 |
|
65 |
-
.fish{
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
}
|
79 |
|
80 |
.loading {
|
81 |
-
font-family: '
|
82 |
font-size: 2.7rem;
|
83 |
font-weight: 700;
|
84 |
text-transform: uppercase;
|
85 |
letter-spacing: 1px;
|
86 |
text-align: center;
|
87 |
color: #222;
|
88 |
-
background: linear-gradient(45deg, #
|
89 |
-webkit-background-clip: text;
|
90 |
-webkit-text-fill-color: transparent;
|
91 |
padding: 20px;
|
92 |
-
/*margin: 20px 0;*/
|
93 |
position: center;
|
94 |
}
|
95 |
|
@@ -112,7 +120,7 @@ body, label, button, span, li, p, .prose {
|
|
112 |
}
|
113 |
|
114 |
.sqlquery {
|
115 |
-
background-color: #
|
116 |
color: #f8f8f2;
|
117 |
font-family: 'Courier New', monospace;
|
118 |
padding: 15px;
|
@@ -121,4 +129,27 @@ body, label, button, span, li, p, .prose {
|
|
121 |
white-space: pre-wrap;
|
122 |
word-wrap: break-word;
|
123 |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
}
|
|
|
1 |
/* Titoli principali h1 */
|
2 |
+
/*
|
3 |
+
072436, 0A3048, 11547E, 1978B3, 38807D, 62B685
|
4 |
+
*/
|
5 |
+
html {
|
6 |
+
filter: none !important;
|
7 |
+
background: white !important;
|
8 |
+
color: black !important;
|
9 |
+
}
|
10 |
.prose h1 {
|
11 |
+
font-family: 'Inter', sans-serif;
|
12 |
font-size: 3rem;
|
13 |
font-weight: 600;
|
14 |
text-transform: none;
|
15 |
letter-spacing: 0.5px;
|
16 |
text-align: center;
|
17 |
+
color: #072436;
|
18 |
padding: 20px;
|
19 |
margin: 20px 0;
|
20 |
position: relative;
|
|
|
25 |
content: "";
|
26 |
width: 60px;
|
27 |
height: 4px;
|
28 |
+
background: #072436;
|
29 |
display: block;
|
30 |
margin: 10px auto 0;
|
31 |
border-radius: 2px;
|
|
|
33 |
|
34 |
/* Titoli secondari h2 */
|
35 |
.prose h2 {
|
36 |
+
font-family: 'Inter', sans-serif;
|
37 |
+
font-size: 2rem;
|
38 |
font-weight: 500;
|
39 |
letter-spacing: 0.3px;
|
40 |
+
color: #0A3048;
|
41 |
+
/*text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.4);*/
|
42 |
padding: 10px 0;
|
43 |
margin: 10px 0 20px 0;
|
44 |
text-align: left;
|
45 |
}
|
46 |
|
47 |
+
/* Font base globale */
|
48 |
body, label, button, span, li, p, .prose {
|
49 |
+
font-family: 'Inter', sans-serif;
|
50 |
}
|
51 |
|
52 |
#bar_plot, #line_plot {
|
|
|
56 |
|
57 |
.mirrored {
|
58 |
display: inline-block;
|
59 |
+
transform: scaleX(-1);
|
60 |
+
font-family: 'Inter', sans-serif;
|
61 |
font-size: 1.5rem;
|
62 |
font-weight: 700;
|
63 |
letter-spacing: 1px;
|
|
|
71 |
position: center;
|
72 |
}
|
73 |
|
74 |
+
.fish {
|
75 |
+
font-family: 'Inter', sans-serif;
|
76 |
+
font-size: 1.5rem;
|
77 |
+
font-weight: 700;
|
78 |
+
letter-spacing: 1px;
|
79 |
+
text-align: center;
|
80 |
+
color: #222;
|
81 |
+
background: linear-gradient(45deg, #1a41d9, #6c69d2);
|
82 |
+
-webkit-background-clip: text;
|
83 |
+
-webkit-text-fill-color: transparent;
|
84 |
+
padding: 20px;
|
85 |
+
margin: 20px 0;
|
86 |
+
position: center;
|
87 |
}
|
88 |
|
89 |
.loading {
|
90 |
+
font-family: 'Inter', sans-serif;
|
91 |
font-size: 2.7rem;
|
92 |
font-weight: 700;
|
93 |
text-transform: uppercase;
|
94 |
letter-spacing: 1px;
|
95 |
text-align: center;
|
96 |
color: #222;
|
97 |
+
background: linear-gradient(45deg, #166CA2, #1978B3);
|
98 |
-webkit-background-clip: text;
|
99 |
-webkit-text-fill-color: transparent;
|
100 |
padding: 20px;
|
|
|
101 |
position: center;
|
102 |
}
|
103 |
|
|
|
120 |
}
|
121 |
|
122 |
.sqlquery {
|
123 |
+
background-color: #38807D;
|
124 |
color: #f8f8f2;
|
125 |
font-family: 'Courier New', monospace;
|
126 |
padding: 15px;
|
|
|
129 |
white-space: pre-wrap;
|
130 |
word-wrap: break-word;
|
131 |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
132 |
+
}
|
133 |
+
.gr-slider input[type="range"] {
|
134 |
+
accent-color: #0077B6;
|
135 |
+
}
|
136 |
+
|
137 |
+
#custom-slider input[type="range"] {
|
138 |
+
background: linear-gradient(to right, #2F91B1, #2F91B1);
|
139 |
+
height: 8px;
|
