Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
# from transformers import pipeline | |
# pipe = pipeline("text-generation", model="shivanikerai/TinyLlama-1.1B-Chat-v1.0-seo-optimised-title-suggestion-v1.0") | |
API_URL = "https://api-inference.huggingface.co/models/shivanikerai/TinyLlama-1.1B-Chat-v1.0-seo-optimised-title-suggestion-v1.0" | |
def query(payload, api_token): | |
response = requests.post(API_URL, headers={"Authorization": f"Bearer {api_token}"}, json=payload) | |
return response.json() | |
def my_function(api_token, keywords, product_info): | |
B_SYS, E_SYS = "<<SYS>>", "<</SYS>>" | |
B_INST, E_INST = "[INST]", "[/INST]" | |
B_in, E_in = "[Product Details]", "[/Product Details]" | |
B_out, E_out = "[Suggested Titles]", "[/Suggested Titles]" | |
prompt = f"""{B_INST} {B_SYS} You are a helpful, respectful and honest assistant for ecommerce product title creation. {E_SYS} | |
Create a SEO optimized e-commerce product title for the keywords:{keywords.strip()} | |
{B_in}{product_info}{E_in}\n{E_INST}\n\n{B_out}""" | |
# predictions = pipe(prompt) | |
# output=((predictions[0]['generated_text']).split(B_out)[-1]).strip() | |
output = query({ | |
"inputs": prompt, | |
},api_token) | |
return (output) | |
# Process the inputs (e.g., concatenate strings, perform calculations) | |
# result = f"You entered: {input1} and {input2}" | |
# return result | |
# Create the Gradio interface | |
interface = gr.Interface(fn=my_function, | |
inputs=["text", "text", "text"], | |
outputs="text", | |
title="SEO Optimised Title Suggestion", | |
description="Enter Keywords and Product Info:") | |
interface.launch() |