demo-space / app.py
shivanikerai's picture
Update app.py
495346b verified
raw
history blame
1.68 kB
import gradio as gr
import requests
# from transformers import pipeline
# pipe = pipeline("text-generation", model="shivanikerai/TinyLlama-1.1B-Chat-v1.0-seo-optimised-title-suggestion-v1.0")
API_URL = "https://api-inference.huggingface.co/models/shivanikerai/TinyLlama-1.1B-Chat-v1.0-seo-optimised-title-suggestion-v1.0"
def query(payload, api_token):
response = requests.post(API_URL, headers={"Authorization": f"Bearer {api_token}"}, json=payload)
return response.json()
def my_function(api_token, keywords, product_info):
B_SYS, E_SYS = "<<SYS>>", "<</SYS>>"
B_INST, E_INST = "[INST]", "[/INST]"
B_in, E_in = "[Product Details]", "[/Product Details]"
B_out, E_out = "[Suggested Titles]", "[/Suggested Titles]"
prompt = f"""{B_INST} {B_SYS} You are a helpful, respectful and honest assistant for ecommerce product title creation. {E_SYS}
Create a SEO optimized e-commerce product title for the keywords:{keywords.strip()}
{B_in}{product_info}{E_in}\n{E_INST}\n\n{B_out}"""
# predictions = pipe(prompt)
# output=((predictions[0]['generated_text']).split(B_out)[-1]).strip()
output = query({
"inputs": prompt,
},api_token)
return (output)
# Process the inputs (e.g., concatenate strings, perform calculations)
# result = f"You entered: {input1} and {input2}"
# return result
# Create the Gradio interface
interface = gr.Interface(fn=my_function,
inputs=["text", "text", "text"],
outputs="text",
title="SEO Optimised Title Suggestion",
description="Enter Keywords and Product Info:")
interface.launch()