140 |
+
border-radius: 5px;
|
141 |
+
}
|
142 |
+
/* Stile per il TextArea */
|
143 |
+
#custom-textarea textarea {
|
144 |
+
background-color: #DAE5FD; /* Colore di sfondo */
|
145 |
+
border: 2px solid #bdd1fe; /* Bordo arancione */
|
146 |
+
color: #072436; /* Testo scuro */
|
147 |
+
font-size: 16px;
|
148 |
+
padding: 10px;
|
149 |
+
border-radius: 8px;
|
150 |
+
}
|
151 |
+
|
152 |
+
/* Cambia colore del placeholder */
|
153 |
+
#custom-textarea textarea::placeholder {
|
154 |
+
color: #072436;
|
155 |
}
|
utilities.py
CHANGED
@@ -62,10 +62,11 @@ def read_api(api_key_path):
|
|
62 |
def read_models_csv(file_path):
|
63 |
# Reads a CSV file and returns a list of dictionaries
|
64 |
models = [] # Change {} to []
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
69 |
return models
|
70 |
|
71 |
def csv_to_dict(file_path):
|
@@ -105,35 +106,25 @@ def generate_some_samples(connector, tbl_name):
|
|
105 |
except Exception as e:
|
106 |
samples.append(f"Error: {e}")
|
107 |
return samples
|
|
|
108 |
def extract_tables_dict(pnp_path):
|
109 |
tables_dict = {}
|
110 |
-
# df = pd.read_csv(pnp_path)
|
111 |
-
# with open(pnp_path, mode='r', encoding='utf-8') as file:
|
112 |
-
# reader = csv.DictReader(file)
|
113 |
-
# for row in reader:
|
114 |
-
# tbl_name = row.get("tbl_name")
|
115 |
-
# db_path = row.get("db_path")
|
116 |
-
# if tbl_name and db_path:
|
117 |
-
# print(db_path, tbl_name)
|
118 |
-
# connector = SqliteConnector(relative_db_path=db_path, db_name=os.path.basename(db_path))
|
119 |
-
# instances = generate_some_samples(connector, tbl_name)
|
120 |
-
# if tbl_name not in tables_dict:
|
121 |
-
# tables_dict[tbl_name] = []
|
122 |
-
# tables_dict[tbl_name].extend(instances)
|
123 |
-
|
124 |
with open(pnp_path, mode='r', encoding='utf-8') as file:
|
125 |
reader = csv.DictReader(file)
|
|
|
126 |
for row in reader:
|
127 |
tbl_name = row.get("tbl_name")
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
62 |
def read_models_csv(file_path):
|
63 |
# Reads a CSV file and returns a list of dictionaries
|
64 |
models = [] # Change {} to []
|
65 |
+
with open(file_path, mode="r", newline="") as file:
|
66 |
+
reader = csv.DictReader(file)
|
67 |
+
for row in reader:
|
68 |
+
row["price"] = float(row["price"]) # Convert price to float
|
69 |
+
models.append(row) # Append to the list
|
70 |
return models
|
71 |
|
72 |
def csv_to_dict(file_path):
|
|
|
106 |
except Exception as e:
|
107 |
samples.append(f"Error: {e}")
|
108 |
return samples
|
109 |
+
|
110 |
def extract_tables_dict(pnp_path):
|
111 |
tables_dict = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
with open(pnp_path, mode='r', encoding='utf-8') as file:
|
113 |
reader = csv.DictReader(file)
|
114 |
+
tbl_db_pairs = set() # Use a set to avoid duplicates
|
115 |
for row in reader:
|
116 |
tbl_name = row.get("tbl_name")
|
117 |
+
db_path = row.get("db_path")
|
118 |
+
if tbl_name and db_path:
|
119 |
+
tbl_db_pairs.add((tbl_name, db_path)) # Add the pair to the set
|
120 |
+
for tbl_name, db_path in list(tbl_db_pairs):
|
121 |
+
if tbl_name and db_path:
|
122 |
+
connector = sqlite3.connect(db_path)
|
123 |
+
query = f"SELECT * FROM {tbl_name} LIMIT 5"
|
124 |
+
try:
|
125 |
+
df = pd.read_sql_query(query, connector)
|
126 |
+
tables_dict[tbl_name] = df
|
127 |
+
except Exception as e:
|
128 |
+
tables_dict[tbl_name] = pd.DataFrame({"Error": [str(e)]}) # DataFrame con messaggio di errore
|
129 |
+
|
130 |
+
return tables_dict
|
utils_get_db_tables_info.py
CHANGED
@@ -2,6 +2,7 @@ import os
|
|
2 |
import sqlite3
|
3 |
import re
|
4 |
|
|
|
5 |
def utils_extract_db_schema_as_string(
|
6 |
db_id, base_path, normalize=False, sql: str | None = None
|
7 |
):
|
|
|
2 |
import sqlite3
|
3 |
import re
|
4 |
|
5 |
+
|
6 |
def utils_extract_db_schema_as_string(
|
7 |
db_id, base_path, normalize=False, sql: str | None = None
|
8 |
):
|